جلد 19، شماره 1 - ( 12-1386 )                   جلد 19 شماره 1 صفحات 32-29 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Farnoosh R, Zarpak B. IMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL. IJIEPR 2008; 19 (1) :29-32
URL: http://ijiepr.iust.ac.ir/article-1-165-fa.html
IMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL. نشریه بین المللی مهندسی صنایع و تحقیقات تولید. 1386; 19 (1) :29-32

URL: http://ijiepr.iust.ac.ir/article-1-165-fa.html


چکیده:   (10239 مشاهده)

  Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm.

  In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, we introduce a new numerically method of finding maximum a posterior estimation by using EM-algorithm and Gaussians mixture distribution. In this algorithm, we have made a sequence of priors, posteriors and they converge to a posterior probability that is called the reference posterior probability. Maximum a posterior estimated can determine by the reference posterior probability that will make labeled image. This labeled image shows our segmented image with reduced noises. We show this method in several experiments.

     
نوع مطالعه: پژوهشي | موضوع مقاله: و موضوعات مربوط
دریافت: 1389/6/17 | انتشار: 1386/12/25

Cited by [8] [PDF 109 KB]  (500 دریافت)
ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به نشریه بین المللی مهندسی صنایع و تحقیقات تولید می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | International Journal of Industrial Engineering & Production Research

Designed & Developed by : Yektaweb