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ABSTRACT

In the last few decades, profile monitoring in univariate and multivariate environment has drawn a
considerable attention in the area of statistical process control. In multivariate profile monitoring, it is
required to relate more than one response variable to one or more explanatory variables. In this
paper, the multivariate multiple linear profile monitoring problem is addressed under the assumption
of existing autocorrelation among observations. Multivariate linear mixed model (MLMM) is proposed
to account for the autocorrelation between profiles. Then two control charts in addition to a combined
method are applied to monitor the profiles in phase IlI. Finally, the performance of the presented
method is assessed in terms of average run length (ARL). The simulation results demonstrate that the
proposed control charts have appropriate performance in signaling out-of-control conditions.

KEYWORDS: Average run length (ARL); Multivariate exponential weighted moving average covariance
chart (MEWMC),; Multivariate linear mixed model (MLMM),; Within profile correlation; Multivariate

multiple linear regression profiles; Phase II.

1. Introduction
Profile monitoring is very useful when quality of
products or processes can be characterized by a
functional relationship between a dependent
variable and one or more explanatory variables.
Profiles can be classified generally as linear,
polynomial, nonlinear, or waveform families. In
univariate applications, one response variable is
modeled as a function of one or more explanatory
variables. However, in multivariate applications,
one can model a vector of response variables in
terms of one or more explanatory variables. In
this regard, Noorossana et al. [1] proposed the
use of three control charts for phase II monitoring
of multivariate simple linear profiles. In another
study by Noorossana et al. [2], the performance
of four methods were investigated for monitoring
functional relation between six explanatory
variables and six responses in a calibration
application in phase I. Eyvazian et al. [3]
considered four statistical control charts to
analyze issues related to monitoring multivariate
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multiple linear regression by extending the model
proposed by Noorossana et al. [2]. In addition,
they proposed a change point method based on
the likelihood ratio approach to determine the
location of shifts. Zou et al. [4] developed a
lasso-based methodology for monitoring general
multivariate linear profiles. Their proposed
control chart is capable of determining the shift
direction based on the observed profile data.
Ayoubi et al. [5] utilized maximum likelihood
estimation (MLE) method to identify the time of
a monotonic change in the mean of response
variables of multivariate linear profiles in Phase
II. Amiri et al. [6] proposed a method for
diagnosing outlying profiles and out-of-control
parameters in multivariate multiple linear
regression profile structure in Phase II. Zhang et
al. [7] motivated by a real-data application in
semiconductor industries, developed a Phase I
modelling and monitoring framework based on
the  regression-adjustment  technique and
functional principal component analysis (FPCA)
for multivariate profile data. Ayoubi et al. [8]
applied MLE method to estimate change point
without any assumptions about the change type in
multivariate multiple linear profiles in Phase II
Kazemzadeh et al. [9] used MLE method to
estimate step and linear drift changes in the
regression parameters of multivariate linear
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profiles in Phase II. Ghashghaei and Amiri [10]
developed two control charts for simultaneous
monitoring of mean vector and covariance matrix
in multivariate multiple linear regression profiles
in Phase II. Ghashghaei and Amiri [11] proposed
four joint control schemes for simultaneous
monitoring of mean vector and covariance matrix
in multivariate multiple linear regression profiles
in Phase II. Ghashghaie et al. [12] extended
EWMA-SC and GWMA-SC control charts to a
multivariate case to monitor multivariate multiple
linear regression profiles in Phase II.

