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ABSTRACT 
Any manufacturing system must be consistent with potential changes such as fluctuations in demand. 
Uncertainty also makes the above issue more essential. Routing Flexibility (RF) is one of the 
necessities to any modern manufacturing system such as Flexible Manufacturing System (FMS). This 
paper proposed three mixed integer nonlinear programming models for the Unequal-Area Stochastic 
Dynamic Facility Layout Problems (UA–SDFLPs) by considering the Routing Flexibility. The models 
were proposed when the independent demands followed the random variable with Poisson, 
Exponential, and Normal distributions. For the validation of the proposed models, many small-sized 
test problems derived from a real case in the literature were solved. The large-sized test problems were 
solved by Genetic Algorithm (GA) in a reasonable amount of computational time. The obtained results 
indicated that the discussed models for the UA–SDFLPs were valid and the managers could take these 
models to the manufacturing floor to adapt to the potential changes in today's competitive market. 
 
KEYWORDS: Uncertainty; Routing flexibility; Flexible manufacturing system; Unequal–area 
stochastic dynamic facility layout problems; Genetic algorithm. 
 
 

1. Introduction1 
A Facility Layout Problem (FLP) is related to 
managing facilities that contain the Material 
Handling Cost (MHC). A facility can be a 
physical item such as a manufacturing cell or a 
work center, etc. [1]. The facilities have different 
area requirements in ordinary situations. The 
MHC is induced by 20% –50% of the Total 
Manufacturing Cost (TMC) and a fit facility 
layout can diminish the cost from 10% to 30% 
[2]. The physical facility layout can affect 
operational performances such as throughput rate, 
manufacturing lead time, and Work-In-Process 
(WIP) [3]. It takes a substantial cost when a 
facility layout is installed. An inefficient facility 
layout can add as much as 36% to the MHC [4]. 
Because of these reasons, designing a suitable 
facility layout is obligatory.  
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Regarding the area of the facility, the FLP can be 
categorized into two parts: an Equal Area-FLP 
(EA-FLP) and an Unequal Area-FLP (UA-FLP). 
In the past, it was assumed that all of the facilities 
had a similar area. In real world, facilities of 
equal size are rarely possible. Thus, in recent 
cases, each of these facilities may have different 
areas. Moreover, the solution of the UA-FLP can 
be applied to some cases like macrocell 
placement [5] and very large-scale integration 
design [6]. Thus, it is highly justified that UA-
FLP is studied. A schematic illustration of FLP 
types is depicted in Fig1. The upper half of the 
figure shows the EA-FLP and the lower half 
illustrates the UA-FLP. 
Regarding changes in demand, the FLPs can be 
divided into three main categories. These 
categories are Static Facility Layout Problems 
(SFLPs), Dynamic Facility Layout Problems 
(DFLPs), and Stochastic Facility Layout 
Problems (STFLPs) [7]. In the FLP, it is regularly 
assumed that the material flow among facilities 
occurs through the centroid of two facilities. If 
the flow of materials does not change in the 
planning horizon, then the SFLPs can be used. 
When demand changes, the flow of materials 
among facilities alters consequently. At this time, 
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the facility layout needs to be rearranged to make 
it efficient. Minimizing both of the MHCs and 
Rearrangement Cost (RC) is known as a DFLP 
[8].  
The static facility layout problem (single period) 
with uncertainty in demand is turned into 
Stochastic Static Facility Layout Problem 
(SSFLP). Moreover, the dynamic facility layout 
problem (multi-period) is called Stochastic 
Dynamic Facility Layout Problem (SDFLP) 
when uncertainty exists in demand. In SSFLP, 
similar to FLP, an optimal facility layout is 
designed in an entire planning horizon by 
minimizing the MHC. One of the purposes of the 
SDFLP is to obtain an optimum layout for each 
period so that the MHC and the RC can be 
minimized simultaneously [9]. The demands are 
specified as independent chance variables with a 
known Probability Density Function (PDF), 
which alters from one period to another, 

randomly. In this type of model, a decision-
maker that considers a level of uncertainty in 
demands by Confidence Level (훼). As is clear, 
the RF is one of the principles of Flexible 
Manufacturing Systems (FMS). Flexible facility 
design is defined as the ability to adjust the 
changes without affecting performance 
considerably. The RF is determined as a measure 
of the average number of choices of the machine 
that an individual product can choose. However, 
the RF in a layout is its ability to produce a part 
by alternative routes through the system [10]. 
Flexibility is precious because it can sometimes 
facilitate productivity. When the performance of 
a facility or an infrastructure system is evaluated, 
flexibility should be considered. In other words, 
the definition of performance should connect to 
the value of flexibility [11]. 

 

 
Fig. 1. Schematic illustration of types FLP (according to the area). 

