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ABSTRACT 
In the last few decades, profile monitoring in univariate and multivariate environment has drawn a 
considerable attention in the area of statistical process control. In multivariate profile monitoring, it is 
required to relate more than one response variable to one or more explanatory variables. In this 
paper, the multivariate multiple linear profile monitoring problem is addressed under the assumption 
of existing autocorrelation among observations. Multivariate linear mixed model (MLMM) is proposed 
to account for the autocorrelation between profiles. Then two control charts in addition to a combined 
method are applied to monitor the profiles in phase II. Finally, the performance of the presented 
method is assessed in terms of average run length (ARL). The simulation results demonstrate that the 
proposed control charts have appropriate performance in signaling out-of-control conditions. 
 
KEYWORDS: Average run length (ARL); Multivariate exponential weighted moving average covariance 
chart (MEWMC); Multivariate linear mixed model (MLMM); Within profile correlation; Multivariate 
multiple linear regression profiles; Phase II. 
 

1. Introduction1 
Profile monitoring is very useful when quality of 
products or processes can be characterized by a 
functional relationship between a dependent 
variable and one or more explanatory variables. 
Profiles can be classified generally as linear, 
polynomial, nonlinear, or waveform families. In 
univariate applications, one response variable is 
modeled as a function of one or more explanatory 
variables. However, in multivariate applications, 
one can model a vector of response variables in 
terms of one or more explanatory variables. In 
this regard, Noorossana et al. [1] proposed the 
use of three control charts for phase II monitoring 
of multivariate simple linear profiles. In another 
study by Noorossana et al. [2], the performance 
of four methods were investigated for monitoring 
functional relation between six explanatory 
variables and six responses in a calibration 
application in phase I. Eyvazian et al. [3] 
considered four statistical control charts to 
analyze issues related to monitoring multivariate 
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multiple linear regression by extending the model 
proposed by Noorossana et al. [2]. In addition, 
they proposed a change point method based on 
the likelihood ratio approach to determine the 
location of shifts. Zou et al. [4] developed a 
lasso-based methodology for monitoring general 
multivariate linear profiles. Their proposed 
control chart is capable of determining the shift 
direction based on the observed profile data. 
Ayoubi et al. [5] utilized maximum likelihood 
estimation (MLE) method to identify the time of 
a monotonic change in the mean of response 
variables of multivariate linear profiles in Phase 
II. Amiri et al. [6] proposed a method for 
diagnosing outlying profiles and out-of-control 
parameters in multivariate multiple linear 
regression profile structure in Phase II. Zhang et 
al. [7] motivated by a real-data application in 
semiconductor industries, developed a Phase I 
modelling and monitoring framework based on 
the regression-adjustment technique and 
functional principal component analysis (FPCA) 
for multivariate profile data. Ayoubi et al. [8] 
applied MLE method to estimate change point 
without any assumptions about the change type in 
multivariate multiple linear profiles in Phase II. 
Kazemzadeh et al. [9] used MLE method to 
estimate step and linear drift changes in the 
regression parameters of multivariate linear 
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profiles in Phase II. Ghashghaei and Amiri [10] 
developed two control charts for simultaneous 
monitoring of mean vector and covariance matrix 
in multivariate multiple linear regression profiles 
in Phase II. Ghashghaei and Amiri [11] proposed 
four joint control schemes for simultaneous 
monitoring of mean vector and covariance matrix 
in multivariate multiple linear regression profiles 
in Phase II. Ghashghaie et al. [12] extended 
EWMA-SC and GWMA-SC control charts to a 
multivariate case to monitor multivariate multiple 
linear regression profiles in Phase II. 
Most of the studies in the profile monitoring 
assume there is no correlation structure among 
observation within profiles. This assumption is, 
however, unrealistic since some data, which may 
be collected over time or space, exhibit serial or 
spatial correlation particularly when the 
observations are gathered in short time intervals 
or close spatial distances. Within profile 
correlation (WPC), which violates the 
independence assumption of the traditional 
control charts, affects performance of the existing 
methods significantly (see e.g. Soleimani & 
Noorossana [13] and Noorossana et al. [14]). 
Some studies suggest the utilization of model-
based approaches to deal with autocorrelation in 
profiles. In order to achieve this purpose, 
Noorossana et al. [15] modified three different 
existing methods in the literature to eliminate the 
effect of autocorrelation in simple linear 
regression profile in phase II. Soleimani et al. 
[16] considered a simple linear profile in phase II 
and assumed there is a first order autoregressive 
model among observations of a profile. They 
have also used a remedial measure for 
transforming Y-values in order to cope with the 
autocorrelation effect. Moreover, Soleimani et al. 
[17] investigated monitoring of multivariate 
simple linear profiles in phase II. They applied a 
corrective measure based on the transformation 
method to handle autoregressive moving average 
(ARMA) correlation structure within profiles. 
Koosha and Amiri [18] proposed two remedies 
approach to account for the autocorrelation 
within logistic profiles in phase I. Keramatpour et 
al. [19] used a remedial measure to eliminate the 
effect of autocorrelation in phase ІІ monitoring of 
first-order autoregressive (AR (1)) polynomial 
profiles. Soleimani and Hadizadeh [20] applied a 
remedial measure based on a transformation 
method to remove the generalized autoregressive 
conditional heteroscedasticity (GARCH) 
structure within multivariate profiles in phase II. 
Cheng and Yang [21] proposed approaches to 
monitor the profile of the linear regression model 

