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ABSTRACT 
In this paper, an integrated mathematical model of the dynamic cell formation and production 
planning, considering the pricing and advertising decision, is proposed. This paper puts emphasis on 
the effect of demand aspects (e.g., pricing and advertising decisions) along with the supply aspects 
(e.g., reconfiguration, inventory, backorder, and outsourcing decisions) in the developed model. Due 
to the imprecise and fuzzy nature of input data such as unit costs, capacities and processing times in 
practice, a fuzzy multi-objective programming model is proposed to determine the optimal demand and 
supply variables simultaneously. For this purpose, a fuzzy goal programming method is applied to 
solve the equivalent defuzzified multi-objective model. The objective functions are to maximize the total 
profit for firms and maximize the utilization rate of machine capacity. The proposed model and 
solution method are verified by a numerical example. 
 
KEYWORDS: Dynamic cell formation, Production planning, Fuzzy goal programming, Pricing and 
advertising, Multi-objective model. 
 
 

1. Introduction1 
While many companies that are using the cellular 
manufacturing system (CMS) focus on supply, it 
is essential to consider the demand side as tools 
to improve profit and efficiency. The supply sides 
in a CMS are categorized into cell formation 
(CF), intra-cell and inter-cell layout, group 
scheduling, and resource allocation decisions; in 
addition, the demand sides include pricing and 
advertising. Thus, for the manufacturing 
industries with CMS, the coordination of demand 
aspects can be not only useful but also essential. 
The integration of pricing, advertising, and 
supply side decisions is still in its early stages in 
many firms, but has the potential to basically 
improve supply efficiency. 
With the high variability of demand mix and 
volume for different periods in a horizon 
planning, the manufacturer should have an 
optimal plan to minimize the costs related to 
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dynamic cell formation problem (DCFP). The 
objective of DCFP is to divide the machines into 
distinctive cells as machine groups and categorize 
similar parts in terms of manufacturing,  design, 
etc. as part families so as to assign them to the 
cells for each period. In DCFP, the 
reconfigurations of manufacturing cells for each 
period can be a good solution in order to deal 
with fluctuating and dynamic demands. The 
reconfiguration consists of relocating existing 
machines in a cellular system, adding new 
machines to cells, and removing existing 
machines from cells. However, the optimal 
solution for DCFP in a current period may not be 
optimal for the next period. An example of the 
reconfiguration of manufacturing cells in two 
successive periods is represented in Figure 1. 
In each company, both pricing and advertising 
and reconfiguration decisions need to be made. 
Pricing and advertising decisions are aimed at 
controlling the demand side, while 
reconfigurations for DCFP decisions are used to 
control the supply side. The central problem is to 
optimally integrate the demand and supply 
decisions.  
In an integrated pricing/advertising and DCFP, to 
determine the price of each product and 
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advertising cost in each period; to generate 
machine cell and job family in each period, 
inventory and backorder level at the end of each 
period, the outsourced quantity of products in 
each period, adding and removing and relocating 
the machines for each period are the most 
important decisions. These activities are often 
conducted either individually or sequentially with 
the poor overall performance for the whole 
industrial environments, resulting in deficiencies 
and disadvantages. Therefore, to ensure a better 
environment, the integration of both demand and 
supply aspects in an integrated manufacturing 
environment is of particular interest. In addition, 
in real life, most of the input data and related 
parameters are not known with certainty because 
of incompleteness and/or unavailability of 
required data over the planning horizon. 
Moreover, often the decision-maker cannot fit 
some probability distribution for uncertain 
parameters with certainty. Therefore, the critical 
data cannot be represented in a deterministic or 
stochastic formulation and, as a result, the 
corresponding optimal results may not serve the 
real purpose of modeling.       
The aim of this paper is to propose an integrated 
pricing/advertising, reconfiguration, inventory, 
backorder and outsourcing for a manufacturing 
factory using a CMS in a fuzzy environment. The 
two objective functions that include maximizing 
total profit and minimizing the total utilization 
rate of machine capacity variation together with a 
number of constraints are jointly considered in 

this paper. Accordingly, this paper presents a 
fuzzy multi-objective programming method to 
capture the inherent fuzziness in the parameters 
and objectives. In summary, this paper covers the 
following contributions. 

 To present a novel bi-objective 
integrated non-linear mixed-integer 
mathematical model for CMS design 
considering the demand management 
by pricing and advertising. 

 To obtain the optimal price and 
advertising cost for products together 
with cell design and production 
planning. 

 To consider two objectives for the 
developed model and use the goal 
programming. 

 To present the imprecise parameters 
by fuzzy concept and develop a 
fuzzy programming.    

 To demonstrate the applicability of 
the proposed model through 
generated data.  

The structure of this paper is as follows. Section 
2 includes a review of the relevant literature. 
Section 3 describes the problem clearly and, then, 
formulates it as an MINLP model in Section 4. 
Next, several numerical experiments are 
presented, and the analysis of the obtained results 
is carried out. Section 5 concludes the paper with 
final remarks.  
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Fig. 1. An example of the reconfiguration of manufacturing cells in two successive periods. 
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2. Literature Review 
Although many papers on CMS are published all 
over the world every year such as Solimanpur et 
al. [1], Tavokkoli-Moghaddam et al. [2], 
Spiliopoulos and Sofianopoulou [3], Wu et al. 
[4], Nalluri et al. [5], Behnia et al. [6], Fattahi 
and Ismailnezhad [7], etc., different studies have 
been done in the field of DCFP in recent years. 
The dynamic cell formation problem (DCFP) was 
introduced by Rheault et al. [8] for the first time. 
After their paper, a growing interest of research 
has been observed in developing models and 
solution procedures for DCFP. For example, 
Chen [9] developed an integer mathematical 
model for DCFP in which the objective function 
was aimed at minimizing material handling and 
machine costs and reducing cell reconfiguration 
cost. Since the developed model was NP-hard, a 
decomposition approach was developed to solve 
the sub-problems with less computational effort 
and a dynamic programming was then employed 
to find a solution to the main problem.  
In another paper, Taboun et al. [10] developed a 
mathematical model that includes the 
subcontracting concept for the first time. They 
solved the model by a heuristic approach that is 
based on the criteria of maximum cell similarity 
and minimum number of machines. They 
concluded that the proposed heuristic was a 
powerful procedure in order to achieve near-
optimal solutions. 
Balakrishnan and Cheng [11] designed a flexible 
framework for modeling cellular manufacturing 
in a DCFP. In order to deal with dynamic 
demands, they used two stages where the optimal 
cell configuration was obtained in a static 
environment in the first stage and the dynamic 
programming was applied in the second stage 
using the optimal material handling cost of the 
first stage to obtain an optimal solution in 
dynamic conditions. They indicated that with an 
increase in the reconfiguration cost, the job shop 
may be preferred to the dynamic cellular 
manufacturing system. 
 Tavakkoli-Moghaddam et al. [12] presented a 
mathematical model for DCFP with demands 
being dynamic, but they are deterministic too. 
They added alternative process plans (routing 
flexibility) and a variable number of cell concepts 
within the DCFP model for the first time. They 
proposed a memetic algorithm to find near-
optimal solutions in a reasonable amount of CPU 
time.  
In another paper written by Tavakkoli-
Moghaddam et al. [13], they used the same 
previous model used in [14] by appending the 