 
In fact, this paper is an extension of the 
referenced papers [7,9]. For real-world 
simulation, the proposed models are presented in 
UA-SDFLPs with three distribution random 
variables including Poisson, Exponential, and 
Normal. Moreover, the time value of money and 
RF is added to the SDFLPs, when each of the 
facility is located in a rectangular shape and fixed 
dimensions. Section 2 briefly surveys the 
literature related to the proposed models. In 
Section 3, the proposed models in UA-SDFLP 
are introduced. The independent demands are 
stochastic with known variance and expected 
value. In addition to the Normal distribution 
function, the UA-SDFLPs are modeled using the 
Poisson and Exponential distributions functions. 
These problems are one of the most practical and 
realistic problems among the FLPs and real-
condition. To validate the proposed models, 
computational experiments are provided in 

Section 4. These are derived from literature. 
Also, Genetic Algorithm (GA) was applied to 
solve the proposed models for large-sized 
problems. The GA is an effective meta-heuristic 
method for many combinatorial optimization 
problems with large and complex search spaces 
such as Vehicle Routing (VR), Transportation 
Network Design Problem (TNDP), any problem 
with the continuous space, etc. GA starts with an 
initial remedy at each iteration. The solution may 
be obtained by a constructive-based algorithm or 
may be generated randomly. The meta-heuristic 
algorithm searches for the optimum solution 
among all possible solutions [12]. In Section 5, 
the sensitivity of the proposed models is 
examined. Finally, Section 6 shows the obtained 
results and suggests future work. 
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2. Literature Review 
Nowadays, in the competitive market, equal-area 
facilities are hardly working. In most studies, the 
main objective of UA-FLP is to achieve minimal 
operating costs [13]. Generally, there are FLPs in 
the literature that deal with the arrangement of 
the rectangular facilities, e.g., planning of an 
airplane’s dashboard, a city or a neighborhood, a 
layout of office buildings, and integrated circuits 
[14]. UA-SFLPs were considered with different 
areas and shapes using the center of each facility 
for determining the distances without counting 
specific directions for facilities [15]. Two 
problems of the UA-SFLPs were solved with a 
search algorithm called TOPOPT [16].  
Two models introduced for the UA-SFLPs: single 
row layout and multi-row layout. Then, a 
heuristic algorithm was proposed for solving the 
problems [17]. A modified PSO was suggested 
for solving the UA-SFLPs and the UA DFLPs 
such that the shapes and areas of departments 
could not change throughout the whole-time 
horizon [18]. For the first, they applied the 
modified PSO to solve the UA SFLPs and UA 
DFLPs to minimize the sum of the MHC for 
static problems and minimize the sum of the 
MHC and the sum of the rearrangement costs for 
dynamic problems. The UA-DFLPs were 
examined so that the shapes and areas of facilities 
could be fixed throughout the planning horizon. 
They joined the Dynamic Programming (DP) and 
the GA for solving the problems [19]. The UA-
DFLPs were studied where the shapes and areas 
of facilities were fixed and a two-stage algorithm 
was used to solve the problems. However, they 
did not report the RCs and only the sum of the 
MHC was published [20]. The UA-DFLPs were 
investigated where the shapes and areas of 
facilities could vary throughout the planning 
horizon. Flexible Bay Structure (FBS) was 
utilized to simplify the problems and the GA was 
used to solve them [21]. A model for the dynamic 
line layout problem was developed considering 
unequal size work centers, multiple types of 
material handling devices, and stochastic demand 
[22]. Moreover, the UA-DFLPs were modeled as 
Mixed Integer Programming (MIP) [23,24,25]. 
The SSFLPs were studied where the shapes and 
areas of facilities were fixed through the iteration 
of an algorithm [16,26]. The Equal-Area SSFLPs 
were formulated in which there were several 
scenarios for a material flow matrix with 
different probabilities. Dynamic programming 
was applied to solve the problems [27]. The 
Equal-Area SSFLPs were investigated in which 
there were several scenarios for a material flow 

matrix with different probabilities to minimize 
the expected material handling costs and the sum 
of the material handling costs, respectively 
[28,29]. The Equal-Area SSFLPs were 
formulated where the product demands were 
stochastic with known variance and expected 
value. They utilized a Simulated Annealing 
Algorithm (SAA) to solve the problems [30]. 
The Equal-Area SSFLPs were formulated where 
the product demands were stochastic with a 
known expected value and variance in Cellular 
Manufacturing Systems (CMS) [31]. The UA-
SSFLPs were developed where the area of each 
facility was fixed, but the shape of each facility 
could change during the iteration of an algorithm. 
Moreover, the product demands were stochastic 
with known variance and expected value, and 
each product had several product routings. 
Kulturel-Konak et al. applied the FBS and Tabu 
Search Algorithm (TSA) to solve the problems 
[10]. To address this type of the UA-SSFLPs, the 
FBS and the GA were used, where each product 
only has a single routing [32].  
The FLP is NP-complete. Optimization 
approaches are useful tools for obtaining an 
optimal solution to small-sized problems [33]. 
They stated that different metaheuristic 
techniques were proposed to solve FLPs. One of 
the best known and the most frequent of these 
methods is GA. These algorithms may be derived 
as optimal and suboptimal algorithms [34]. 
Moreover, they introduced an iterative 
construction procedure such that the whole time 
required was minimized by material handling 
systems to transport the part types among 
machines. Over the last decades, a large number 
of studies have suggested several meta-heuristic 
approaches to solve the UA-FLP by obtaining the 
approximate optimal solution in an acceptable 
amount of time [35,36]. Among them, the most 
popular and widely applied research is the subject 
of GA. For these reasons, GA is used. Of note, 
many other approaches have been suggested in 
the literature. 
However, approaches based on the standard GAs 
are characterized by premature convergence, 
which means that a population for an 
optimization problem is converged too early to 
get an optimal solution. All individuals in the 
population should be selected, evaluated, crossed, 
and mutated in each generation [37]. The 
effectiveness of RF control was studied in FMS 
[38]. Moreover, the effects of different levels of 
RF were investigated on the performance of 
FMSs with and without the factor of machine 
breakdowns [39]. 
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To the best of the knowledge, the application of 
SDFLP with Unequal-Area facilities remains 
unexplored. This paper is the first research that 
covers two related gaps and considers the RF and 
time value of money in UA-SDFLPs, 
simultaneously. Moreover, three integrated 
mathematical models are presented for the UA-
SDFLPs where the independent demands follow 
the Poisson, Exponential, and Normal 
distributions random variables. 
 