with ARMA errors both in Phase I control 
scheme and Phase II monitoring application. 
Maleki et al [22] studied Phase I monitoring and 
change point estimation of auto-correlated 
Poisson profiles where the response values within 
each profile are correlated. Hadizadeh and 
Soleimani [23] considered GARCH (1,1) model 
within the simple linear profile in phase II. They 
utilized two estimation methods to extract the 
GARCH effect. Maleki et al. [24] introduced a 
Markov model in phase II monitoring of binary 
profiles in which the response values within each 
profile are auto-correlated. They used a 
metaheuristic algorithm to estimate model 
parameters. Taghipour et al. [25] applied a 
transformation method to remove the 
autocorrelation effect on phase I monitoring of 
multivariate profiles which follow the ARMA 
(1,1) model. 
Some authors, by contrast, presented the methods 
which are not based on corrective measures or 
elimination autocorrelation effects. Instead, they 
assigned some structure to variance-covariance 
matrix of residuals to consider correlation within 
profiles. Jensen et al. [26] presented the use of 
linear mixed models (LMM) to monitor the linear 
profiles in order to account for any correlation 
structure within profiles with focus in phase I. 
Jensen and Birch [27] proposed the use of 
nonlinear mixed models to monitor nonlinear 
auto-correlated profiles in phase I. Qiu et al. [28] 
described within-profile spatially correlation by a 
nonparametric mixed-effects model. In fact they 
focused on phase II profiles and considered 
possible step shifts in the fixed-effects term. 
Amiri et al. [29] used linear mixed model method 
for auto-correlated polynomial profiles in phase I 
for an automotive industry case. Narvand et al. 
[30] utilized three control charts to monitor fixed 
effect term of the linear mixed models in simple 
linear auto-correlated profiles on phase II. 
Soleimani et al. [31] extended Jensen et al. [26]’s 
work to phase II of simple linear profile 
monitoring. Abdel-Salam et al. [32] applied a 
semiparametric procedure that combines 
parametric and non-parametric profiles in phase I 
and account for autocorrelation within profiles. 
Zhang et al.[33] proposed Gaussian process (GP) 
to model the correlation within simple linear 
profiles in phase II. Li et al. [34] developed 
multivariate Gaussian process (MGP) to model 
multivariate profiles in the presence of 
correlation. Mazrae Farahani et al. [35] used 
generalized linear mixed models (GLMMs) to 
consider the possible correlation between the 
responses in the modeling of social networks. 
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In this paper, the problem of the existing 
autocorrelation within multivariate multiple 
linear profiles (MMLP) in phase II is 
investigated. For the sake of considering 
autocorrelation within profiles, a multivariate 
linear mixed model (MLMM) is proposed. Two 
control charts are developed for monitoring the 
changes in the mean vector and covariance 
matrix as well as a combined chart for 
simultaneous monitoring of both. The 
performance of the presented method is 
investigated through numerical simulation in 
terms of ARL under step shifts. 
The remainder of the paper is organized as 
follows. Our proposed modelling and 
assumptions is described in Section 2. In Section 
3, monitoring schemes are explained in detail. 
Section 4 is assigned to evaluation of methods 
using a numerical example. Our concluding 
remarks is given in section 5. 
 