operating cost to each machine. They used the 
genetic algorithm (GA), simulated annealing 
(SA), and tabu search (TS) for solving the non-
linear model, and found that SA outperformed the 
two other meta-heuristic approaches in both 
quality of solutions and computational times in 
most of the test problems. 
In a relatively more comprehensive paper, 
Defersha and Chen [14] considered a model that 
incorporates dynamic cell configuration, 
alternative routing, sequence of operations, 
multiple units of identical machines, machine 
capacity, workload balancing among cells, 
operation cost, subcontracting cost, tool 
consumption cost, setup cost, and other practical 
constraints. The authors developed a genetic-
based heuristic algorithm and compared its 
results with lower bound determined by LINGO. 
The results of the three examples showed that 
heuristic was a proper approach as a solution 
procedure for solving this problem. 
Defersha and Chen [15] developed their previous 
DCFP model, in which lot splitting and machine 
adjacency constraints were inserted. In other 
words, two concepts are used in this paper: 1) 
large orders can be divided into smaller batches 
to provide an opportunity for simultaneous 
processing of orders to more than one work 
center (lot splitting) and 2) a set of machine pairs 
should be placed in the same cell (machine 
adjacency). 
Saidi-Mehrabad and Safaei [16] applied a neural 
network approach (NNA) for DCFP, in which the 
number of formed cells is a decision variable in 
the proposed model. With the comparison of 
results in NAA and optimum solutions of 
LINGO, they claimed that NNA could be a 
reliable and powerful method.  
The human issues such as hiring, firing, and 
training can be integrated into DCFP. In this way, 
a new model for the simultaneous work 
assignment and DCFP was found by Aryanezhad 
et al. [17]. They considered both machine level 
and skill level in their new model. Moreover, the 
demands were both dynamic and deterministic. 
The single-objective nonlinear integer model was 
transformed into a linear one. Eventually, the 
developed integrated model was compared with a 
separate model. 
 The multi-objective models also have been 
presented for DCFP in literature. In this section, a 
paper done by Wang et al. [18] is the first paper 
that has considered a three-objective model with 
the objective functions of minimizing the 
relocation costs, maximizing the utilization rate 
of machine capacity, and minimizing the total 
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number of inter-cell moves. They applied Scatter 
Search (SS) method, since the DCFP was a hard 
problem and that the SS showed satisfactory 
results regarding the percentage gaps and 
execution time even for large-scale test problems. 
Bajestani et al. [19] developed a two-objective 
model, where the first objective is to minimize 
costs like machine depreciation, inter-cell 
material handling, and machine relocation cost; 
the second objective is to minimize the total cell 
load variation. A multi-objective scatter search 
(MOSS) is designed and compared with two 
salient multi-objective genetic algorithms, i.e., 
SPEA-II and NSGA-II, based on some 
comparison metrics and statistical approach. The 
experimental results imply that MOSS is superior 
to two other approaches.  
Furthermore, Ghotboddini et al. [20] developed a 
two-objective model that consists of minimizing 
the sum of miscellaneous costs and maximizing 
the sum of minimum labor ratio for the entire 
periods. They used GAMS to validate the model 
and the benders decomposition approach to solve 
large-sized test problems with an exact method.  
Some authors have taken into consideration the 
integrated model of DCFP and production 
planning in their researches. In other words, they 
formulated an integrated model that considers the 
inventory, production, outsourcing levels, and 
costs together with parameters and variables of 
DCFP. In this group, Bulgak and Bektas [21] 
considered an integrated approach to CMS 
design, where production planning and system 
reconfiguration decision were incorporated. The 
proposed mixed-integer non-linear model was 
converted into a linearized mixed-integer 
programming formulation. The computational 
results of the selected dataset existing in literature 
solved by CPLEX for small- and medium-sized 
are reported. Safaei and Tavakkoli-Moghaddam 
[22] also proposed production planning and 
DCFP simultaneously. They added inter- and 
intra-cell material handling by assuming the 
operation sequence and, also, partial 
subcontracting by assuming a lead time for 
ordered items. The performance of their model 
was verified by two numerical examples. The 
results showed that inventory, subcontracting, 
and backorder could significantly affect the cell 
configuration throughout the horizon planning. 
Khaksar-Haghani et al. [23] presented a model 
for designing DCFP and production planning, 
considering the inflation rate and budget 
constraints.  
 A comprehensive model including DCFP, 
production planning, and worker assignment 

problem was presented by Mahdavi et al. [124]. 
To illustrate the validity of the proposed model, 
two examples were solved by the branch-and-
bound method using Lingo 8.0 Software. CPU 
time required to reach the optimal solution for 
relatively large-sized problems was 
computationally intractable. For this reason, they 
suggested a heuristic or meta-heuristic approach 
to solve the developed model for large-sized 
examples. Saxena and Jain [25] incorporated 
important manufacturing attributes such as 
machine breakdown effect, production planning, 
transfer batch size for both intra-cell and inter-
cell travels, lot splitting, alternative process plan, 
and so on. 
 In the multi-objective integrated model of DCFP 
and production planning, Javadian et al. [26] 
considered two objectives in their model. The 
first objective is to minimize a specific set of 
costs and the second is to minimize total cell load 
variation. They solved this complex problem in 
small- and large-sized examples by Lingo 9 and 
NSGAII approach, respectively. 
 In some papers, it is observed that the supply 
chain system design has been integrated into 
DCFP. For example, Saxena and Jain [27] 
proposed an integrated model of dynamic cellular 
manufacturing and supply chain design with 
respect to different issues such as multi-plant 
locations, multiple markets, multi-time periods, 
reconfiguration, etc. For solving the model, they 
proposed two solution procedures, artificial 
immune system (AIS), and hybrid artificial 
immune system (HAIS) algorithm. The results 
showed that HAIS generally outperformed the 
LINGO and AIS approaches.  
Some authors have worked on layout issues and 
DCFP, simultaneously. Kia et al. [28] presented a 
group layout design model of the dynamic 
cellular manufacturing system with alternative 
process routing, lot splitting, and flexible 
reconfiguration. They assumed that there were a 
number of locations in each cell, where the 
machines should be assigned to them. This model 
can be very complex, which motivated Kia et al. 
to develop a simulated annealing (SA) algorithm 
with a straightforward, but effective solution 
structure and neighborhood generation 
mechanism. Finally, they compared the 
performance of SA with that of Lingo software 
for several test problems taken from the 
literature. Bagheri and Bashiri [29] also 
considered a DCFP with the inter-cell layout 
problem and worker assignment in a dynamic 
environment. They assumed that there were a 
number of candidate locations to be a 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ie
pr

.iu
st

.a
c.

ir
 o

n 
20

25
-0

7-
18

 ]
 

                             4 / 22

https://ijiepr.iust.ac.ir/article-1-859-en.html


17 A Fuzzy Goal Programming for Dynamic Cell Formation and Production Planning Problem 
Together with Pricing and Advertising Decisions 

 

International Journal of Industrial Engineering & Production Research, March 2020, Vol. 31, No. 1 

manufacturing cell. This non-linear model is 
converted into a linear model, and an LP-metric 
approach is applied for solving it. 
Golmohammadi et al. [30] presented a nonlinear 
mathematical model with cell layout and machine 
reliability.  
 Moreover, there are papers with uncertainty in 
parameters. For example, Safaei et al. [31] used a 
fuzzy programming approach to a DCFP with 
uncertain demands and available machine 
capacity. The uncertain parameters were given a 
piecewise fuzzy number. The main deficiency of 
the developed fuzzy approach is its intensively 
increase in computational efforts when the 
problem size increases. Thus, they devised a 
heuristic or meta-heuristic method to solve the 
maximizing decision problem of large-sized 
problems. Arzi et al. [32] also studied the effect 
of lumpy demand on DCFP. They modeled the 
weekly lumpy demand as a random variable from 
a normal distribution. Notably, the estimates of 
the distribution parameters and the correlation 
parts were derived from historical weekly 
demand. They inserted the expected value and 
variance of demands into the proposed model and 
made endeavor to reduce the capacity 
requirement variability within each cell as a part 
of the cell design. Moreover, a genetic algorithm 
was proposed and examined for designing large-
scale systems. An integrated DCFP and 
production planning with unreliable machines 
was given by Sakhaii et al. [33]. They solved this 
integrated mixed-integer linear programming 
using the robust optimization approach.  
Renna and Ambrico [34] proposed three 
mathematical models to support the design, 
reconfiguration, and scheduling of the 
manufacturing system. They used a simulation to 
investigate the DCFP with reconfigurable 
machines.  
Bootaki et al. [35] studied a bi-objective robust 
design for DCFP with fuzzy random demands. 
They developed a new goal programming 
method, namely percentage multi-choice goal 
programming (PMCGP), to solve their bi-
objective model. In their paper, the first objective 
function is to minimize the inter-cell movements, 
and the second one is to maximize the machine 
and worker utilization.   
Niakan et al. [36] proposed a multi-objective 
mathematical model with demand and cost 
uncertainty. The contribution of their work is to 
consider social criteria such as potential machine 
hazards and job opportunities in their developed 
model. 