3. Problem Description 
The uncertainty in DFLP creates SDFLP. The 
confidence level (훼) determines uncertainty in 
demands so that the decision-maker can specify 
it. The purpose of the SDFLP is to obtain an 
optimum layout for each period so that the MHC 
and the RC can be minimized. The demands are 
considered as independent chance variables with 
a known Probability Density Function (PDF), 
which changes from one period to another period 
randomly. EA-SDFLP was first suggested by [9]. 
A mathematical model was proposed for the UA-
DFLPs when the shapes and areas of departments 
remained unchanged throughout the time horizon 
[7]. Both of the previously referenced studies 
failed to consider the RF and the time value of 

money. In this section, three new mathematical 
models are formulated with the following 
assumptions, indexes, parameters, and decision 
variables. It should be noted that the proposed 
mathematical models are based on the 
assumptions and perspectives found in [7,9]. 
 
3.1. Assumptions 
Assumptions of the proposed models are as 
follows: 
1. The shapes and areas of machines cannot 
change throughout the time horizon.  
2. The coordinate of the bottom left of the shop 
floor is (0, 0). 
3. The product demands whose parts are made in 
the manufacturing system are independent 
random variables with a known expected value 
and variance that change from period to another 
at random.  
4. The parts flow in the batches among machines. 
5. Both of the material handling and machine 
rearrangement costs are known.  
 
3.2. Models decision variables 
The proposed models have two decision variables 
as follows: 

 
(푥 	, 푦 ) Center-coordinate of machine i in period t. 

푟 =

⎩
⎪
⎨

⎪
⎧
1		; If	the	length	and	width	of	machine	푖	exchange	in	period	푡	in	comparison	with			

original	length	and	width	of	machine	푖	(i. e. , if	the	orientation	of	machine	푖
			changes	in	period	푡	in	comparison	with	the		original	orientation	of	machine	푖)		

	
																																																												

0			; Otherwise																																																																																																																																	

	

 
3.3. Models indexes and parameters 
Indexes and parameters of the proposed models are shown in Table 1. 
 

Tab. 1. Indexes and parameters of the proposed model. 

Indexes Parameters 
i,j  Indexes of the machine; 
푖 ≠ 푗, i,j=1,2,…,M; 
 
M  Number of machines; 
 
t  Indexes of the period, t=1,2,…,T; 
 
T  Number of periods under consideration; 
 
k  Indexes for part, k=1,2,…,K; 
 
K  Number of parts; 
 
n  Indexes of route of production ; 

W      Length of shop floor 
H       Width of shop floor 
푤       Length of machine i 
ℎ       Width of machine i 
푎       Cost of shifting machine i 
푎      Cost of shifting machine i in period t 
퐶       Cost of movements for the part k 
퐶      Cost of movements for part k in period t 
퐵      Transfer batch size for the part k 
푃     Probability of passing a part of route n 
퐷     Demand for the part k in period t 
E()     Expected value of a parameter 
Var() Variance of a parameter 
푍  Standard normal Z value at confidence level, 
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3.4. Determining objective function value (OFV)  
The flow of materials for the part k between machines i and j in route production n in period t (푓 ) can 
be calculated as follows: 
 

푓 =

⎩
⎪
⎨

⎪
⎧
퐶 푃
퐵

퐷 				, 푖푓	푚푎푡푒푟푖푎푙	푓푙표푤	푓표푟	푝푎푟푡	푘	푚표푣푒푠	푏푒푡푤푒푒푛	푚푎푐ℎ푖푛푒푠

	푖	푎푛푑	푗	푖푛	푝푒푟푖표푑	푡	푖푛	푟표푢푡푒	푝푟표푑푢푐푡푖표푛	푛
			

0																				,			푂푡ℎ푒푟푤푖푠푒																																																																																				

																																													(1) 

 
As mentioned in the assumptions of the problem, 퐷  is a random variable. Therefore, 푓  has the same 
random variable with the expected value and variance shown in Equations (2) and (3). 
Moreover, 훽  is a binary variable that ensures two consecutive operations, which are done on the part k 
by machines i and j in the route production n in period t.  
 