Most of the studies in the profile monitoring
assume there is no correlation structure among
observation within profiles. This assumption is,
however, unrealistic since some data, which may
be collected over time or space, exhibit serial or
spatial ~ correlation particularly when the
observations are gathered in short time intervals
or close spatial distances. Within profile
correlation (WPC), which violates the
independence assumption of the traditional
control charts, affects performance of the existing
methods significantly (see e.g. Soleimani &
Noorossana [13] and Noorossana et al. [14]).
Some studies suggest the utilization of model-
based approaches to deal with autocorrelation in
profiles. In order to achieve this purpose,
Noorossana et al. [15] modified three different
existing methods in the literature to eliminate the
effect of autocorrelation in simple linear
regression profile in phase II. Soleimani et al.
[16] considered a simple linear profile in phase II
and assumed there is a first order autoregressive
model among observations of a profile. They
have also wused a remedial measure for
transforming Y-values in order to cope with the
autocorrelation effect. Moreover, Soleimani et al.
[17] investigated monitoring of multivariate
simple linear profiles in phase II. They applied a
corrective measure based on the transformation
method to handle autoregressive moving average
(ARMA) correlation structure within profiles.
Koosha and Amiri [18] proposed two remedies
approach to account for the autocorrelation
within logistic profiles in phase I. Keramatpour et
al. [19] used a remedial measure to eliminate the
effect of autocorrelation in phase II monitoring of
first-order autoregressive (AR (1)) polynomial
profiles. Soleimani and Hadizadeh [20] applied a
remedial measure based on a transformation
method to remove the generalized autoregressive
conditional heteroscedasticity (GARCH)
structure within multivariate profiles in phase II.
Cheng and Yang [21] proposed approaches to
monitor the profile of the linear regression model

with  ARMA errors both in Phase I control
scheme and Phase II monitoring application.
Maleki et al [22] studied Phase I monitoring and
change point estimation of auto-correlated
Poisson profiles where the response values within
each profile are correlated. Hadizadeh and
Soleimani [23] considered GARCH (1,1) model
within the simple linear profile in phase II. They
utilized two estimation methods to extract the
GARCH effect. Maleki et al. [24] introduced a
Markov model in phase II monitoring of binary
profiles in which the response values within each
profile are auto-correlated. They used a
metaheuristic algorithm to estimate model
parameters. Taghipour et al. [25] applied a
transformation  method to remove the
autocorrelation effect on phase I monitoring of
multivariate profiles which follow the ARMA
(1,1) model.

Some authors, by contrast, presented the methods
which are not based on corrective measures or
elimination autocorrelation effects. Instead, they
assigned some structure to variance-covariance
matrix of residuals to consider correlation within
profiles. Jensen et al. [26] presented the use of
linear mixed models (LMM) to monitor the linear
profiles in order to account for any correlation
structure within profiles with focus in phase I.
Jensen and Birch [27] proposed the use of
nonlinear mixed models to monitor nonlinear
auto-correlated profiles in phase I. Qiu et al. [28]
described within-profile spatially correlation by a
nonparametric mixed-effects model. In fact they
focused on phase II profiles and considered
possible step shifts in the fixed-effects term.
Amiri et al. [29] used linear mixed model method
for auto-correlated polynomial profiles in phase I
for an automotive industry case. Narvand et al.
[30] utilized three control charts to monitor fixed
effect term of the linear mixed models in simple
linear auto-correlated profiles on phase II.
Soleimani et al. [31] extended Jensen et al. [26]’s
work to phase II of simple linear profile
monitoring. Abdel-Salam et al. [32] applied a
semiparametric  procedure  that  combines
parametric and non-parametric profiles in phase I
and account for autocorrelation within profiles.
Zhang et al.[33] proposed Gaussian process (GP)
to model the correlation within simple linear
profiles in phase II. Li et al. [34] developed
multivariate Gaussian process (MGP) to model
multivariate profiles in the presence of
correlation. Mazrae Farahani et al. [35] used
generalized linear mixed models (GLMMs) to
consider the possible correlation between the
responses in the modeling of social networks.
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In this paper, the problem of the existing
autocorrelation within multivariate multiple
linear profiles (MMLP) in phase II is
investigated. For the sake of considering
autocorrelation within profiles, a multivariate
linear mixed model (MLMM) is proposed. Two
control charts are developed for monitoring the
changes in the mean vector and covariance
matrix as well as a combined chart for
simultaneous  monitoring  of  both.  The
performance of the presented method is
investigated through numerical simulation in
terms of ARL under step shifts.