 Moreover, Zohrevand et al. [37] developed a bi-
objective stochastic model. The first objective 
function of their developed model was to 
minimize total costs, while the second objective 
function maximizes the labor utilization of 
cellular manufacturing system. They considered 
the demand for various periods to be uncertain. 
Shirzadi et al. [38] investigated the reliability of 
processing routes in their paper. This concept was 
inserted in the second objective function. They 
applied ߝ -constraint to demonstrate the conflict 
between two objectives of maximum value of 
system reliability and the total costs of the 
system. For large-sized problems, they presented 
a multi-objective imperialist competitive 
algorithm (MOICA) and NSGAII.   
  Azadeh et al. [39] presented a new three-
objective model with considering human factors. 
They used NSGA-II and multi-objective particle 
swarm optimization (MOPSO) to solve their 
model.    
 To the best of our knowledge, there is no 
research considering the DCFP together with 
production planning and pricing and advertising 
in a fuzzy environment. Hence, this study 
develops a comprehensive fuzzy multi-objective 
model for a manufacturing company that faces 
dynamic demand in various periods to determine 
the optimal cell configuration, inventory and 
backorder level, and price and advertising cost in 
each period.  
The main contributions of this paper can be 
summarized as follows. First, it introduces a 
fuzzy multi-objective model for making the 
demand decisions such as pricing and advertising 
along with the supply decisions. Second, it 
optimized two important objective functions that 
include total profit and utilization rate of machine 
capacity. To consider these two objective 
functions can improve the efficiency of 
companies. Third, many practical situations 
involve uncertain input data. This paper presents 
most of data as a fuzzy number. Table 1 shows 
the features of some corresponding papers. As 
shown in this table, our model has the following 
contributions in which these contributions have 
rarely appeared in the literature.  
 To consider DCFP, inventory, backorder, and 

outsourcing simultaneously.  
 To investigate a two-objective uncertain 

environment. 
 To insert the demand side decisions together 

with the supply side.  
 To apply a multi-objective goal programming 

in order to solve the proposed model.  
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3. Problem Definition and Formulation 

3.1. Problem definition 
Consider a cellular manufacturing system 
consisting of a number of cells, products, and 
machines to process different products. A product 
may require several operations in a given 
sequence. The manufacturing system is 
considered for a number of time periods. One 
time period could be a month, a season, or a year. 
Each machine has s capacity to operate in hours 
during each time period. Machines can be 
duplicated to meet capacity requirements and 
reduce or remove the inter-cell movement. 
Moreover, inventory, backorder, and outsourcing 
policy can be activated in each period. It is 
assumed that the demands for the products vary 
with time in a fuzzy manner. Machines are to be 
grouped into relatively independent cells for each 
period with minimum costs, especially inter-cell 
movement costs. On the other hand, determining 
the optimal price and advertising cost of products 
in each period can mitigate the demand 
fluctuations and lower the imposed costs. In 
addition to maximizing the total profit for 
manufacturers, they tend to minimize the 
maximum deviation between the available 
capacity and the workload assigned to each 
machine for increasing the utilization rate of 
machine capacity. This important criterion should 
be minimized because the low utilization rate 
increases the investment cost of machines and the 
labor cost and reduces the return on asset. Thus, 
the following two important objectives are 
considered as follows: 

 Maximization of total profit for the 
manufacturing company. 

 Minimization of maximum deviation 
between the available capacity and the 
workload assigned to each machine. 

  When designing an integrated model, various 
conflicting objective functions and different 
constraints should be considered simultaneously. 
Moreover, in practice, the parameters are often 
imprecise and, to cope with this imprecision, the 
traditional stochastic programming approaches 
are usually computationally inefficient. In these 
circumstances, assigning a set of crisp values to 
such ambiguous input data is not appropriate and 
rational. Thus, a fuzzy modeling approach is used 
to handle these imprecise parameters. In this 
paper, the fuzzy parameters have linear 
membership functions in which, after the 
defuzzification process, the equivalent crisp 
model is solved by a fuzzy priority goal 
programming method. 
3.2. Problem assumptions 
   The main assumptions and properties used in 
the problem are as follows: 
 Each product includes a number of 

operations that must be processed as 
numbered, respectively. 

 The processing time for all operations of a 
product on different machine types is known 
and fuzzy.  

 Each machine has fuzzy capabilities and time 
capacities throughout the planning horizon. 
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[5]             memetic 

[6]             
Gams + 

SA + GA 
+TS 
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[12]             
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+ NSGA-

II 
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Goal 
programm

ing 

[30]             
NSGA-II 

+  
MOPSO 

This paper             

Fuzzy goal 
programming 

+ 
 GA toolbox 

 
 The constant cost of each machine is fuzzy. 

This cost includes maintenance, other over-
head, rent, and overall service cost of each 
machine. Herein, the buying or selling cost of 
machines is not considered.  

 The variable cost of each machine type is 
fuzzy. This cost is dependent on the 
workload allocated to the machine.  

 The relocation cost for each machine type 
from one cell to another is fuzzy. All 
machines are able to be moved toward any 
cell. This cost is the sum of uninstalling, 
shifting, and installing costs. The time 
needed for relocation is assumed to be zero.  

 Products are moved in a batch between and 
within cells. Moreover, inter- and intra-cell 
batches related to the product are 
characterized by different sizes and costs. It 
is assumed that the distance between each 
pair of cells and each pair of machines at 
each cell is the same. 

 The maximum number of cells that can be 
formed in each period is known in advance.  

 The maximal and minimal cell size is fuzzy.  
 Outsourcing is finite. It is at most 10 percent 

of demands. 

 
 Each product has a minimum amount of 

demand in each period. This means that each 
product has a demand greater than zero in 
each period.   

 Holding and backorder inventories are 
allowed between periods with known costs.  

 Partial subcontracting is allowed. In other 
terms, the total or a portion of the demand for 
the product can be subcontracted in each 
period. Moreover, the time-gap between 
releasing and receiving orders (lead time) is 
considered fuzzy. 

 Customers are myopic, i.e., they do not 
exhibit strategic behavior.  

 Due to unavailability and/or incompleteness 
of required parameters, critical parameters 
(such as unit costs and capacities) are 
imprecise (fuzzy) in nature. Moreover, a 
triangular or trapezoidal fuzzy number 
pattern is adopted to represent each fuzzy 
parameter. A trapezoidal fuzzy number 
෤ܽ = (ܽଵ,ܽଶ,ܽଷ,ܽସ) is represented in Figure 
2. The parameters ෤ܽ  are estimated by the 
decision-maker. Noteworthy, a triangular 
fuzzy number could be obtained for	ܽଶ = ܽଷ. 

 
 
Tab. 2. Basic data for the illustrative example of all products as a trapezoidal fuzzy 

number. 
෨௜ܤ ݅

௜௡௧௘௥
෨௜ܤ 

௜௡௧௥௔
  ෤௜ߩ ෤௜ߟ ሚ௜ߣ 

1 (25,30,35,40) (7,8,8,9) (70,80,90,100) (8,10,10,13) (30,34,38,42)  

2 (30,40,45,55) (10,12,12,14) (56,82,112,122) (12,14,14,16) (30,34,34,38)  

3 (15,20,20,25) (4,6,6,8) (65,80,95,110) (10,15,17,20) (40,42,42,44)  
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Fig. 2. The membership function of trapezoidal fuzzy number  ࢇ෥ 

 
3.3. Problem notations 
The indices, parameters, and decision variables 
used to formulate the problem mathematically are 
as follows: 
Indices 
݅   Index for products (݅ = 1, … ,  (ܫ
݆   Index for operations of product ݅(݆ = 1, … , ௜ܱ)  
݉ Index for machine types (݉ = 1, …  (ܯ,
ܿ  Index for manufacturing cells (ܿ = 1, …  (ܥ,
ݐ) Index for time periods  ݐ = 1, …  (ܪ,
Parameters 
  Number of products    ܫ
ܱ௜  Number of operations for product ݅  
 Number of machine types  ܯ
  Number of cells   ܥ
    ݐ ௜௧ Demand for product ݅ in periodܦ
෨௜ܤ

௜௡௧௘௥  Batch size for inter-cell movement of 
product ݅ 
෨௜ܤ

௜௡௧௥௔
  Batch size for intra-cell movement of 

product ݅ 
෤௜௡௧௘௥ߛ     Inter-cell movement cost per batch 
෤௜௡௧௥௔ߛ   Intra-cell movement cost per batch. To 
justify the CMS, it is assumed that 

෤ߛ)
௜௡௧௥௔

෨௜ܤ
௜௡௧௥௔൘ ) < ෤ߛ)

௜௡௧௘௥

෨௜ܤ
௜௡௧௘௥൘ ). 