퐸 푓 =
훽 퐶 푃

퐵
퐸(퐷 )   (2) 

푉푎푟 푓 =
훽 퐶 푃

퐵
푉푎푟(퐷 )   (3) 

 
The total flow for part k between machines i and j in period t resulting from all routes of production can be 
written in the following according to Equation (1): 
 

푓 = 푓 =
훽 퐶 푃

퐵
퐷    (4) 

 
where 푓  is a random variable. Therefore, 푓  is the same random variable with the expected value and 
variance as follows:  
 

퐸 푓 = 퐸 푓 =
훽 퐶 푃

퐵
퐸(퐷 )   (5) 

푉푎푟 푓 = 푉푎푟 푓 =
훽 퐶 푃

퐵
푉푎푟(퐷 )   (6) 

 
The total flow between machines i and j in the planning horizon can be written as follows: 
 

푓 = 푓 = 	
훽 퐶 푃

퐵
퐷

,

   (7) 

 
where 푓  is a random variable. Therefore, 푓  is the same random variable with the following expected 
value and variance: 

퐸 푓 = 퐸 푓 =
훽 퐶 푃

퐵
퐸(퐷 )

,

   (8) 

n = 1,2,…,N; 
 
N  Number of routes of production. 
 

훽 ∶ 	

⎩
⎪
⎨

⎪
⎧1		if	machine	푗	appears	immediately	after	machine	푖	in	the	route	푛	of

	the	part	푘	in	period	푡																					
	

0						Otherwise.																																									

 

1 − 훼 
퐼       Interest rate 
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푉푎푟 푓 = 푉푎푟 푓 =
훽 퐶 푃

퐵
푉푎푟(퐷 )

,

		   (9) 

 
The MHC for the layout 휋 in the period t (i.e., 퐶(휋 )) in the unequal status is defined as follows: 
 
퐶(휋 ) = 푓 푑

, ,

= 푓 푥 − 푥 + 푦 − 푦
, ,

   (10) 

 
According to Equation (7), the following can be done: 
 

퐶(휋 ) =
훽 퐶 푃

퐵
퐷 푥 − 푥 + 푦 − 푦

, , , ,

   (11) 

 
The 퐶(휋 ) has the same distribution random variable since 푓  is a random variable. In Equations (8), (9), 
the expected value and variance of the 퐶(휋 ) are determined as follows: 
 

퐸 퐶(휋 ) =
훽 퐶 푃

퐵
퐸(퐷 ) 푥 − 푥 + 푦 − 푦

, , , ,

   (12) 

푉푎푟 퐶(휋 ) =
훽 퐶 푃

퐵
푉푎푟(퐷 ) 푥 − 푥 + 푦 − 푦

, , , ,

   (13) 

 
If the decision-maker considers 푈(휋 , 훼) as the maximum value (upper bound) of 퐶(휋 ) with the 
confidence level 훼, 푈(휋 , 훼) can be minimized instead of 퐶(휋 ). Therefore, we have 
 
푃 퐶(휋 ) ≤ 푈(휋 , 훼) = 1 − 훼   (14) 

→ 								푃

⎝

⎛퐶(휋 ) − 퐸 퐶(휋 )

푉푎푟 퐶(휋 )
≤
푈(휋 ,훼) − 퐸 퐶(휋 )

푉푎푟 퐶(휋 ) ⎠

⎞ = 1 − 훼   (15) 

 
Equation (15) can be standardized as follows: 
 

푃

⎝

⎛푍 ≤
푈(휋 , 훼) − 퐸 퐶(휋 )

푉푎푟 퐶(휋 ) ⎠

⎞ = 1 − 훼   (16) 

 
Thus, 푍~	푁(0,1), i.e., 푍 is a variable with a Standard Normal distribution. 퐹(푍) is assumed as the 
Cumulative Distribution Function (CDF) of the random variable 푍. Therefore, we have: 
 

퐹

⎝

⎛푈(휋 ,훼) − 퐸 퐶(휋 )

푉푎푟 퐶(휋 ) ⎠

⎞ = 1 − 훼   (17) 

→								 퐹 (1 − 훼	) =
푈(휋 ,훼) − 퐸 퐶(휋 )

푉푎푟 퐶(휋 )
   (18) 

 
If F−1 is considered as the inverse function for F, then Equation (18) can be rewritten as follows:  
 
퐹(푍 	) = 1 − 훼   (19) 
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Since the 푍 	is a standard normal Z value for percentile 훼, Equation (21) can be written as follows: 
 
퐹 (1 − 훼	) = 푍 	   (20) 
 
According to Equation (18), Equation (21) can be written as follows: 
 
푈(휋 , 훼) − 퐸 퐶(휋 )

푉푎푟 퐶(휋 )
= 푍 	    (21) 

→ 							푈(휋 ,훼) = 퐸 퐶(휋 ) + 푍 	 푉푎푟 퐶(휋 )    (22) 

 
Therefore, the upper bound of 퐶(휋 ) equals that of Equation (22). The 푂퐹푉  is subject to the 
Rearrangement Cost (RC). The sum of the MHC and the RC generated for the layout (permutation) 휋 in 
period t (푂퐹푉 ) is as follows: 
 
푂퐹푉 = 	퐶(휋 ) + 푅퐶   (23) 
 
The RC was formulated in [9]. 푈(휋 ,훼) can be minimized instead of 퐶(휋 ) as follows: 
 

푂퐹푉 = 	푈(휋 , 훼) + 푎 푟    (24) 

 
Therefore, if the time value of money is considered, then: 
 
퐶 = 퐶 (1 + 퐼 ) 															; 	∀푘   (25) 
푎 = 푎 (1+ 퐼 ) 																	; 	∀푖   (26) 
 
According to Equations (12), (13), (22), (25), and (26), Equation (24) can be rearranged as follows:  
 

 
In the next section, Equation (27) is rewritten according to the type of 퐷  distribution and its 퐸(퐷 ) and 
푉푎푟(퐷 ).  
 