The remainder of the paper is organized as
follows. Our proposed modelling and
assumptions is described in Section 2. In Section
3, monitoring schemes are explained in detail.
Section 4 is assigned to evaluation of methods
using a numerical example. Our concluding
remarks is given in section 5.

2. Multivariate Linear Mixed Model
The multivariate multiple linear mixed model for
the k" auto-correlated profile is defined as

Y, =X,B+Zb, +E, k=1,2,..,m, (1)

where Y, is a n, xg matrix, each row of Y,
(y,, i=1,...n) is a ¢ dimensional vector. X, and
Z, are n xp and n xr known matrices related
to covariate of fixed and random effects,
respectively. B is a (p+1)xg matrix indicating
the regression coefficient of fixed effects, b, is
the coefficient matrix of random effects of size
rxq and E, is the random error matrix in which
it is assumed that each row, say ¢ , has a g-

i

variate normal distribution with mean vector zero
and variance-covariance matrix X_ where
Y. eR”. Jensen et al. [26] mentioned that if the
errors are correlated, covariance matrix between
errors is often assumed to be a simple form, such
as compound symmetry (CS) or autoregressive
(AR), in order to reduce the number of
covariance parameters that need to be estimated.
An AR(p) indicates an autoregressive model of
order p. The autocorrelation among observations
t and ¢ of profile k" is defined by

R =[y, (@] for tt=l,...,n , where
}/\t—t’\ = (oly\z—z’\—l + (01}/\:-:’\-2 +..t q)l}/\z—z’\—p > Vo =1 and
@, is autocorrelation coefficient. For more

details see Schabenberger and Pierce [36]. In this
paper, the number of observations are taken to be

the same for all profiles, i.e. n,=n , for all
k=12,..,m.Moreover for each column of matrix
b, denoted by b, b, ~ N, (0,9), where ¢ is an
rxr positive definite covariance matrix.

To describe the multivariate model, we introduce
matrix-variate normal distribution. Gupta and
Nagar [37] suggested that, in the case of
sampling from a multivariate normal population,
one may employ the matrix-variate normal
(MVN)  distributions to  model  matrix
observations. MVN distributions, which are in
fact the generalization of multivariate normal
distributions, are widely used in various fields
especially in multi-output prediction.

Therefore, we can write the model in “Equation
(1)” in a vector form as

vec(Y] )=(X, ®I vec(B")+(Z, ®1 )vec(b;)+vec(E;) k=12,..,
, 2)

where vec is vectorization operator, the symbol
® stands for the kronecker product and Iq is
identity matrix of size ¢. In “Equation (2)”
vec(b,)~ N, (0,%) and ¥ is an rgxrg block
diagonal covariance matrix equals to ¢®Iq.
Moreover vec(E,) is independent of vec(b,)
and has a ng-variate normal distribution with
mean 0 and ngxnqg covariance matrix R®X .

After converting matrices to the vector form, the
distribution of the response vector Y, is given by

Yk - N((Xk ®Iq )V€C(Bk )aVk) P (3)

where V, or briefly V is variance-covariance
matrix of response vector ¥ and is defined as

V=(Z,®1)¥(Z,®1) +R, QX . 4)

When the model parameters are known, the
estimates of the fixed effect coefficient using
maximum likelihood estimation (MLE) method
(B) is given by

vee(B)=[(X, ®1)'V, (X, ®L)'(X, ®L) V, ver(Y,),  (5)
where 7, and ¥, are known parameters.

3. Proposed Control Charts For Phase
II monitoring Scheme

In this section, two multivariate control charts

will be proposed to monitor the fixed effects and

the covariance matrix in phase II. It is assumed
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that the IC profile model parameters are known or
have been accurately estimated from Phase I
analysis.