2. Multivariate Linear Mixed Model 
The multivariate multiple linear mixed model for 
the thk  auto-correlated profile is defined as  
 

k k k k k k = 1, 2,..., mY X B Z b E= + +      ,          (1) 
 
where kY  is a kn × q   matrix, each row of kY      
( ,  i=1,...,niy ) is a q dimensional vector. kX and 

kZ  are kn × p  and kn ×r  known matrices related 
to covariate of fixed and random effects, 
respectively. B is a (p +1)× q  matrix indicating 
the regression coefficient of fixed effects, kb  is 
the coefficient matrix of random effects of size 
r q  and kE  is the random error matrix in which 
it is assumed that each row, say i  , has a q-
variate normal distribution with mean vector zero 
and variance-covariance matrix Σ  where 

q q


Σ  . Jensen et al. [26] mentioned that if the 
errors are correlated, covariance matrix between 
errors is often assumed to be a simple form, such 
as compound symmetry (CS) or autoregressive 
(AR), in order to reduce the number of 
covariance parameters that need to be estimated. 
An AR(p) indicates an autoregressive model of 
order p. The autocorrelation among observations 
t and t  of profile thk  is defined by 

[ ( )]k t tR    for t,t =1,...,n , where 

1 1 11 2 ...t t t t t t t t p                   , 0 =1  and 

p  is autocorrelation coefficient. For more 
details see Schabenberger and Pierce [36]. In this 
paper, the number of observations are taken to be 

the same for all profiles, i.e. kn = n  , for all 
k = 1,2,...,m . Moreover for each column of matrix 

kb  denoted by jb , (0, )j qb N  , where   is an 
r r  positive definite covariance matrix.  
To describe the multivariate model, we introduce 
matrix-variate normal distribution. Gupta and 
Nagar [37] suggested that, in the case of 
sampling from a multivariate normal population, 
one may employ the matrix-variate normal 
(MVN) distributions to model matrix 
observations. MVN distributions, which are in 
fact the generalization of multivariate normal 
distributions, are widely used in various fields 
especially in multi-output prediction. 
Therefore, we can write the model in “Equation 
(1)” in a vector form as 
 

( ) ( ) ( ) ( ) ( ) ( )     1,2,...,T T T T
k k q k q k kvec vec vec vec k     Y X I B Z I b E

,                           (2) 
 
where vec is vectorization operator, the symbol 
  stands for the kronecker product and qI  is 
identity matrix of size q. In “Equation (2)” 

( ) (0, )k rqvec Nb    and Ψ  is an rq× rq  block 

diagonal covariance matrix equals to qI . 
Moreover ( )kvec E  is independent of ( )kvec b  
and has a nq-variate normal distribution with 
mean 0 and nq nq  covariance matrix R Σ . 
After converting matrices to the vector form, the 
distribution of the response vector kY  is given by 
 

(( ) ( ), )k k q k kN vecX I B VY ,           (3) 
 
where kV  or briefly V  is variance-covariance 
matrix of response vector Y  and is defined as 
 

( ) ( )T
k q k q k     V Z I Z I R Σ .          (4) 

 
When the model parameters are known, the 
estimates of the fixed effect coefficient using 
maximum likelihood estimation (MLE) method   
( B̂ ) is given by 

1 1 1
0 0

ˆ( ) [( ) ( )] ( ) ( ),T T
k k q k q k q kvec I vec     B X I V X X I V Y     (5) 

 
where 0V  and 0  are known parameters.  
 
3. Proposed Control Charts For Phase 

II monitoring Scheme 
In this section, two multivariate control charts 
will be proposed to monitor the fixed effects and 
the covariance matrix in phase II. It is assumed 
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that the IC profile model parameters are known or 
have been accurately estimated from Phase I 
analysis. 
 
3.1. MEWMA method 
When process is in control, ˆ( )vec B  has a ( 1)p q
-variate normal distribution with mean   and 
covariance matrix ˆ( )vec B  given by (see appendix 
A) 
 

01 11 1 02 12 2 0 1
ˆ( ( )) ( , ,..., , , ,..., ,..., , ,..., )T

k p p q q pqE vec B B B B B B B B B  B

              (6) 
 
And 
 

1 1
ˆ 0( )

[( ) ( )]
k

T
q qvec B

   Σ X I V X I ,          (7) 
 
respectively.  Lowry et al. [38] presented a 
multivariate exponentially weighted moving 
average (MEWMA) control chart to monitor the 
regression parameters. In this paper, their control 
chart is utilized in order to monitor the fixed 
effects.  
The control chart statistic for thk  profile is a 2T  
given by  
 