3.5. Mathematical models  
In this section, Equation (27) is formulated 
according to the type of 퐷  distribution and its 
퐸(퐷 ) and 푉푎푟(퐷 ). At first, in Subsection 
3.5.1, the independent demand follows the 
Poisson distribution. Moreover, the independent 
demands follow the Exponential and Normal 
distributions in Subsections 3.5.2 and 3.5.3, 
respectively. Each of the above distributions has 
its own known mean and variance. 

3.5.1. Modeling under the poisson 
distribution condition 
퐷  can be a random variable with a Poisson 
distribution in any time period (퐷 ~	푝(휆 )). The 
average number of events at an interval is 
designated 휆  at time t (휆 > 0). The expected 
value and variance of a Poisson distribution are 
equal together. Therefore, we have: 

 

푂퐹푉 =
훽 퐶 (1 + 퐼 ) 푃

퐵
퐸(퐷 ) 푥 − 푥 + 푦 − 푦

, , , ,

+ 푍 	
훽 퐶 (1 + 퐼 ) 푃

퐵
푉푎푟(퐷 ) 푥 − 푥

, , , ,

+ 푦 − 푦 + 푎 (1 + 퐼 ) 푟 																									; 			푖 ≠ 푗 

    (27) 
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퐸(퐷 ) = 푉푎푟(퐷 ) = 휆    (28) 
 
When independent random variables are summed, their properly normalized sum leads to a normal 
distribution even if the main variables are not normally distributed (Central Limit Theorem (CLT)) [40]. 
Thus, 
 

푙푖푚
→

퐷 	~	푁표푟푚푎푙	(퐾휆 , 퐾휆 )																																						; 	∀	푡   (29) 

 
If the average number of events at an interval (휆 ) is equal to each other for all parts at time t 
(퐷 ~	푖. 푖. 푑	푃(휆 )) and 퐾 ≥ 10, then the CLT will be established. Thus, a new model of the UA-SDFLP is 
as follows by inserting Equation (29) into (27): 
 
푀푖푛푖푚푖푧푒	푂퐹푉

= 퐾
훽 퐶 (1 + 퐼 ) 푃 휆

퐵
푥 − 푥 + 푦 − 푦

, , , ,

+ 푍 	√퐾

⎝

⎛ 훽 퐶 (1+ 퐼 ) 푃
퐵

휆 푥 − 푥 + 푦 − 푦
, , , , ⎠

⎞

+ 푎 (1 + 퐼 ) 푟 																																																																																															; 	푖 ≠ 푗 

  (30) 

Subject to: 
푤
2
(1 − 푟 ) +

ℎ
2
푟 ≤ 푥 ≤ 푊 −

푤
2
(1 − 푟 ) +

ℎ
2
푟 																																		 ; 	∀	푡, 푖 

      (31) 

ℎ
2
(1 − 푟 ) +

푤
2
푟 ≤ 푦 ≤ 퐻 −

ℎ
2
(1 − 푟 ) +

푤
2
푟 																																				 ; 	∀	푡, 푖 

      (32) 

푥 − 푥 + 푦 − 푦

≥
푤
2
(1 − 푟 ) +

ℎ
2
푟 +

푤
2

1 − 푟 +
ℎ
2
푟

+
ℎ
2
(1 − 푟 ) +

푤
2
푟 +

ℎ
2

1 − 푟 +
푤
2
푟 																		 ; 	∀	푡, 푖, 푗(푖 ≠ 푗) 

      (33) 

푥 	, 푥 	, 푦 	, 푦 	≥ 0,																			푟 , 푟 ∈ {0,1},																			∀	푡, 푖, 푗   (34) 
 
Equation (30) displays the Objective Function 
Value (OFV) of unequal-area stochastic dynamic 
facility layout problems that should be 
minimized. In this OFV, 퐷  follows a random 
variable with a Poisson distribution. 
Based on Equations (31) and (32), machines must 
be located in the workspace along the x-axis and 
y-axis, respectively. In other words, each 
machine is restricted to the shop floor based on 
Equations (31) and (32). Equation (33) prevents 
the overlap between each pair of machines. In 
other words, Equation (33) ensures that there is 

no interference or overlap among the machines. 
Equation (34) shows all decision variables. 
 