3.1. MEWMA method
When process is in control, vec(B) has a ( p+Dg
-variate normal distribution with mean £ and

covariance matrix X . given by (see appendix
A)

B=E(vec(B,))=(By, B 1s-rs B, By Byseos By By By B,
(6)

And

Evec(ék) = [(X®Iq )T \7071 (X®Iq )]71 9 (7)

respectively.  Lowry et al. [38] presented a
multivariate  exponentially weighted moving
average (MEWMA) control chart to monitor the
regression parameters. In this paper, their control
chart is utilized in order to monitor the fixed
effects.

The control chart statistic for k" profile is a 77
given by

T: =Z'%,Z, (8)
where
Z, =A(vec(B,)-B)+(1-1)Z, ©)

is a multivariate normal random vector with
covariance matrix

A
E =57 (10)

The parameter 4 is the smoothing parameter
satisfying 0<A<1, and Z, is a ((p+Dg)x1
vector with zero entries. The upper control limit
for the MEWMA chart is selected so as to
achieve a desired in-control ARL (also denoted
as ARLy).

3.2. MEWMC method

Hawkins et al. [39] proposed a multivariate
exponentially weighted moving covariance
(MEWMC) chart to detect both increases and
decreases in marginal variability of a multivariate
normal process. This property is crucial when
some components exhibit variance increases
while the others possess compensating decreases.

To describe more, consider the out of control
situation for covariance matrix in which
increasing the largest eigenvalue is accompanied
by decreasing the smallest eigenvalue with the
same  factor.  Consequently,  generalized
covariance matrix remains unaltered which leads
to undetectable changes. The proposed chart is
based on the assumption of individual
observations, however an extension to #-
observation is presented here for our multivariate
multiple profile monitoring scheme.

The proposed MEWMC chart is based on the
multi-standardized data  whose in-control
distribution, when process is in control is
N, (0,1 ) . For this purpose, we should firstly

find a matrix 4 with the property AV,A" =1
and then transform the process readings as
vec(U,) = A(vec(Y,)—vec(n,)) where
vec(p,) is in control values of mean matrix or
vec(XB) . Matrix A can be defined as inverse
Cholesky root matrix of V. Unlike most of the

other control charts which are only based on
either the trace or the determinant, the MEWMC
statistic is defined such that it has the advantages
of both operators as

C, =tr(S,)—loglS,|—q., (11)
Where
S, = Avec(U,)[vec(UNH] +(1-1)S, (12)

and vec(U,) is a ngx1 random vector in the k"
profile, S;=I, and A is smoothing parameter
satisfying 0 <A <1.

A signal is given at profile k if C, is greater than

a pre-specified control limit that is set of to
achieve a desired ARL, value.

In order to monitor process stability, in case of
the fixed effects, and the covariance matrix
changes  simultaneously, = MEWMA  and
MEWMC methods can be combined with each
other. Therefore, the statistics defined in
“Equation (8)” and “Equation (11)” can be
utilized simultaneously. The 4RL, of the resulting
MEWMAC control chart can be obtained by
assigning different values to the false alarm rates
of these two control charts. In this paper, it is
assumed that each of the two charts has the same
false alarm rate.
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4. Simulation Study

In order to evaluate performance of the proposed
control charts, a multivariate multiple numerical
example utilized by Eyvazian et. al. [3] is
considered here where the within correlation
structure among observations is added to the
example. The resulted model contains the random
effects as follows.

V=3R2X X702y +6, N =2 X+ X +2h, +2hy+5 - (13)

A sample of four observations for y, and y, are
generated using the pairs of (2,1), (4,2), (6,3) and
(8,2) as values for independent variables (x,,x,).
Moreover, it is assumed Z is contained within

21

X with columns Z = . It is also assumed

82

0,601 - 01 O
vec(b) ~ N,,, (0, wit =

(b) ~ N,,,(0,¢®1,) 0 01
and vector (&,&,) has bivariate normal
distribution with mean zero and covariance

2
! pO,0,

2

matrix X, =(
po,0, O,

J where o,=0,=1.
To evaluate the effect of different correlation
values on response variables, two p values 0.1
and 0.9 are taken into account for weak and
strong correlation, respectively. Also an AR(1)
structure is deployed to regard correlation among

observations in each profile. To investigate the
autocorrelation effects on our simulation, two
different values for the autocorrelation coefficient
¢, is regarded, ¢, =0.1 for weak and ¢, =0.9 for
strong correlations, respectively.

