Volume 24, Number 2 (IJIEPR 2013)                   IJIEPR 2013, 24(2): 137-142 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Noorossana R, Saghaei A, Izadbakhsh H, Aghababaei O. Monitoring Multinomial Logit Profiles via Log-Linear Models (Quality Engineering Conference Paper). IJIEPR. 2013; 24 (2) :137-142
URL: http://ijiepr.iust.ac.ir/article-1-497-en.html

Prof. Industrial Engineering Department, Iran University of Science and Technology Tehran, Iran, 16846-13114 , rassoul@iust.ac.ir
Abstract:   (6588 Views)
In certain statistical process control applications, quality of a process or product can be characterized by a function commonly referred to as profile. Some of the potential applications of profile monitoring are cases where quality characteristic of interest is modelled using binary,multinomial or ordinal variables. In this paper, profiles with multinomial response are studied. For this purpose, multinomial logit regression (MLR) is considered as the basis.Then, the MLR is converted to Poisson GLM with log link. Two methods including Multivariate exponentially weighted moving average (MEWMA) statistics, and Likelihood ratio test (LRT) statistics are proposed to monitor MLR profiles in phase II. Performances of these three methods are evaluated by average run length criterion (ARL). A case study from alloy fasteners manufacturing process is used to illustrate the implementation of the proposed approach. Results indicate satisfactory performance for the proposed method.
Full-Text [PDF 406 kb]   (1143 Downloads)    
Type of Study: Research | Subject: Statistical Process Control Statistical Process Control or Quality Control
Received: 2013/01/28 | Accepted: 2013/06/17 | Published: 2013/06/17

Add your comments about this article : Your username or email:
Write the security code in the box

Send email to the article author


© 2015 All Rights Reserved | International Journal of Industrial Engineering & Production Research

Designed & Developed by : Yektaweb