2 1T
k

T
Z k Z k

 Z Z              (8) 
 
where  
 

1
ˆ( ( ) ) (1 )k k kvec      BZ Z           (9) 

 
is a multivariate normal random vector with 
covariance matrix 
 

ˆ( )2 kz vec





 BΣ Σ .          (10) 

 
The parameter   is the smoothing parameter 
satisfying 0 1  , and 0Z  is a (( 1) ) 1p q   
vector with zero entries. The upper control limit 
for the MEWMA chart is selected so as to 
achieve a desired in-control ARL (also denoted 
as ܮܴܣ଴). 
 
3.2. MEWMC method 
Hawkins et al. [39] proposed a multivariate 
exponentially weighted moving covariance 
(MEWMC) chart to detect both increases and 
decreases in marginal variability of a multivariate 
normal process. This property is crucial when 
some components exhibit variance increases 
while the others possess compensating decreases. 

To describe more, consider the out of control 
situation for covariance matrix in which 
increasing the largest eigenvalue is accompanied 
by decreasing the smallest eigenvalue with the 
same factor. Consequently, generalized 
covariance matrix remains unaltered which leads 
to undetectable changes. The proposed chart is 
based on the assumption of individual 
observations, however an extension to n-
observation is presented here for our multivariate 
multiple profile monitoring scheme. 
The proposed MEWMC chart is based on the 
multi-standardized data whose in-control 
distribution, when process is in control is 

(0, )nq nqN I  . For this purpose, we should firstly 
find a matrix A with the property 0

T
nqAV A = I  

and then transform the process readings as 
( ) ( ( ) ( ))k kvec vec vec  0U A Y μ  where 
( )vec 0μ  is in control values of mean matrix or 
( )vec XB . Matrix A  can be defined as inverse 

Cholesky root matrix of 0V . Unlike most of the 
other control charts which are only based on 
either the trace or the determinant, the MEWMC 
statistic is defined such that it has the advantages 
of both operators as 
 

( ) logk k kC tr q  S S ,         (11) 
 
Where 
 

1( )[ ( )] (1 )T T
k k k kvec vec    S U U S         (12) 

 
and ( )kvec U  is a 1nq  random vector in the thk  
profile, 0 nqS I  and   is smoothing parameter 
satisfying 0 1  . 
A signal is given at profile k if kC  is greater than 
a pre-specified control limit that is set of to 
achieve a desired 0ARL  value. 
In order to monitor process stability, in case of 
the fixed effects, and the covariance matrix 
changes simultaneously, MEWMA and 
MEWMC methods can be combined with each 
other. Therefore, the statistics defined in 
“Equation (8)” and “Equation (11)” can be 
utilized simultaneously. The 0ARL of the resulting 
MEWMAC control chart can be obtained by 
assigning different values to the false alarm rates 
of these two control charts. In this paper, it is 
assumed that each of the two charts has the same 
false alarm rate. 
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4. Simulation Study 
In order to evaluate performance of the proposed 
control charts, a multivariate multiple numerical 
example utilized by Eyvazian et. al. [3] is 
considered here where the within correlation 
structure among observations is added to the 
example. The resulted model contains the random 
effects as follows. 
 

1 1 2 1 11 2 12 1 2 1 2 1 21 2 22 23 2 , Y 2Y X X Zb Zb X X Zb Zb                (13) 
 
A sample of four observations for 1y  and 2y  are 
generated using the pairs of (2,1), (4,2), (6,3) and 
(8,2) as values for independent variables 1 2( , )x x . 
Moreover, it is assumed Z  is contained within 

X  with columns 

2 1
4 2

 
6 3
8 2

 
 
 
 
 
 
 

Z . It is also assumed 

2 2 2( ) (0, )vec N  b I   with 
0.1 0
0 0.1

 
  
 

  

and vector 1 2( , )   has bivariate normal 
distribution with mean zero and covariance 

matrix 
2

1 1 2
2

2 1 2


  
  

 
  
 

Σ  where 1 2 1   . 