The value of smoothing constant in MEWMA
chart, namely A is set to 0.2. In this paper, all
control chart schemes are designed to have an in-
control ARL of approximately 200 and each ARL
value is estimated using 50,000 replications. The
upper control limits (UCL) of MEWMA,
MEWMC are 17.5 and 9.28, respectively. In
addition, ARL, for both MEWMA and MEWMC
in MEWMAC control chart, is set to 400 in order
to assure an overall in-control ARL of 200.
Error! Reference source not found. reports the
simulated out-of-control ARL values when g,
shifts to g, + Ao, for different between-responses
and within-profile correlations. This table reveals
that under constant correlation coefficient
between responses, all control charts have a
better performance under the conditions where
the autocorrelation is strong compared to the case
when autocorrelation is weak. In addition, when
both correlations are weak, the MEWMA
performs better than MEWMC when A1<1.6 ,
however for strong correlation levels (
©=0.9, p=0.9) the results are different. In this
condition, the MEWMC is superior to the
MEWMA for A>0.6. Moreover, the combined
method is faster than the other two methods in
medium to large shifts.

Tab. 1. The simulated out-of-control ARL values under the shifts from g, to g, + 4,0,

Control parameters A

Chart value 02 04 06 08 1 12 14 16 18 2
MEWMA b0 153.0 874 466 267 169 118 87 68 55 46
MEWMC 1937 1719 1322 817 424 194 91 44 24 16
MEWMA =01 1717 1094 588 317 182 110 66 40 25 17
MEWMA =09 939 30.1 132 76 51 37 29 24 20 17
MEWMC 1760 928 257 59 20 1.1 10 1.0 1.0 1.0
MEWMA =01 1166 365 130 51 20 12 10 1.0 10 1.0
MEWMA o=01 149.6 838 445 251 159 110 82 64 52 43
MEWMC 197.6 1729 1287 755 379 165 73 37 21 14
MEWMA 0 =09 1704 1046 555 296 169 99 59 35 22 15
MEWMA =09 723 201 89 53 36 27 21 18 15 13
MEWMC 161.9 552 93 2.1 1.1 10 1.0 10 10 10
MEWMA =09 161.9 552 93 2.1 1.1 10 1.0 10 10 10
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(a)
—8— MEWMA (9=0.1, p=0.1) == MEWMA (¢=0.9, p=0.1)
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Fig. 1. ARL comparison for different correlation values of (a) MEWMA (b) MEWMC (c)
MEWMAC charts under shifts in intercept
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Figure 1 summarizes the comparison outcomes
between out-of-control ARL values of charts
under different correlation levels when intercept
shifts.

Table 2 denotes the simulated out of control ARL
values for the shifts in the slope of the first
profile in o, units. In all conditions, the

MEWMA performs better than MEWMC for
small shifts. Moreover, the control charts have a
better performance for the slope shifts than the
intercept. For the sake of argument, we avoid
inserting the remaining figures corresponding to
Tables 2-6. However, they are available upon
request.

Tab. 2. The simulated out-of-control ARL values under the shifts from 3, to 3, + 4o,

Control  parameter 4
Chart s value 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
MEWMA p=0.1 4264 1122 593 408 315 262 225 205 193 1.80
MEWMC 1185 11.65 172 101 100 100 1.00 1.00 1.00 1.00
MEWMA ¢=01 32.02 6.89 152 1.01 1.00 1.00 1.00 1.00 1.00 1.00
MEWMA £ =09 40.55 10.87 582 399 3.09 256 221 202 190 1.77
MEWMC 116.5 11.5 1.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0
MEWMA p=01 3207 6.79 146 1.01 1.00 1.00 1.00 1.00 1.00 1.00
MEWMA p=0.1 38.81 1043 573 392 3.04 252 219 201 19 1.73
MEWMC 1123 10.8 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0
MEWMA =09 31.19 6.10 145 1.00 1.00 1.00 1.00 1.00 1.00 1.00
MEWMA £ =009 38.56 10.60 5.60 3.88 3.01 249 218 2.00 189 1.72
MEWMC 112.2  10.1 1.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0
MEWMA =09 2997 587 145 100 100 100 100 1.00 1.00 1.00

