جلد 35، شماره 3 - ( 6-1403 )                   جلد 35 شماره 3 صفحات 168-154 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khan A, P S. “Transforming The Plastic Industry: Harnessing Machine Learning for Enhanced Efficiency”. IJIEPR 2024; 35 (3) :154-168
URL: http://ijiepr.iust.ac.ir/article-1-2036-fa.html
“Transforming The Plastic Industry: Harnessing Machine Learning for Enhanced Efficiency”. نشریه بین المللی مهندسی صنایع و تحقیقات تولید. 1403; 35 (3) :154-168

URL: http://ijiepr.iust.ac.ir/article-1-2036-fa.html


چکیده:   (884 مشاهده)
Optimizing production in the plastic extrusion industry is a pivotal task for small scale industries. To enhance the efficiency in today’s competitive market being a small-scale manufacturer over their peers is challenging. With the limited resources, having constraints on manpower, capital, space, often facing fluctuations in demand and production, simultaneously maintaining high quality became very important for the success. Among the plethora of KPIS used in manufacturing, Overall Equipment Effectiveness (OEE) stands out as corner stone. In this study, we collected real-world data from a plastic extrusion company. i.e., an HDPE Pipe manufacturing company. It serves as the backdrop for our study, this is based on the plastic extrusion sector and set out a goal of enhancing OEE through a comparative investigation of various ML models.  To forecast and estimate OEE values, we used various Machine Learning models and examine each algorithm’s performance using metrics like Mean Squared Error (MSE) and model comparisons using the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC), creating a comprehensive picture of each algorithm’s strength which enables the small businesses to make informed decisions and empowers them to stay agile and adapt to the changes in the manufacturing environment.
 
     
نوع مطالعه: پژوهشي | موضوع مقاله: بهبود بهره وری
دریافت: 1403/2/25 | پذیرش: 1403/5/27 | انتشار: 1403/6/28

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به نشریه بین المللی مهندسی صنایع و تحقیقات تولید می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | International Journal of Industrial Engineering & Production Research

Designed & Developed by : Yektaweb