To evaluate the effect of different correlation 
values on response variables, two   values 0.1 
and 0.9  are taken into account for weak and 
strong correlation, respectively. Also an AR(1) 
structure is deployed to regard correlation among 

observations in each profile. To investigate the 
autocorrelation effects on our simulation, two 
different values for the autocorrelation coefficient 

1  is regarded, 1 0.1   for weak and 1 0.9   for 
strong correlations, respectively. 
The value of smoothing constant in MEWMA 
chart, namely   is set to 0.2 . In this paper, all 
control chart schemes are designed to have an in-
control ARL of approximately 200 and each ARL 
value is estimated using 50,000 replications. The 
upper control limits (UCL) of MEWMA, 
MEWMC are 17.5 and 9.28, respectively. In 
addition, ܮܴܣ଴ for both MEWMA and MEWMC 
in MEWMAC control chart, is set to 400 in order 
to assure an overall in-control ARL of 200. 
Error! Reference source not found. reports the 
simulated out-of-control ARL values when 01  
shifts to 01 1   for different between-responses 
and within-profile correlations. This table reveals 
that under constant correlation coefficient 
between responses, all control charts have a 
better performance under the conditions where 
the autocorrelation is strong compared to the case 
when autocorrelation is weak. In addition, when 
both correlations are weak, the MEWMA 
performs better than MEWMC when 1.6  , 
however for strong correlation levels (

0.9,  0.9   ) the results are different. In this 
condition, the MEWMC is superior to the 
MEWMA for 0.6  . Moreover, the combined 
method is faster than the other two methods in 
medium to large shifts. 

 
Tab. 1. The simulated out-of-control ARL values under the shifts from 01  to 01 0 1    

Control 
Chart 

parameters 
value 

 

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 
MEWMA 

 
153.0 87.4 46.6 26.7 16.9 11.8 8.7 6.8 5.5 4.6 

MEWMC 193.7 171.9 132.2 81.7 42.4 19.4 9.1 4.4 2.4 1.6 
MEWMA

C 
171.7 109.4 58.8 31.7 18.2 11.0 6.6 4.0 2.5 1.7 

MEWMA 
 

93.9 30.1 13.2 7.6 5.1 3.7 2.9 2.4 2.0 1.7 
MEWMC 176.0 92.8 25.7 5.9 2.0 1.1 1.0 1.0 1.0 1.0 
MEWMA

C 
116.6 36.5 13.0 5.1 2.0 1.2 1.0 1.0 1.0 1.0 

MEWMA 
 

149.6 83.8 44.5 25.1 15.9 11.0 8.2 6.4 5.2 4.3 
MEWMC 197.6 172.9 128.7 75.5 37.9 16.5 7.3 3.7 2.1 1.4 
MEWMA

C 
170.4 104.6 55.5 29.6 16.9 9.9 5.9 3.5 2.2 1.5 

MEWMA 
 

72.3 20.1 8.9 5.3 3.6 2.7 2.1 1.8 1.5 1.3 
MEWMC 161.9 55.2 9.3 2.1 1.1 1.0 1.0 1.0 1.0 1.0 
MEWMA

C 
161.9 55.2 9.3 2.1 1.1 1.0 1.0 1.0 1.0 1.0 

 
 
 

0

0.1

0.1









0.9

0.1









0.1

0.9









0.9

0.9








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(a) 

 
 

(b) 

 
 

(c) 

 
Fig. 1. ARL comparison for different correlation values of (a) MEWMA (b) MEWMC (c) 

MEWMAC charts under shifts in intercept 
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Figure 1 summarizes the comparison outcomes 
between out-of-control ARL values of charts 
under different correlation levels when intercept 
shifts.  
Table 2 denotes the simulated out of control ARL 
values for the shifts in the slope of the first 
profile in 1  units. In all conditions, the 

MEWMA performs better than MEWMC for 
small shifts. Moreover, the control charts have a 
better performance for the slope shifts than the 
intercept. For the sake of argument, we avoid 
inserting the remaining figures corresponding to 
Tables 2-6. However, they are available upon 
request.

 
Tab. 2. The simulated out-of-control ARL values under the shifts from 11  to 11 1 1   

Control 
Chart 

parameter
s value 

1  
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

MEWMA 0.1

0.1








 

42.64 11.22 5.93 4.08 3.15 2.62 2.25 2.05 1.93 1.80 
MEWMC 118.5

0 
11.65 1.72 1.01 1.00 1.00 1.00 1.00 1.00 1.00 

MEWMA
C 

32.02 6.89 1.52 1.01 1.00 1.00 1.00 1.00 1.00 1.00 
MEWMA 0.9

0.1








 

40.55 10.87 5.82 3.99 3.09 2.56 2.21 2.02 1.90 1.77 
MEWMC 116.5 11.5 1.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
MEWMA