෤௠ߙ    Constant cost of machine type ݉  in each 
period 
෨௠ߚ    Variable cost of machine type ݉ for each 
unit time 
  ݉ ሚ௠    Relocation cost of each machine typeߜ
෨ܶ௠    Time-capacity of machine type ݉ in each 
period 
෪ܤܷ     Maximal cell size  
 ෩௠௜௡   The lower bound for demand of productsܦ
෦௝௜௠ݐ݌  Processing time required to perform 
operation ݆ of product	݅ on machine ݉ 
௝ܽ௜௠  If operation ݆  of product 	݅  can be done on 

machine ݉ equal to 1; otherwise 0 
  ݅ ሚ௜   Unit cost of subcontracting productߣ
෤௜ߟ 		  Inventory carrying cost per unit product ݅ 
during each period  

 
 ෤௜    Backorder cost per unit part ݅ during eachߩ
period  
ሚ݈      Lead time where ݈ ≤ ܪ − 1 
ሚ௧௠௔௫ܣ   The maximum advertising cost in period ݐ  
ܼ  Large positive number 
Decision variables 
ܰ௠௖௧ Number of machine type ݉ assigned to cell 
ܿ in period ݐ  
௠௖௧ܭ

ା Number of machines of type ݉ added in 
cell ܿ in period ݐ  
௠௖௧ܭ

ି Number of machines of type ݉ removed 
from cell ܿ in period ݐ  
௝௜௠௖௧ݔ  If operation ݆  of product ݅  done on 
machine type ݉ in cell ܿ in period ݐ equal to 1; 
otherwise 0 
ܳ௜௧  Number of products ݅ produced in period ݐ   
௜௧   If ܳ௜௧ݕ > 0 equal to 1; otherwise 0 
௜ܵ௧    Number of products 	݅  subcontracted in 

period ݐ  
௜ܲ௧ The sale price of product	݅ at the end of period 
   ݐ
 ݅ at the end of	௜௧ା  Inventory level of product݊ܫ
period ݐ  
 ݅ at the end of	௜௧ି  Backorder level of product݊ܫ
period ݐ 
௜௧ܣ  The advertising cost per unit of product	݅ in 
period ݐ   
3.4. Model formulation  
3.4.1. Demand function 
There are many forms of demand functions. In 
these functions, ܦ  must increase as ܲ  decreases 
and ܣ increases. Hence, the demand function is 
proposed in Eq. (1):  

(ܣ,ܲ)௜ܦ =
߱௜௧ܣ௜௧ +
(ܽ௜௧ − ܾ௜௧ ௜ܲ௧)																																																											(1)  
 
where ܦ௜(ܲ,ܣ) denotes the demand function for 
the ݅ th product. In other terms, the demand is 
defined as a function of unit price (ܲ) and unit 
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advertising cost (ܣ), where  ܽ௜௧ , ௜ܾ௧ > 0, and the parameter of advertising	߱௜௧ > 0.  
Proposition: The demand function (1) satisfies the following assumptions: 
(i) ܦ௜(ܲ,ܣ) is finite. 
(ii)  ܦ௜(ܲ,ܣ) is decreasing ܲ in and increasing ܣ. 
(iii) ܦ௜(ܲ,ܣ) is nonnegative, changing continuously with price and advertising.  
Proof:  
(i) ݈݅݉௉→଴	(ܣ,ܲ)ܦ = ݈݅݉௉→଴	߱ܣ + (ܽ − ܾܲ) = ܣ߱ + ܽ < ∞. 
(ii) డ஽(௉,஺)

డ௉
= −ܾ < 0;	డ஽(௉ ,஺)

డ஺
= ߱ > 0. 

(iii) If (ܽ − ܾܲ) > ܲ or in other words ܣ߱− ≤ ௔ାఠ஺
௕

 it is clear.  

3.4.2. Objective functions 
The total profit of manufacturing is equal to the revenue of the manufacturer minus total cost. The first 
objective function is to maximize the total profit as in Eq. (2): 

 

max 					 ଵ݂ = ෍෍ ௜ܲ௧ܦ௜௧

ு

௧ୀଵ

− [
ூ

௜ୀଵ

෍ ෍ ෍ܰ௠௖௛ߙ෤௠

஼

௖ୀଵ

ெ

௠ୀଵ

ு

௧ୀଵ

+෍ ෍ ෍෍෍ߚ෨௠ܳ௜௧	ݐ݌෦௝௜௠ݔ௝௜௠௖௧

ை೔

௝ୀଵ

ூ

௜ୀଵ

஼

௖ୀଵ

ெ

௠ୀଵ

ு

௧ୀଵ

													

+ 1
2ൗ ෍෍෍ ෍ අ

ܳ௜௧
෨௜ܤ

௜௡௧௘௥ඉ ෤ߛ
௜௡௧௘௥

ை೔ିଵ

௝ୀଵ

อ෍ ௜௠௖௧(௝ାଵ)ݔ − ෍ ௝௜௠௖௧ݔ

ெ

௠ୀଵ

ெ

௠ୀଵ

อ
ூ

௜ୀଵ

஼

௖ୀଵ

ு

௧ୀଵ

								

+ 	1 2ൗ ෍෍෍ ෍ අ
ܳ௜௧

෨௜ܤ
௜௡௧௥௔ඉ ෤ߛ

௜௡௧௥௔

ை೔ିଵ

௝ୀଵ

(෍หݔ(௝ାଵ)௜௠௖௧ − ௝௜௠௖௧หݔ
ெ

௠ୀଵ

			
ூ

௜ୀଵ

஼

௖ୀଵ

ு

௧ୀଵ

− อ෍ ௜௠௖௧(௝ାଵ)ݔ − ෍ ௝௜௠௖௧ݔ

ெ

௠ୀଵ

ெ

௠ୀଵ

อ) 																																				

+ 1
2ൗ ෍෍ ෍ߜሚ௠(ܭ௠௖௧

ା
஼

௖ୀଵ

+ ௠௖௧ܭ
ି

ெ

௠ୀଵ

)
ு

௧ୀଵ

	+ ෍෍(ߟ෤௜݊ܫ௜௧ା +
ூ

௜ୀଵ

ு

௧ୀଵ

௜௧ି݊ܫ෤௜ߩ + ሚ௜ߣ ௜ܵ௧)]

−෍෍ܣ௜௧ܦ௜௧
ு

௧ୀଵ

ூ

௜ୀଵ

																																																																																																																														(2) 

 
The utilization rate of machine capacity is the deviation between the available capacity and the workload 
assigned to each type of machine. The second objective function is to minimize the maximum of these 
deviations as Eq. (3):  

 

min 					 ଶ݂ = ௠ݔܽ݉ ቐ෍෍ ෨ܶ௠ܰ௠௖௧

ு

௧ୀଵ

஼

௖ୀଵ

−෍෍෍ܦ௜௧ݐ݌෦௝௜௠

ு

௧ୀଵ

ை೔

௝ୀଵ

ூ

௜ୀଵ

ቑ																																																																													(3) 

 
3.4.3. Model constraints 

෍ ෍ ௝ܽ௜௠ݔ௝௜௠௖௧ = ,݆∀										௜௧ݕ ݅,
ெ

௠ୀଵ

஼

௖ୀଵ

 (4)																																																																																																																											ݐ

 

෍෍ܳ௜௧ݐ݌෦௝௜௠ݔ௝௜௠௖௧ ≤ ෨ܶ௠ ௠ܰ௖௧ 														∀݉, ܿ, (5)																																																																																																				ݐ
ை೔

௝ୀଵ

ூ

௜ୀଵ

 

 

෍ ܰ௠௖௧ ≤ ෪ܤܷ 															∀ܿ, (6)																																																																																																																																								ݐ
ெ

௠ୀଵ

 

ܰ௠௖(௧ିଵ) + ௠௖௧ܭ
ା ௠௖௧ܭ−

ି = ܰ௠௖௧ 							∀݉, ܿ,  (7)																																																																																																						ݐ
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௜௧ା݊ܫ − ௜௧ି݊ܫ = ௜(௧ିଵ)݊ܫ
ା − ௜(௧ିଵ)݊ܫ

ି + ܳ௜௧ + ܵ௜(௧ି௟ሚ) − ௜௧ܦ 						∀݅,  (8)																																																																		ݐ
 