3.5.2. Modeling under the exponential 
distribution condition 
For real-world simulation, 퐷  (demand for the 
part k at time t) is followed by a random variable 
with an Exponential distribution. If 휆  (휆 > 0) 
be the parameter of an Exponential distribution 
for all parts at time t, then 퐷 ~	퐸푥푝(휆 ). Its 
expected value and variance will be as follows:

퐸(퐷 ) =
1
휆

   (35) 

푉푎푟(퐷 ) =
1
휆

   (36) 

According to the CLT, we have:  
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푙푖푚
→

퐷 ~	푁표푟푚푎푙	
퐾
휆
,
퐾	
휆

																				 ; 	∀푡   (37) 

 
If 퐷 ~	푖. 푖. 푑	퐸푥푝(휆 ) and 퐾 ≥ 20, then the CLT will be established [40]. A new model of the UA-SDFLP 
is given below by inserting Equation (37) into (27): 
 
푀푖푛푖푚푖푧푒	OFV

= 퐾
훽 퐶 (1 + 퐼 ) 푃

휆 퐵
푥 − 푥 + 푦 − 푦

, , , ,

+ 푍 √퐾

⎝

⎛ 훽 퐶 (1 + 퐼 ) 푃
휆 퐵

푥 − 푥 + 푦 − 푦
, , , , ⎠

⎞

+ 푎 (1 + 퐼 ) 푟 																																																																									; 								푖 ≠ 푗 

     (38) 

 
Equation (38) demonstrates the Objective 
Function Value (OFV) of unequal-area stochastic 
dynamic facility layout problems that should be 
minimized. In this OFV, independent demands 
(퐷 ) have a random variable with an 
Exponential distribution. Its constraints are one 
with Subsection 3.5.1. 

3.5.3. Modeling under the normal 
distribution condition  
If 퐷  be a random variable with the Normal 
distribution, then its expected value and variance 
will be as follows: 

 
퐸(퐷 ) = 휇    (39) 

푉푎푟(퐷 ) = 휎    (40) 

 
퐷  follows a normal distribution; therefore, 퐷  
does not need k to tend to ∞. In this case, 
regardless of k, the distribution of the summation 
will continue to be normal [40]. By inserting 
Equations (39), (40) into (27), a new model of the 
UA-SDFLP is given on the next page. 

Equation (41) shows the OFV of unequal-area 
stochastic dynamic facility layout problems that 
should be minimized. Here, the independent 
demand (퐷 ) follows a Normal distribution 
random variable. Its constraints are one with 
Subsection 3.5.1. 

 

Minimize	OFV = 		
훽 퐶 (1 + 퐼 ) 푃

퐵
휇 푥 − 푥 + 푦 − 푦

, , , ,

+ 푍 	

⎝

⎛ 훽 퐶 (1 + 퐼 ) 푃 휎
퐵

푥 − 푥 + 푦 − 푦
, , , , ⎠

⎞

+ 푎 (1 + 퐼 ) 푟 															; 								푖 ≠ 푗 

   (41) 

 
4. Computational Experiments 

In this section, the performance of the proposed 
models is evaluated by many test problems. In 
Subsection 4.1, the proposed models are 
evaluated when the independent demand follows 
the Normal distribution function.  

4.1. Evaluation of the proposed model 
under normal distribution 
In this section, to evaluate the performance of the 
proposed model when the demand follows a 
Normal distribution, two numerical examples are 
studied. The real case is STFLP-RC with seven 
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departments (i.e., Cutting machine, Guillotine 
machine type І, Guillotine machine type ІІ, 
Drilling or Punching machine, Wire welding 
machine, CO2 welding machine, and Powder 
seam welding machine) and six products such 
that the machines should be arranged on the shop 
floor in which its length and width are equal to 60 
(W*H=60*60) [7]. In this paper, the production 
routes are added to the STFLP-RC. 
In the first problem (І), a part of the real case 
(STFLP-RC) is derived from literature studies as 
a small-sized problem. Three machines (i.e., 
Cutting machine, Guillotine machine type, and 
Powder seam welding machine), three parts, and 
six production routes (M=3, K=3, and N=6) are 
considered for the problem (І). The GAMS 24.1.3 

software and the GA encoded in MATLAB have 
solved both problems at T=3 and T=5 and at 
three confidence levels of 훼=0.75, 훼=0.85, and 
훼=0.95 in a system with the RAM specifications 
of 8GB, 2.4 GHz CPU, and Corei7.  
The GAMS that used BARON solver for the 
problem (І) is compared with the result of the GA 
encoded in MATLAB. Table 2 presents the 
Objective Function Value (OFV) of these 
comparisons. Figure. 2 exhibits the OFV of the 
Normal distribution by GAMS and MATLAB for 
the problem (І). Figure 3 displays a graphical 
exhibition of the best layout for the problem (І), 
where T=3 and α=0.75.  

 
Tab. 2. The OFV of the Normal distribution function for the problem (І). 

Period Confidence 
level (휶) GAMS MATLAB  

(Mean value) Difference (%) 

T=3 
0.75 6043.42 6156.32 1.83% 
0.85 6163.93 6222.56 0.94% 
0.95 6368.13 6448.874 1.25% 

T=5 
0.75 13362.88 14396.367 7.18% 
0.85 13559.67 14594.147 7.09% 
0.95 13893.11 14381.334 3.39% 

 

 
Fig. 2. The OFV of the Normal distribution in GAMS and MATLAB for the problem (І). 
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Fig. 3. The best layout for the problem (І) in T=3 and α=0.75 condition. 

