جلد 29، شماره 1 - ( 12-1396 )                   جلد 29 شماره 1 صفحات 101-91 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Eshghi A, Kargari M. Detecting frauds using customer behavior trend analysis and known scenarios. IJIEPR 2018; 29 (1) :91-101
URL: http://ijiepr.iust.ac.ir/article-1-779-fa.html
Detecting frauds using customer behavior trend analysis and known scenarios. نشریه بین المللی مهندسی صنایع و تحقیقات تولید. 1396; 29 (1) :91-101

URL: http://ijiepr.iust.ac.ir/article-1-779-fa.html


چکیده:   (4880 مشاهده)
In this paper a fraud detection method is proposed which user behaviors are modeled using two main components namely the un-normal trend analysis component and scenario based component. The extent of deviation of a transaction from his/her normal behavior is estimated using fuzzy membership functions. The results of applying all membership functions on a transaction will then be infused and a final risk is gained which is the basis for decision making in order to block the arrived transaction or not. An optimized threshold for the value of the final risk is estimated in order to make a balance between the fraud detection rate and alarm rate. Although the assessment of such problems are complicated, we show that this method can be useful in application according to several measures and metrics.
     
نوع مطالعه: پژوهشي | موضوع مقاله: فرایند اطلاعاتی و مهندسی
دریافت: 1396/5/27 | پذیرش: 1396/12/13 | انتشار: 1396/12/13

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به نشریه بین المللی مهندسی صنایع و تحقیقات تولید می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | International Journal of Industrial Engineering & Production Research

Designed & Developed by : Yektaweb