Tab. 3. The simulated out-of-control ARL values under the shifts from o, to yo,

Control  paramete 4
Chart rs value 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
MEWMA . 82 395 215 131 &8 63 48 38 32 27
MEWMC 316 46 16 11 10 1.0 10 10 10 10
MEWMA %" 389 58 18 11 10 10 10 10 10 10
MEWMA o, 669 236 110 62 40 30 24 20 17 L6
MEWMC 81 12 10 10 10 10 10 10 10 1.0
MEWMA  “7%" 05 13 10 10 10 10 10 10 10 1.0
MEWMA o, 969 503 286 178 122 86 65 51 42 35
MEWMC 401 63 20 12 10 10 10 10 10 10
MEWMA 7% 495 80 23 13 11 10 10 10 10 1.0
MEWMA o, 779 296 144 83 55 40 31 26 22 20
MEWMC 98 14 10 10 10 10 10 10 10 10
MEWMA  “7% 131 15 10 10 10 10 10 10 10 1.0

Table 3 shows how the ARL values change when
the standard deviation (SD) in the first profile

shifts to o, +y0, . The MEWMC indicates not

only significant changes in the ARL values but
also has an appropriate performance under SD
shifts. As the first row of each correlation set
shows, shifts in the SD can create alarms in the
MEWMA too, however the MEWMC indicates
the OOC condition significantly faster than the
MEWMA. Furthermore, all control charts
perform better under weak within-profile

autocorrelation and strong between- response
correlation.

Table 4, Table 5, and Table 6 report the shifts of
the SD in the first profile alongside the shift in
the intercept of the first profile, the slope of the
first profile, and the SD of the second profile,
respectively. It is apparent from Table 4 that both
the MEWMA and the MEWMC charts give out-
of-control signal under simultaneous shifts.
However, the MEWMC has superiority to the
MEWMA in all correlation and shift levels. In
Table 5 and Table 6, similar to the previous one,
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the MEWMC is superior to the MEWMA. In than other charts in all three tables.
addition, the MEWMAC chart performs better

Tab. 4. The simulated out-of-control ARL values under the simultaneous shifts from g, to
By + Ao, and 0,10 o, + Ao,

Control paramete A
Chart rs value 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
MEWMA p=0.1 75.77 31.65 17.08 11.34 838 6.56 530 4.56 394 348
MEWMC 30.86 424 145 1.08 1.01 100 1.00 1.00 1.00 1.00
MEWMA ¢ =01 21.85 3.79 149 1.07 100 1.00 1.00 1.00 1.00 1.00
MEWMA =09 46.34 1573 844 584 435 349 295 2.60 228 203
MEWMC 7.19 124 1.00 100 1.00 1.00 1.00 1.00 1.00 1.00
MEWMA ¢~ 01 6.80 1.21 1.00 100 1.00 1.00 1.00 1.00 1.00 1.00
MEWMA p=0.1 84.64 34.69 18.89 12.75 946 742 6.15 525 4.55 4.09
MEWMC 37.66 557 1.65 1.10 1.01 100 1.00 1.00 1.00 1.00
MEWMA ¢~ 0-9 2744 490 1.76 1.14 103 1.00 1.00 1.00 1.00 1.00
MEWMA p=0.9 43.27 1398 798 554 430 358 3.02 2.64 243 225
MEWMC 881 121 1.01 100 100 1.00 1.00 1.00 1.00 1.00
MEWMA ?~ 09 744 126 1.00 100 1.00 1.00 1.00 1.00 1.00 1.00