௜ுା݊ܫ = 0																		∀݅,																																																																																																																																																			(9) 

 
௜ுି݊ܫ = 0																		∀݅																																																																																																																																																		(10) 

 
ܳ௜௧ ≤ ,݅∀																				௜௧ݕܼ  (11)																																																																																																																																												ݐ

 
ܳ௜௧ ≥ ,݅∀																				௜௧ݕ  (12)																																																																																																																																															ݐ

 
௜ܵ௧ ≤ 0.1 × ,݅∀																			௜௧ܦ  (13)																																																																																																																																				ݐ

 
௜௧ܦ ≥ ,݅∀													෩௠௜௡ܦ  (14)																																																																																																																																																ݐ

 
௜௧ܦ = ߱௜௧ܣ௜௧ + (ܽ௜௧ − ܾ௜௧ ௜ܲ௧)			∀݅,  (15)																																																																																																																										ݐ

 

෍ܣ௜௧ܦ௜௧ ≤ ሚ௧௠௔௫ܣ 			∀ܿ, (16)																																																																																																																																													ݐ
ூ

௜ୀଵ

 

 

௜ܲ௧ ≤
ܽ௜௧
௜ܾ௧
																∀݅,  (17)																																																																																																																																																		ݐ

 
,	௜௧ݕ ௝௜௠௖௧ݔ 	 ∈ {0,1},ܰ௠௖௧ ௠௖௧ܭ,

ା,ܭ௠௖௧
ି,ܳ௜௧ , ௜ܵ௧ , ,௜௧ା݊ܫ ௜௧ି݊ܫ ≥ ௜௧ܣ,ݎ݁݃݁ݐ݊݅	݀݊ܽ	0 , ௜ܲ௧

≥ 0									∀	݅, ݆,݉, ܿ,  	(18)																																																																																																																																																			ݐ
 

Eq. (4) ensures that the operation of each product 
is assigned to one machine and one cell in one 
time period if the number of the same products 
produced in the same time period is greater than 
zero. Eq. (5) guarantees that machine capacity in 
each cell in each time period is not exceeded and 
must satisfy the demand. Eq. (6) ensures that the 
maximum cell size is not violated. It means that 
the total number of used machines in each cell in 
each time period should be less than or equal to 
maximum bound predefined for all cells. Eq. (7) 
is called a balancing constraint on machines, 
ensuring that the number of machines in the 
current period is equal to the number of machines 
in the previous period plus the number of 
machines being moved in and minus the number 
of machines being moved out. Eq. (8) shows the 
balancing inventory constraint between periods 
for each product in each period. In other words, 
the inventory/backorder level of the product at 
the end of the each period is equal to the 
inventory/backorder level of the same product at 
the end of the previous period plus the number of 
production produced in current period plus 
number of productions subcontracted considering 
lead time, received in the current period minus 
the product demand rate in the current period. 
Notably, since the inventory and backorder level 
variables in each period appear with opposite 
signs and the model will be transformed into a 

linear one, one of these variables (inventory or 
backorder level variable) can be greater than zero 
in each period and another will be zero. Eqs. (9) 
and (10) assure that the inventory and backorder 
levels in the last period (ݐ =  ,are equal to zero (ܪ
respectively. These two constraints are inserted 
into the model because the total demand of all 
products must be met during the planning 
horizon. Eq. (11) says that the number of 
products produced in each period can be greater 
than zero if  ݕ௜௧	 = 1 while this value will be zero 
if ݕ௜௧	 = 0. Eq. (12) states that if ݕ௜௧	 = 1 for each 
product in each period, the number of the same 
products produced in the same period must be 
greater than zero. Eq. (13) ensures that the 
amount of outsourcing is less than or equal to 10 
percent of the demand. Eq. (14) states that the 
demand for products has a lower bound. Eq. (15) 
shows the demand function. Eq. (16) shows the 
limitation of advertising costs in each period. Eq. 
(17) assures that the demand function is non-
negative. Finally, the values of the decision 
variables are restricted by constraints in Eq. (18).  
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4. The proposed Possibilistic 
Programming Model 

The above-mentioned model is a multi-objective 
possibilistic nonlinear programming model. At 
first, this model must be converted to an 
equivalent crisp one. Here, the developed 
methods by Jimenez et al. [41] and Parra et al. 
[42] should be used because of computational 
efficiency and the ease of implementation. In this 
line, the total expected value of ሚ݂ with an index 
of optimism ߙ	߳	[0,1] is defined as Eq. (19): 

 

ܧ ఈܸ൫ ሚ݂൯
= )ܫܧ	ߙ ሚ݂)ோ
+ (1− )ܫܧ	(ߙ ሚ݂)௅																																																(19) 

 
where ܫܧ( ሚ݂)ோ  and ܫܧ( ሚ݂)௅  are the right and left 
expected values of ሚ݂, respectively. The parameter 
reflects the decision-maker's degree of optimism. 
The total expected values of trapezoidal 
possibility distribution of ሚ݂ଵand ሚ݂ଶ are calculated 
through Eqs. (20)-(22):  
 
ܧ ఈܸ൫ ሚ݂ଵ൯

= 	ߙ ଵ݂
ଷ + ଵ݂

ସ

2

+ (1− (ߙ 	 ଵ݂
ଵ + ଵ݂

ଶ

2
																																													(20) 

ܧ ఈܸ൫ ሚ݂ଶ൯

= 	ߙ ଶ݂
ଷ + ଶ݂

ସ

2

+ (1− (ߙ 	 ଶ݂
ଵ + ଶ݂

ଶ

2
																																													(21) 

 
Where, as an example, ሚ݂ଶ = ( ଶ݂

ଵ, ଶ݂
ଶ, ଶ݂

ଷ, ଶ݂
ସ): 

ଶ݂
ଵ = ௠ݔܽ݉ ቐ෍෍ ௠ܶ

ଵܰ௠௖௧

ு

௧ୀଵ

஼

௖ୀଵ

−෍෍෍ܦ௜௧ݐ݌௝௜௠ଵ
ு

௧ୀଵ

ை೔

௝ୀଵ

ூ

௜ୀଵ

ቑ 

ଶ݂
ଶ = ௠ݔܽ݉ ቐ෍෍ ௠ܶ

ଶܰ௠௖௧

ு

௧ୀଵ

஼

௖ୀଵ

−෍෍෍ܦ௜௧ݐ݌௝௜௠ଶ
ு

௧ୀଵ

ை೔

௝ୀଵ

ூ

௜ୀଵ

ቑ 

ଶ݂
ଷ = ௠ݔܽ݉ ቐ෍෍ ௠ܶ

ଷܰ௠௖௧

ு

௧ୀଵ

஼

௖ୀଵ

−෍෍෍ܦ௜௧ݐ݌௝௜௠ଷ
ு

௧ୀଵ

ை೔

௝ୀଵ

ூ

௜ୀଵ

ቑ 

ଶ݂
ସ = ௠ݔܽ݉ ቐ෍෍ ௠ܶ

ସܰ௠௖௧

ு

௧ୀଵ

஼

௖ୀଵ

−෍෍෍ܦ௜௧ݐ݌௝௜௠ସ
ு

௧ୀଵ

ை೔

௝ୀଵ

ூ

௜ୀଵ

ቑ 

Similarly, ሚ݂ଵ can be defined as above.  
The defuzzification process of fuzzy linear and 
nonlinear constraints is given through Eqs. (22)-
(26):  

෍෍ቈ(1− ቆ(ߚ
௝௜௠ଵݐ݌ + ௝௜௠ଶݐ݌

2
ቇ

ை೔

௝ୀଵ

ூ

௜ୀଵ

+ ߚ ቆ
௝௜௠ଷݐ݌ + ௝௜௠ସݐ݌

2
ቇ቉ܳ௜௧ݔ௝௜௠௖௧

≤ ቈ(ߚ)ቆ ௠ܶ
ଵ + ௠ܶ

ଶ

2
ቇ+ (1

ቆ(ߚ− ௠ܶ
ଷ + ௠ܶ

ସ

2
ቇ቉ܰ௠௖௧ 														∀݉, ܿ,  (22)										ݐ

 