C 
32.07 6.79 1.46 1.01 1.00 1.00 1.00 1.00 1.00 1.00 

MEWMA 0.1

0.9








 

38.81 10.43 5.73 3.92 3.04 2.52 2.19 2.01 1.90 1.73 
MEWMC 112.3 10.8 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
MEWMA

C 
31.19 6.10 1.45 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

MEWMA 0.9

0.9








 

38.56 10.60 5.60 3.88 3.01 2.49 2.18 2.00 1.89 1.72 
MEWMC 112.2 10.1 1.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
MEWMA

C 
29.97 5.87 1.45 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 
Tab. 3. The simulated out-of-control ARL values under the shifts from 1 to 1  

Control 
Chart 

paramete
rs value 

  
1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 

MEWMA 0.1

0.1








 

83.2 39.5 21.5 13.1 8.8 6.3 4.8 3.8 3.2 2.7 
MEWMC 31.6 4.6 1.6 1.1 1.0 1.0 1.0 1.0 1.0 1.0 
MEWMA

C 
38.9 5.8 1.8 1.1 1.0 1.0 1.0 1.0 1.0 1.0 

MEWMA 0.9

0.1








 

66.9 23.6 11.0 6.2 4.0 3.0 2.4 2.0 1.7 1.6 
MEWMC 8.1 1.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
MEWMA

C 
10.5 1.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

MEWMA 0.1

0.9








 

96.9 50.3 28.6 17.8 12.2 8.6 6.5 5.1 4.2 3.5 
MEWMC 40.1 6.3 2.0 1.2 1.0 1.0 1.0 1.0 1.0 1.0 
MEWMA

C 
49.5 8.0 2.3 1.3 1.1 1.0 1.0 1.0 1.0 1.0 

MEWMA 0.9

0.9








 

77.9 29.6 14.4 8.3 5.5 4.0 3.1 2.6 2.2 2.0 
MEWMC 9.8 1.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
MEWMA

C 
13.1 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

 
Table 3 shows how the ARL values change when 
the standard deviation (SD) in the first profile 
shifts to . The MEWMC indicates not 
only significant changes in the ARL values but 
also has an appropriate performance under SD 
shifts. As the first row of each correlation set 
shows, shifts in the SD can create alarms in the 
MEWMA too, however the MEWMC indicates 
the OOC condition significantly faster than the 
MEWMA. Furthermore, all control charts 
perform better under weak within-profile 

autocorrelation and strong between- response 
correlation. 
Table 4, Table 5, and Table 6 report the shifts of 
the SD in the first profile alongside the shift in 
the intercept of the first profile, the slope of the 
first profile, and the SD of the second profile, 
respectively. It is apparent from Table 4 that both 
the MEWMA and the MEWMC charts give out-
of-control signal under simultaneous shifts. 
However, the MEWMC has superiority to the 
MEWMA in all correlation and shift levels. In 
Table 5 and Table 6, similar to the previous one, 

1 1 
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the MEWMC is superior to the MEWMA. In 
addition, the MEWMAC chart performs better 

than other charts in all three tables. 

 
Tab. 4. The simulated out-of-control ARL values under the simultaneous shifts from 01 to 

01 1   and 1 to 1 1   
Control 
Chart 

paramete
rs value 

  
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

MEWMA 0.1

0.1








 

75.77 31.65 17.08 11.34 8.38 6.56 5.30 4.56 3.94 3.48 
MEWMC 30.86 4.24 1.45 1.08 1.01 1.00 1.00 1.00 1.00 1.00 
MEWMA

C 
21.85 3.79 1.49 1.07 1.00 1.00 1.00 1.00 1.00 1.00 

MEWMA 0.9

0.1








 

46.34 15.73 8.44 5.84 4.35 3.49 2.95 2.60 2.28 2.03 
MEWMC 7.19 1.24 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
MEWMA

C 
6.80 1.21 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

MEWMA 0.1

0.9








 

84.64 34.69 18.89 12.75 9.46 7.42 6.15 5.25 4.55 4.09 
MEWMC 37.66 5.57 1.65 1.10 1.01 1.00 1.00 1.00 1.00 1.00 
MEWMA

C 
27.44 4.90 1.76 1.14 1.03 1.00 1.00 1.00 1.00 1.00 

MEWMA 0.9
0.9








 

