جلد 29، شماره 1 - ( 12-1396 )                   جلد 29 شماره 1 صفحات 90-79 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

farughi H, hakimi A, kamranrad R. Availability Prediction of the Repairable Equipment using Artificial Neural Network and Time Series Models. IJIEPR 2018; 29 (1) :79-90
URL: http://ijiepr.iust.ac.ir/article-1-778-fa.html
Availability Prediction of the Repairable Equipment using Artificial Neural Network and Time Series Models. نشریه بین المللی مهندسی صنایع و تحقیقات تولید. 1396; 29 (1) :79-90

URL: http://ijiepr.iust.ac.ir/article-1-778-fa.html


چکیده:   (5076 مشاهده)
In this paper, one of the most important criterion in public services quality named availability is evaluated by using artificial neural network (ANN). In addition, the availability values are predicted for future periods by using exponential weighted moving average (EWMA) scheme and some time series models (TSM) including autoregressive (AR), moving average (MA) and autoregressive moving average (ARMA). Results based on comparative studies between four methods based on ANN and by considering the several conditions for the effective parameters in ANN show that, the generalized regression method is the best method for predicting the availability. Furthermore, results of the EWMA and three mentioned TSM are also show the better performance of MA model for predicting the availability values in future periods. 
     
نوع مطالعه: پژوهشي | موضوع مقاله: قابلیت اطمینان
دریافت: 1396/5/14 | پذیرش: 1396/10/5 | انتشار: 1396/12/2

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به نشریه بین المللی مهندسی صنایع و تحقیقات تولید می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | International Journal of Industrial Engineering & Production Research

Designed & Developed by : Yektaweb