෍ ܰ௠௖௧

ெ

௠ୀଵ

≤ ቈ(ߚ)ቆ
ଵܤܷ + ଶܤܷ

2
ቇ+ (1

ቆ(ߚ−
ଷܤܷ + ସܤܷ

2
ቇ቉															∀ܿ,  (23)																		ݐ

 
௜௧݊ܫ

ା − ௜௧݊ܫ
ି

= ௜(௧ିଵ)݊ܫ
ା − ௜(௧ିଵ)݊ܫ

ି +ܳ௜௧
+ ܵ

௜ቆ௧ି(ఉ)൬೗
భశ೗మ

మ
൰ା(ଵିఉ)൬೗

యశ೗ర

మ
൰ቇ

− ௜௧ܦ 						∀݅,  (24)																																																								ݐ
 
௜௧ܦ

≥ ቈ(ߚ)ቆ
ଵ,௠௜௡ܦ + ଶ,௠௜௡ܦ

2
ቇ+ (1

ቆ(ߚ−
ଷ,௠௜௡ܦ ସ,௠௜௡ܦ+

2
ቇ቉													∀݅,  (25)												ݐ
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෍ܣ௜௧ܦ௜௧

ூ

௜ୀଵ

≤ ቈ(ߚ)ቆ
௧ܣ
௠௔௫,ଵ + ௧ܣ

௠௔௫,ଶ

2
ቇ + (1

− ቆ(ߚ
௧ܣ
௠௔௫ ,ଷ + ௧ܣ

௠௔௫,ସ

2
ቇ቉			∀ݐ																								(26) 

where ߚ denotes the minimum acceptable degree 
of the decision vector.  

5. A Fuzzy Goal Programming Model 

The proposed fuzzy model was transformed into 
an equivalent crisp multiple objective 
mathematical programming in the previous 
section. To reduce the equivalent multiple 
objective mathematical programming into a 
single-objective formulation, the fuzzy goal 
programming (FGP) is given. In FGP, the 
decision-maker usually expresses types of vague 
goals by linguistic statements so that they can be 
quantified by membership functions carrying the 
preference concept. These membership functions 
are constructed by the decision-maker's 
judgments. An example of this membership 
function is as follows: 
For each fuzzy goal ܧ ఈܸ൫ ሚ݂ଵ൯(߭) ≳ ݃௞ , the 
respective membership function is: 
 
(߭)௞ߤ

=

⎩
⎪
⎨

⎪
⎧ 1, ܧ ఈܸ൫ ሚ݂ଵ൯(߭) 	≥ ݃௞
ܧ ఈܸ൫ ሚ݂ଵ൯(߭) − ݈௞

݃௞ − ݈௞
௞ܮ ≤ ܧ ఈܸ൫ ሚ݂ଵ൯(߭) 	≤ ݃௞;

0 ܧ ఈܸ൫ ሚ݂ଵ൯(߭) 	≤ ௞ܮ

					∀݇ 

 
where ܮ௞  is the lower tolerance limit for the 
fuzzy goal ܧ ఈܸ൫ ሚ݂ଵ൯ 	≳ ݃௞ , and ߤ௞(߭) represents 
the achievement degree of the ݇th fuzzy goal for 
the given solution vector 	߭ . The membership 
function is depicted in Figure 3.  

 
Fig. 3. Linear membership function for the 

fuzzy goal. 

In order to solve the FGP, there are many 
procedures in the literature such as a simple and 
weighted additive model, preemptive structure, 
etc. In many decision problems, some goals are 
more important than others. In our model, the 
profit maximization is more important than the 
minimization deviation between the available 
capacity and the workload assigned to each type 
of machine. Among the different papers, Chen 
and Tsai [43] developed an efficient formulation 
because it not only satisfies the desired structure, 
but also optimizes the sum of each fuzzy goal's 
achievement degree only by a single problem. 
Therefore, the model will be converted to a crisp 
one with one objective, i.e., maximizing the 
summation of achievement degrees of all fuzzy 
goals. The crisp non-linear model is formulated 
as follows: 

max 				∑ ௜ଶߤ
௜ୀଵ      

Subject to: 
(4), (7),(9)-(13), (15),(17),(18), (23)-(27) 
the membership functions (ߤ௜ , ݅ = 1,2)  
ଵߤ ≥           ଶߤ
,	௜௧ݕ ௝௜௠௖௧ݔ 	 ∈
{0,1},ܰ௠௖௧ ௠௖௧ܭ,

ା,ܭ௠௖௧
ି,ܳ௜௧ , ௜ܵ௧ , ,௜௧ା݊ܫ ௜௧ି݊ܫ ≥

௜௧ܣ,ݎ݁݃݁ݐ݊݅	݀݊ܽ	0 , ௜ܲ௧ ≥
0									∀	݅, ݆,݉, ܿ,     																				ݐ

6. An Illustrative Example 

The following numerical example demonstrates 
the feasibility and efficiency of the proposed 
model and the solution method. 
Tables 2 and 3 include the basic parameters of 
the numerical example.  
6.1. Data for the numerical example 
1.  There is a four-period planning horizon. 
2. A three-product is considered. 
3. It is assumed that each product has three 
operations.  
4. There are five machine types.  
5. The manufacturing firm has three cells.  
6. The initial inventory for this company is 50, 0, 
and 100 for Products 1, 2, and 3, respectively.   
6. The Inter-cell movement cost per batch is 
෤௜௡௧௘௥ߛ  = (120, 130, 140, 150). 
7. The Intra-cell movement cost per batch is 
 .෤௜௡௧௥௔= (1, 3, 3, 5)ߛ
8. The Maximal cell size for each cell is ܷܤ෪ = (3, 
5, 6, 7).  
9. The lead time is ሚ݈= (0, 1, 2, 4). 
10. The maximum marketing and advertising cost 
in different periods are ܣሚଵ௠௔௫ = (16000, 18000, 
ሚଶ௠௔௫ܣ ,(20000 ,18000 = (20000, 24000, 26000, 
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ሚଷ௠௔௫ܣ ,(28000 = (20000, 22000, 24000, 26000), 
  .ሚସ௠௔௫= (12000, 16000, 17000, 19000)ܣ
11. The minimum demand for all products for all 
periods is ܦ෩௠௜௡ = (180,200,260,300).  

12. The parameters of the demand function are 
summarized in Table 4. 
13. The fuzzy processing times are summarized 
in Table 5.  

 
Tab. 3. Basic data for the illustrative example of all machines as a trapezoidal fuzzy number 

 ሚ௠ ෨ܶ௠(hour)ߜ ෨௠ߚ ෤௠ߙ ݉

1 (1500,1800,1800,2000) (5,8,8,10) (810,850,860,900) (400,450,450,600) 

2 (1000,1200,1400,1700) (10,12,12,15) (600,750,900,1050) (400,450,450,600) 

3 (1550,1850,1850,2100) (3,4,5,6) (800,840,900,980) (400,450,450,600) 

4 (800,1000,1200,1400) (5,6,6,7) (700,800,900,1000) (400,450,450,600) 

5 (2500,2700,2700,2900) (1,4,8,10) (750,850,950,1050) (400,450,450,600) 

 
Tab. 4. Demand function parameters 

Periods 
Product 1 

 
Product2 

 
Product3 

ܽ௜௧ ܾ௜௧ ߱௜௧ 
 

ܽ௜௧ ܾ௜௧ ߱௜௧ 
 

ܽ௜௧ ܾ௜௧ ߱௜௧ 

1 1000 5 9 
 

1150 5.5 11 
 

900 6.5 10 

2 1100 5.5 11 
 

1000 5 8 
 

900 6 10 

3 1100 5 10 
 

950 7 10 
 

1000 5 11 

4 1000 6 10 
 

1000 5 10 
 

1000 5 9 

 
Tab. 5. The processing time for operations of products on machines (hour). 