Tab. 5. The simulated out-of-control ARL values under the simultaneous shifts from g
to B, + Ao, and o, to o, + 40,

Control  paramete A
Chart 1s value 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

MEWMA p=0.1 3037 9.15 506 356 278 232 203 182 1.63 145
MEWMC ' 23.10 221 104 1.00 1.00 1.00 1.00 1.00 1.00 1.00

MEwWMA  #=01 1452 199 103 1.00 1.00 1.00 1.00 1.00 1.00 1.00
MEWMA =009 2755 820 459 322 250 208 1.79 159 141 1.27
MEWMC ol 7.10 1.08 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
MEWMA  ?7% 641 109 100 1.00 100 1.00 1.00 1.00 1.00 1.00
MEWMA p=0.1 30.67 9.11 502 35 278 232 205 183 1.63 145
MEWMC 09 2924 235 103 1.00 1.00 1.00 1.00 1.00 1.00 1.00
MEWMA  ?7% 1560 218 1.04 1.00 1.00 1.00 1.00 1.00 1.00 1.00
MEWMA 0.9 28.54 833 467 327 259 214 185 164 147 132
MEWMC i _ 0'9 843 1.13 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
MEWMA 777 7.03 1.14 1.00 1.00 100 1.00 1.00 1.00 1.00 1.00

Tab. 6. The simulated out-of-control ARL values under the simultaneous shifts from . to
yo, and o, t0 45,

Control ~ paramete Y
Chart rs value 1.2 1.4 1.6 1.8 2 2.2 24 2.6 2.8 3

MEWMA p=0.1 53.12 2296 1287 842 628 493 400 334 292 258
MEWMC _0.1 1247 179 106 1.00 1.00 1.00 1.00 1.00 1.00 1.00
MEWMA  ?=% 997 170 1.05 1.00 1.00 1.00 1.00 1.00 1.00 1.00
MEWMA =009 58.73 2620 1461 9.79 7.18 547 449 379 323 2286

MEWMC 15.17 19 107 1.00 1.00 1.00 1.00 1.00 1.00 1.00
MEWMA 9=01 1256 193 106 1.00 1.00 1.00 1.00 1.00 1.00 1.00
MEWMA  p=01 6542 2931 16.72 11.09 8.02 6.18 503 422 352 3.06
MEWMC =09 1575 238 1.10 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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MEWMA 14.17 228 1.12 100 1.00 1.00 1.00 1.00 1.00 1.00
MEWMA =09 68.45 3098 17.72 11.89 857 6.72 530 452 3.84 340
MEWMC 18.11 228 1.13 1.01 100 1.00 1.00 1.00 1.00 1.00
MEWMA ¢=09 1478 2.14 1.12 101 100 1.00 1.00 1.00 1.00 1.00

5. Conclusions

In this paper, we have proposed a multivariate
linear mixed model to deal with the correlation
within the multivariate multiple profiles. In order
to monitor the profiles in phase II, two
multivariate control charts have been introduced.
The first one is the MEWMA chart which has
been employed to detect the changes in the fixed
effects and the second one is the MEWMC chart
to monitor the covariance matrix. Furthermore,
for simultaneous monitoring of the fixed effects
and the covariance matrix the MEWMA along
with the MEWMC have been utilized. The
performance of the presented control charts has
been evaluated through the ARL criterion under
different correlation levels between responses
and also among observations within each profile.
The simulations revealed that both MEWMA and
MEWMC perform better under presence of
strong correlation between responses and strong
autocorrelation within profiles when shifts occur
in intercept and slope. However, when SD shifts,
they have superior performance under strong
correlation among responses and weak
autocorrelation coefficient. On the other hand,
when a shift occurs in the covariance matrix, the
MEWMC detects it faster than the MEWMA.
The main reason for development of the
combined method is to monitor the process mean
vector and covariance matrix, simultaneously.
However, diagnosis of the out-of-control
parameters requires diagnostic methods which
could be the topic of future studies.
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Zvec(ﬁ)
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