 
Table 3 shows a statistical evaluation when the problem (I) is solved by the GA encoded in MATLAB. 
 

Tab. 3. Statistical evaluation of the problem (I) (10 trials). 

 
According to Tables 2, 3 and Figure 2, it can be 
claimed that the proposed models are valid. In the 
problem (II), the STFLP-RC is considered as a 
large-sized problem where M=7, K=6, and 
N=14. Table 4 presents statistical evaluation 
when the problem (II)  is solved by the GA 

encoded in MATLAB. The primal values of 
parameters for Problems (I), (II) are presented in 
Table 5. In Tables 6 and 7, the routes of the parts 
and their probability are given for Problems (І), 
(II), respectively. 

 
Tab. 4. The statistical evaluation of Problem (II) (10 trials). 

Period Confidence 
level (훼) 

Objective Function Value (OFV) 
Worst Mean Best Std. Dev. 

T=3 
0.75 6.17×1018 4.64×1018 3.68×1018 0.70×1018 
0.85 6.97×1018 4.92×1018 3.24×1018 1.03×1018 
0.95 6.33×1018 5.91×1018 4.98×1018 0.45×1018 

T=5 
0.75 9.87×1018 9.02×1018 8.11×1018 0.59×1018 
0.85 1.46×1019 1.18×1019 1.05×1019 0.13×1018 
0.95 1.63×1019 1.34×1019 1.02×1019 0.21×1018 

 
Tab. 5. Primal values of parameters for Problems (І) and (II). 

Parameters Primal value 
Interest rate (퐼 ) %20 
Batch size (퐵 ) 50 
Cost of movement for part k (퐶 ) 100 
Cost of shifting machine i * (푎 ) 1000 
* 푎  is the same for all machines in any time period 

 
 

Period Confidence 
level (훼) 

Objective Function Value (OFV) 
Worst Mean Best Std. Dev. 

T=3 
0.75 6748.76 6156.32 5750.89 338.95 
0.85 6579.77 6222.56 5611.11 253.94 
0.95 6923.31 6448.87 6037.22 283.98 

T=5 
0.75 15810.77 14396.36 13019.33 892.15 
0.85 15310.48 14594.14 13878.38 533.62 
0.95 15827.35 14381.33 13230.75 796.57 
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Tab. 6. Routes of parts and their probability for Problem (І). 
Parts (k) Machine sequence Probability of route (푃 ) 

1 
2-3-1 0.5 
2-3 0.2 
2-1 0.3 

2 3-1-2 1 

3 1-2 0.7 
1-3 0.3 

 
Tab. 7. Routes of parts and their probability for Problem (II). 

Parts (k) Machine sequence Probability of route 
(푃 ) 

1 4-2-6-3-1 0.5 
7-5-3 0.5 

2 
1-2-6-7 0.9 
3-6-7 0.05 

5-4-1-2-3 0.05 

3 7-1-3 0.25 
1-2-6 0.75 

4 5-3-1-2 1 

5 

7-6-5-1-3-4 0.3 
2-7-6-5 0.35 
1-2-3-5 0.2 
4-6-1 0.15 

6 2-1-5-7 0.85 
3-4-6-1-5-2 0.15 

 
For example, the machine sequence of the third 
part in Problem (І) is 1 →2 with a probability rate 
of 0.7 and 1→3 with a probability of 0.3. It is 
implied that the first, second, and third operations 
on the third part with a probability rate of 0.7 are 
performed by Machines 1 and 2, respectively. 

The first, second, and third operations on the 
third part three are performed by Machines 1 and 
3 with a probability rate of 0.3. Table 8 shows the 
length and width of each machine for the 
STFLP–RC.

 

 
Table 9 indicates the means and variances of 
parts for all periods (t=1 to t=5). The center 

coordinates of the facility are shown in Table 10 
for Problem (І). 

 
Tab. 9. Means and variances of parts for periods T=1 to T=5. 

Parts 
(k) 

Period 1 Period 2 Period 3 Period 4 Period 5 
Mean Variance Mean Variance Mean Variance Mean Variance Mean Variance 

1 6.22 1.073 5.656 1.118 3.764 2.584 6.503 2.629 6.503 1.553 
2 2.565 2.824 8.863 2.442 6.636 1.609 9.101 1.344 7.589 2.940 
3 7.623 1.893 9.12 2.318 3.543 1.372 4.554 1.668 5.948 1.388 
4 2.067 1.573 4.347 2.578 2.646 2.986 9.746 2.262 8.496 1.812 
5 8.965 1.283 2.358 2.251 2.720 1.909 7.540 1.898 8.085 1.663 
6 8.736 2.892 9.998 1.190 7.804 1.045 3.677 1.417 2.066 2.998 

 
 

 
 

Tab. 8. Length and width of each machine for the STFLP-RC. 
7 6 5 4 3 2 1 Machines 

14 14 14 10 8 10 20 Original length (wi) 
10 12 12 10 5 7 18 Original width (hi) 
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Tab. 10. Center coordinates of the facility for the best layout for Problem (І), α=0.75. 