݅ ݆ ݉ଵ ݉ଶ ݉ଷ ݉ସ ݉ହ 

1 

1 --- --- (0.65,0.69,0.69,0.74) --- --- 

2 (0.5,0.55,0.55,0.67) --- --- --- --- 

3 --- (0.75,0.8,0.8,0.9) --- --- --- 

2 

1 --- --- --- --- (0.78,0.8,0.8,0.83) 

2 --- --- --- (0.6,0.65,0.65,0.7 --- 

3 (0.51,0.55.0.56,0.6) --- --- --- --- 

3 

1 --- --- (0.4,0.44,0.46,0.48) --- --- 

2 --- --- --- --- (0.9,0.9,0.93,0.94) 

3 --- --- --- (0.7,0.8,0.85,0.9) --- 
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6.2. Corresponding mathematical model 
Assuming an optimistic DM, we set ߙ = 0.7. As a result, the membership functions for two objectives are 
constructed as follows: 
 

௙భߤ =

⎩
⎪
⎨

⎪
⎧ 1, ܧ ଴ܸ.଻൫ ሚ݂ଵ൯ ≥ 450000
ܧ ఈܸ൫ ሚ݂ଵ൯ − 80000
450000− 80000

80000 ≤ ܧ ଴ܸ.଻൫ ሚ݂ଵ൯ 	≤ 450000;

0 ܧ ଴ܸ.଻൫ ሚ݂ଵ൯ ≤ 80000

					∀݇ 

௙మߤ =

⎩
⎪
⎨

⎪
⎧ 1, ܧ ଴ܸ.଻൫ ሚ݂ଶ൯ ≤ 300

800− ܧ ఈܸ൫ ሚ݂ଶ൯
800− 300

300 ≤ ܧ ଴ܸ.଻൫ ሚ݂ଶ൯ 	≤ 800;

0 ܧ ଴ܸ.଻൫ ሚ݂ଶ൯ ≥ 800

					∀݇ 

 

As seen, the membership functions include the maximization and minimization of ଵ݂and ଶ݂, respectively. 
Figures 4 and 5 depict these two membership functions. 

 
Fig. 4. The linear membership function for the 

first objective function in the numerical 
example 

 
Fig. 5. The Linear membership function for 

the second objective function in the numerical 
example. 

 

Finally, the equivalent crisp non-linear model for 
the numerical example is given as follows. It is 
assumed that the feasibility degree of the decision 

vector is equal to 0.8 (ߚ = 0.8). 

max 				෍ߤ௜
ଶ

௜ୀଵ

 

Subject to: 

෍ ෍ ௝ܽ௜௠ݔ௝௜௠௖௧ = ,݆∀										௜௧ݕ ݅,
ெ

௠ୀଵ

஼

௖ୀଵ

 				ݐ

 

෍෍ቈ0.2ቆ
௝௜௠ଵݐ݌ + ௝௜௠ଶݐ݌

2
ቇ+ 0.8ቆ

௝௜௠ଷݐ݌ + ௝௜௠ସݐ݌

2
ቇ቉ܳ௜௧ݔ௝௜௠௖௧

ை೔

௝ୀଵ

ூ

௜ୀଵ

≤ ቈ0.8ቆ ௠ܶ
ଵ + ௠ܶ

ଶ

2
ቇ+ 0.2ቆ ௠ܶ

ଷ + ௠ܶ
ସ

2
ቇ቉ܰ௠௖௧ 						∀݉, ܿ,  ݐ
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෍ ܰ௠௖௧ ≤ 5						∀ܿ, ݐ
ெ

௠ୀଵ

 

ܰ௠௖(௧ିଵ) + ௠௖௧ܭ
ା ௠௖௧ܭ−

ି = ܰ௠௖௧ 							∀݉, ܿ,  ݐ
 
௜௧ା݊ܫ − ௜௧ି݊ܫ = ௜(௧ିଵ)݊ܫ

ା − ௜(௧ିଵ)݊ܫ
ି + ܳ௜௧ + ܵ௜(௧ିଵ) − ௜௧ܦ 						∀݅,  	ݐ

௜ுା݊ܫ = 0											∀݅	 
 
௜ுି݊ܫ = 0											∀݅	 
 
ܳ௜௧ ≤ ,݅∀											௜௧ݕܼ  ݐ
ܳ௜௧ ≥ ,݅∀														௜௧ݕ  	ݐ
 
௜ܵ௧ ≤ 0.1 × ,݅∀																			௜௧ܦ  						ݐ

 
௜௧ܦ = ௜௧ܣ

ఊ (ܽ௜௧ − ܾ௜௧ ௜ܲ௧)								∀݅,  	ݐ
 

2ܾ݋ ≥෍෍ቈ0.3ቆ ௠ܶ
ଵ + ௠ܶ

ଶ

2
ቇ+ 0.7ቆ ௠ܶ

ଷ + ௠ܶ
ସ

2
ቇ቉ܰ௠௖௧

ு

௧ୀଵ

஼

௖ୀଵ

−෍෍෍ܦ௜௧ ቈ0.3ቆ
௝௜௠ଵݐ݌ + ௝௜௠ଶݐ݌

2
ቇ+ 0.7ቆ

௝௜௠ଷݐ݌ + ௝௜௠ସݐ݌

2
ቇ቉

ு

௧ୀଵ

ை೔

௝ୀଵ

ூ

௜ୀଵ

									∀݉ 

௜௧ܦ ≥ ቈ(ߚ)ቆ
ଵ,௠௜௡ܦ + ଶ,௠௜௡ܦ

2
ቇ + (1− ቆ(ߚ

ଷ,௠௜௡ܦ + ସ,௠௜௡ܦ

2
ቇ቉													∀݅,  											ݐ

 

෍ܣ௜௧ܦ௜௧ ≤ ቈ0.8ቆ
௧ܣ
௠௔௫,ଵ + ௧ܣ

௠௔௫,ଶ

2
ቇ + 0.2ቆ

௧ܣ
௠௔௫,ଷ + ௧ܣ

௠௔௫,ସ

2
ቇ቉			∀ݐ			

ூ

௜ୀଵ

 

 

௜ܲ௧ ≤
ܽ௜௧
௜ܾ௧
																∀݅,  	ݐ

ଵߤ ≥     ଶߤ
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ଵߤ
≤ 4.76

× 10ି଺൮෍෍ ௜ܲ௧ܦ௜௧
ு

௧ୀଵ

−
ூ

௜ୀଵ

෍ ෍ ෍ܰ௠௖௛ ቈ0.3ቆ
௠ଵߙ + ௠ଶߙ

2
ቇ + 0.7ቆ

௠ଷߙ + ௠ସߙ

2
ቇ቉

஼

௖ୀଵ

ெ

௠ୀଵ

ு

௧ୀଵ

+෍ ෍෍෍෍ቈ0.3ቆ
௠ଵߚ + ௠ଶߚ

2
ቇ+ 0.7ቆ

௠ଷߚ + ௠ସߚ

2
ቇ቉ܳ௜௧ 	 ቈ0.3ቆ

௝௜௠ଵݐ݌ + ௝௜௠ଶݐ݌

2
ቇ

ை೔

௝ୀଵ

ூ

௜ୀଵ

஼

௖ୀଵ

ெ

௠ୀଵ

ு

௧ୀଵ

+ 0.7ቆ
௝௜௠ଷݐ݌ + ௝௜௠ସݐ݌

2
ቇ቉ݔ௝௜௠௖௧ 													

+ 1
2ൗ ෍෍෍ ෍ ආ

ܳ௜௧

൤0.3൬஻೔
೔೙೟೐ೝ.భା஻೔

೔೙೟೐ೝ.మ

ଶ
൰ + 0.7൬஻೔

೔೙೟೐ೝ.యା஻೔
೔೙೟೐ೝ.ర

ଶ
൰൨
ඊ ቈ0.3ቆ

௜௡௧௘௥.ଵߛ + ௜௡௧௘௥.ଶߛ

2
ቇ

ை೔ିଵ

௝ୀଵ

ூ

௜ୀଵ

஼

௖ୀଵ

ு

௧ୀଵ

+ 0.7ቆ
௜௡௧௘௥.ଷߛ + ௜௡௧௘௥.ସߛ

2
ቇ቉ อ෍ ௜௠௖௧(௝ାଵ)ݔ − ෍ ௝௜௠௖௧ݔ

ெ

௠ୀଵ

ெ

௠ୀଵ

อ 								

+ 	1 2ൗ ෍෍෍ ෍ ආ
ܳ௜௧

൤0.3൬஻೔
೔೙೟ೝೌ.భା஻೔

೔೙೟ೝೌ.మ

ଶ
൰ + 0.7൬஻೔

೔೙೟ೝೌ.యା஻೔
೔೙೟ೝೌ.ర

ଶ
൰൨
ඊ ቈ0.3ቆ

௜௡௧௥௔.ଵߛ + ௜௡௧௥௔.ଶߛ

2
ቇ

ை೔ିଵ

௝ୀଵ

ூ

௜ୀଵ

஼

௖ୀଵ

ு

௧ୀଵ

+ 0.7ቆ
௜௡௧௥௔.ଷߛ + ௜௡௧௥௔ߛ .ସ

2
ቇ቉ (෍หݔ(௝ାଵ)௜௠௖௧ − ௝௜௠௖௧หݔ

ெ

௠ୀଵ

			