43.27 13.98 7.98 5.54 4.30 3.58 3.02 2.64 2.43 2.25 
MEWMC 8.81 1.21 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
MEWMA

C 
7.44 1.26 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 
Tab. 5. The simulated out-of-control ARL values under the simultaneous shifts from 11

to 11 1   and 1 to 1 1   
Control 
Chart 

paramete
rs value 

  
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

MEWMA 0.1

0.1








 

30.37 9.15 5.06 3.56 2.78 2.32 2.03 1.82 1.63 1.45 
MEWMC 23.10 2.21 1.04 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
MEWMA

C 
14.52 1.99 1.03 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

MEWMA 0.9

0.1








 

27.55 8.20 4.59 3.22 2.50 2.08 1.79 1.59 1.41 1.27 
MEWMC 7.10 1.08 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
MEWMA

C 
6.41 1.09 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

MEWMA 0.1

0.9








 

30.67 9.11 5.02 3.56 2.78 2.32 2.05 1.83 1.63 1.45 
MEWMC 29.24 2.35 1.03 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
MEWMA

C 
15.60 2.18 1.04 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

MEWMA 0.9

0.9








 

28.54 8.33 4.67 3.27 2.59 2.14 1.85 1.64 1.47 1.32 
MEWMC 8.43 1.13 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
MEWMA

C 
7.03 1.14 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

  
Tab. 6. The simulated out-of-control ARL values under the simultaneous shifts from 1 to 

1  and 2 to 2  
Control 
Chart 

paramete
rs value 

  
1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 

MEWMA 0.1

0.1








 

53.12 22.96 12.87 8.42 6.28 4.93 4.00 3.34 2.92 2.58 
MEWMC 12.47 1.79 1.06 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
MEWMA

C 
9.97 1.70 1.05 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

MEWMA 0.9

0.1








 

58.73 26.20 14.61 9.79 7.18 5.47 4.49 3.79 3.23 2.86 
MEWMC 15.17 1.90 1.07 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
MEWMA

C 
12.56 1.93 1.06 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

MEWMA 0.1

0.9








 

65.42 29.31 16.72 11.09 8.02 6.18 5.03 4.22 3.52 3.06 
MEWMC 15.75 2.38 1.10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ie
pr

.iu
st

.a
c.

ir
 o

n 
20

25
-0

7-
19

 ]
 

                             8 / 11

https://ijiepr.iust.ac.ir/article-1-845-en.html


9 Phase II Monitoring of Auto-Correlated Linear Profiles Using Multivariate Linear Mixed 
Model 

 

International Journal of Industrial Engineering & Production Research, March 2021, Vol. 32, No. 1 

MEWMA
C 

14.17 2.28 1.12 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
MEWMA 0.9

0.9








 

68.45 30.98 17.72 11.89 8.57 6.72 5.30 4.52 3.84 3.40 
MEWMC 18.11 2.28 1.13 1.01 1.00 1.00 1.00 1.00 1.00 1.00 
MEWMA

C 
14.78 2.14 1.12 1.01 1.00 1.00 1.00 1.00 1.00 1.00 

 
5. Conclusions 

In this paper, we have proposed a multivariate 
linear mixed model to deal with the correlation 
within the multivariate multiple profiles. In order 
to monitor the profiles in phase II, two 
multivariate control charts have been introduced. 
The first one is the MEWMA chart which has 
been employed to detect the changes in the fixed 
effects and the second one is the MEWMC chart 
to monitor the covariance matrix. Furthermore, 
for simultaneous monitoring of the fixed effects 
and the covariance matrix the MEWMA along 
with the MEWMC have been utilized. The 
performance of the presented control charts has 
been evaluated through the ARL criterion under 
different correlation levels between responses 
and also among observations within each profile. 
The simulations revealed that both MEWMA and 
MEWMC perform better under presence of 
strong correlation between responses and strong 
autocorrelation within profiles when shifts occur 
in intercept and slope. However, when SD shifts, 
they have superior performance under strong 
correlation among responses and weak 
autocorrelation coefficient. On the other hand, 
when a shift occurs in the covariance matrix, the 
MEWMC detects it faster than the MEWMA. 
The main reason for development of the 
combined method is to monitor the process mean 
vector and covariance matrix, simultaneously. 
However, diagnosis of the out-of-control 
parameters requires diagnostic methods which 
could be the topic of future studies. 
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Appendix A 
MLE estimator of the vector  equals to 
 

.  
Let  , 

then 
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