Period Machines Center coordinate of 
machine along x-axis (xi) 

Center coordinate of 
machine along y-axis (yi) 

rti 

t=1 
1 30.915 44.01 1 
2 22.558 24.868 1 
3 37.415 25.01 0 

t=2 
1 34.701 20.117 0 
2 26.156 39.072 0 
3 19.656 30.572 0 

t=3 
1 17.263 30.455 0 
2 36.263 38.955 0 
3 36.419 24.111 0 

 
5. Sensitivity Analysis 

In this section, the sensitivity of the proposed 
models to four parameters is examined. The 
confidence level (α), the interest rate (퐼 ), the cost 
of movements for the part k (퐶 ), and the transfer 
batch size for the part k (퐵 ) are studied in 
Subsections 5.1, 5.2, 5.3, and 5.4, respectively. 
 
5.1. Confidence level (α) 
According to Figures 2, it is evident that as the 
confidence level (α) increases, the Objective 
Function Value increases, too. In other words, the 

confidence level (α) is directly related to the 
Objective Function Value. 
 
5.2.Interest rate (퐈퐫) 
As the Interest rate (퐼 ) decreases, the Objective 
Function Value decreases, too. In other words, 
the interest rate (퐼 ) is directly related to the 
Objective Function Value. Figure 4 exhibits the 
result of solving the proposed UA-SDFLP by 
GAMS for Problem (І) with T=3 and α=0.75 
when the demand follows a normal distribution 
function.

 

 
Fig. 4. Communication between the interest rate (푰풓) and the OFV. 

 
5.3. Cost of movements for the part k (퐂퐤) 
If the cost of movements for the part k (퐶 ) 
increases, then OFV will increase, too. In other 
words, the cost of movements for the part k (퐶 ) 
is directly related to the Objective Function 

Value. Figure 5 exhibits the result of solving the 
proposed UA-SDFLP by GAMS when 퐷  
follows an exponential distribution function for 
Problem (І) with T=3 and α=0.75. 

 

5038.6

5526.1

6043.42

4400

4600

4800

5000

5200

5400

5600

5800

6000

6200

Ir=0.1 Ir=0.15 Ir=0.2

O
FV

Interest rate

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ie
pr

.iu
st

.a
c.

ir
 o

n 
20

24
-0

7-
27

 ]
 

                            13 / 17

http://ijiepr.iust.ac.ir/article-1-899-en.html


282 Routing Flexibility for Unequal -Area Stochastic Dynamic Facility Layout Problem in Flexible 
Manufacturing Systems 

 

International Journal of Industrial Engineering & Production Research, June 2020, Vol. 31, No. 2 

 
Fig. 5. Consistency between the cost of movements for the part k and the OFV. 

 
5.4. Transfer batch size for the part k (퐁퐤) 
When the transfer batch size for the part k (퐵 ) 
increases, the OFV decreases. In other words, 
these values run in opposite directions. Figure 6 

exhibits the result of solving the proposed UA-
SDFLP by GAMS when the demand follows a 
normal distribution for Problem (І) with T=3 and 
α=0.75.

 

 
Fig. 6. Consistency between the transfer batch size for the part k and the OFV. 

 
5. Conclusion and Future Work 

This paper proposed three new mathematical 
models for designing a dynamic layout with the 
Unequal-Area facility in an uncertain 
environment. Two important research gaps were 
covered in Unequal–Area Stochastic Dynamic 
Facility Layout Problems. First, this study 
considered the RF and time value of money in the 
Unequal-Area Stochastic Dynamic Facility 
Layout Problems. These issues can be applied to 
any manufacturing system and provide practical 
insight for managers. Second, for real-world 
simulation, this paper modeled the Unequal-Area 
Stochastic Dynamic Facility Layout Problems, 
where the independent demands followed the 

Poisson, Exponential and Normal distributions 
random variables. Moreover, two test problems 
were generated randomly with three and six parts 
as well as three and seven machines, respectively. 
The discussed problems were derived from a real 
case study in literature. The test problems were 
solved by the GA approach at three different 
confidence levels (훼=0.75, 훼=0.85, 훼=0.95) and 
two different periods (T=3 and T=5) in a 
reasonable amount of computational time. The 
obtained results indicate that the proposed models 
for the Unequal-Area Stochastic Dynamic 
Facility Layout Problems are valid. Generally, 
significant contributions can be summarized as 
follows: 
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 Modeling the Stochastic Dynamic 
Facility Layout Problems in Unequal-
Area facility status (Unequal–Area 
SDFLPs). 

 Adding the Routing Flexibility to the 
SDFLPs with the Unequal-Area facility 
and considering the time value of money. 

 Considering the Poisson, Exponential, 
and Normal distributions of random 
variables for independent demands, 
which vary from period to period for 
real-world simulation. 

 Using the proposed models in a real case 
study in literature. 

Finally, this work can be extended to the future 
researches as shown below: 

 Design of a robust layout by other 
methods such as MULVEY. 

 Further study of the stability of the output 
layout by considering RF. 

 Development of a new hybrid meta-
heuristic approach by combining GA 
with other methods such as Craft. 

 Use of the proposed models in this paper 
for the concurrent design of inter-cell and 
intra-cell layout designs in the other 
modern system manufacturing. 

 Considering the constraints such as 
closeness ratio, aisles, and budget 
constraint with the RF simultaneously. 
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