− อ෍ ௜௠௖௧(௝ାଵ)ݔ − ෍ ௝௜௠௖௧ݔ

ெ

௠ୀଵ

ெ

௠ୀଵ

อ) 																																				

+ 1
2ൗ ෍ ෍ ෍ቈ0.3ቆ

௠ଵߜ + ௠ଶߜ

2
ቇ + 0.7ቆ

௠ଷߜ + ௠ସߜ

2
ቇ቉ ௠௖௧ܭ)

ା
஼

௖ୀଵ

+ ௠௖௧ܭ
ି

ெ

௠ୀଵ

)
ு

௧ୀଵ

	

+෍෍(ቈ0.3ቆ
௜ଵߟ + ௜ଶߟ

2
ቇ+ 0.7ቆ

௜ଷߟ + ௜ସߟ

2
ቇ቉ ௜௧ା݊ܫ +

ூ

௜ୀଵ

ு

௧ୀଵ

ቈ0.3ቆ
௜ଵߩ + ௜ଶߩ

2
ቇ + 0.7ቆ

௜ଵߩ + ௜ଵߩ

2
ቇ቉ ௜௧ି݊ܫ

+ ቈ0.3ቆ
௜ߣ
ଵ + ௜ߣ

ଶ

2
ቇ + 0.7ቆ

௜ߣ
ଷ + ௜ߣ

ସ

2
ቇ቉ ௜ܵ௧) + ෍෍ܣ௜௧ܦ௜௧

ு

௧ୀଵ

ூ

௜ୀଵ

− 80000൲ 

ଶߤ ≤ 3.57 × 10ିଷ(680−  (2ܾ݋
 
,	௜௧ݕ ௝௜௠௖௧ݔ 	
∈ {0,1},ܰ௠௖௧ ௠௖௧ܭ,

ା,ܭ௠௖௧
ି,ܳ௜௧, ௜ܵ௧, ,௜௧ା݊ܫ ௜௧ି݊ܫ 	

≥ ,ଵߤ		݀݊ܽ	ݎ݁݃݁ݐ݊݅	݀݊ܽ	0 ଶߤ
≥ 0																					∀	݅, ݆,݉, ܿ,  																		ݐ
 
This non-linear model is solved by Genetic 
Algorithm toolbox in MATLAB. The obtained 
DCFP reconfiguration during four periods is 
depicted in Figure 6. Moreover, Tables 6 and 7 
show the DCFP assignment variables and 
production planning and marketing variables, 
respectively. With respect to the results, Cell 1 
should be removed from planning for this 
industrial manufacturer. In Figure 6 (a), in the 
first period, the machines M1, M2, M3, and M4 
are assigned to Cell 2 (C2) and the machine M5 

to C3. Notably, the number of machines is equal 
to 1 for each machine. In addition, Product I1 is 
allocated to C2 and I2 to C3. In the second period 
(Figure 6 (b)), machines M1, M2, and M4 are 
allocated to C2; M3 and M5 are allocated to C3; 
I1 and I3 are allocated to C3. The number of 
machines M1, M2, and M3 is 2 and for M4 and 
M5 is 1. For the third period (Figure 6 (c)), 
machines M3, M4, M5 and product I3 are located 
in C2. The number of M4 and M5 is 2 and for 
M3 is 1. In the fourth period (Figure 6 (d)), 
machines M1 and M4 are in C2; machine M5 and 
product I2 are in C3. There is 1 machine from 
M1, M4, and M5 in this period. In the final 
solution, the values of achievement degrees for 
the first and second objectives are ߤଵ =0.881 and 
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ଶߤ =	  0.628 and with the total profit equal to 
406114 and the utilization rate of machine 

capacity equal to 486. 

 
Tab. 6. The obtained DCFP assignment variables for the numerical 

example. 
(1,1,3,2,1)ݔ = (2,1,1,2,1)ݔ 1 = (3,1,2,2,1)ݔ 1 = 1 
(1,1,3,3,2)ݔ = (2,1,1,2,2)ݔ 1 = (3,1,2,2,2)ݔ 1 = 1 

(1,2,5,3,1)ݔ = (2,2,4,2,1)ݔ 1 = (3,2,1,2,1)ݔ 1 = 1 
(1,2,5,3,2)ݔ = (2,2,4,2,2)ݔ 1 = (3,2,1,2,2)ݔ 1 = 1 

(1,2,5,3,4)ݔ = (2,2,4,2,4)ݔ 1 = (3,2,1,2,4)ݔ 1 = 1 

(1,3,3,2,3)ݔ = (2,3,5,2,3)ݔ 1 = (3,3,4,2,1)ݔ 1 = 1 

,݆)ݔ ݅,݉, ܿ, (ݐ = ,݆	ݎℎ݁ݐ݋	∀								0 ݅,݉, ܿ,  ݐ

 
Tab. 7. The obtained production planning and marketing variables for the 

numerical example. 

periods products ܳ௜௧ ௜ܵ௧ ௜ܲ௧ ݊ܫ௜௧ା ݊ܫ௜௧ି ܣ௜௧ 

1 
1 314 36 127.2 --- --- --- 

2 436 43 202.54 6 --- 35.81 
3 --- 25 100 --- 150 --- 

2 
1 950 38 263.51 602 --- 66.67 
2 537 43 114 156 --- --- 
3 --- 25 108.33 --- 375 --- 

3 

1 --- 43 134 210 --- --- 

2 --- 32 90 --- 121 --- 

3 937 35 277.1 237 --- 66.85 

4 

1 --- --- 124.5 --- --- --- 

2 537 --- 188.97 --- --- 39.29 

3 --- --- 145.6 --- --- --- 
 

(a) 
C2 C3 
I1 I2 

C2 1 M1 3 3 

1 M2 2 --- 

1 M3 1 --- 

1 M4 --- 2 

C3 1 M5 --- 1 

   Period 1  
 

(b) 
C3 C3 

I1 I2 

C2 2 M1 2 3 

 2 M2 3 --- 

 1 M4 --- 2 

C3 2 M3 1 --- 

 1 M5 --- 1 

   Period 
2  
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(c) 
C2 
I3 

C2 1 M
3 1 

 2 M
4 3 

 2 M
5 2 

   Period 
3 

(d) 
C3 
I2 

C2 1 M1 3 

 1 M4 2 

C3 1 M5 1 

  Period 4  

 
Fig. 6. Solution representation for DCFP reconfiguration in periods 1, 2, 3, and 

4 in (a), (b), (c), and (d), respectively, for the numerical example.  
 

7. Conclusion and Future Research 
In recent years, different papers associated with 
the dynamic cell formation problem (DCFP) as a 
design problem of cellular manufacturing 
systems have increased in number. All authors 
have formulated this problem and made endeavor 
to minimize the total cost including the fixed and 
variable machine costs, inter-cell and intra-cell 
movement costs, reconfiguration cost, inventory, 
backorder, and outsourcing costs by supply side 
decisions (i.e., adding, removing, and relocating 
the machines, and holding the additive products 
in the warehouse at the end of period, 
backordering, and subcontracting with other 
companies). In principle, the supply side 
decisions help companies to manage the effect of 
demand fluctuations in different periods. On the 
other hand, the demand side decisions such as 
pricing and advertising can also cope with the 
growing demand changes. Moreover, most of 
parameters are uncertain in practice; therefore, a 
fuzzy goal programming was formulated in order 
to consider two objectives including maximizing 
the total profit of the firm and maximizing the 
utilization rate of machine capacity in this paper. 
In this model, the fuzzy parameters and goals 
were represented by appropriate linear 
membership functions. After the defuzzification 
process, the equivalent crisp one was solved by a 
fuzzy goal programming. Some future researches 
can be considered for this study. For example, the 
demand function can be constructed by fitting the 
best regression equations on the real data in 
practice. To integrate DCFP into other important 
problems such as inter-cell and intra-cell layout, 
human aspects and environmental issues can be 
other researches. Moreover, to develop an 
efficient solving method such as benders  

 

decomposition, column generation and even 
metaheuristics can be other interesting issues.  
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