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KKEEYYWWOORRDDSS                                  ABSTRACT 
 

 

This paper studies a maintenance policy for a system composed of two 
components, which are subject to continuous deterioration and 
consequently stochastic failure. The failure of each component results 
in the failure of the system. The components are inspected periodically 
and their deterioration degrees are monitored. The components can be 
maintained using different maintenance actions (repair or replacement) 
with different costs. Using stochastic regenerative properties of the 
system, a stochastic model is developed in order to analyze the 
deterioration process and a novel approach is presented that 
simultaneously determines the time between two successive inspection 
periods and the appropriate maintenance action for each of the 
components based on the observed degrees of deterioration. This 
approach considers different criteria like reliability and long-run 
expected cost of the system. A numerical example is provided in order 
to illustrate the implementation of the proposed approach. 
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11..  IInnttrroodduuccttiioonn 

A crucial issue in systems performing under 
stressful environmental conditions is to guarantee the 
satisfactory reliability of their performance. In most of 
these systems such as power plants and offshore 
structures, equipments are subject to random 
deteriorations [1]. These deteriorations can result in 
unexpected failures and consequent disastrous effects 
on safety and the economy. It implies that effective 
maintenance policies which prevent failures and 
increase the reliability of systems are of significant 
importance [2]. Traditional maintenance actions are 
performed just based on preventive purposes regardless 
of the deterioration degrees of equipments [3]. These 
types of maintenance can reduce high deteriorations 
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and failure; however, they may lead to large system 
unavailability and unnecessary maintenance costs. In 
order to overcome this problem, condition based 
maintenance (CBM) is introduced. CBM is a dynamic 
preventive maintenance practice, in which the 
decisions of maintaining the system is made based on 
the observed condition of the system [4]. It has been 
proven that CBM is very effective in practice, since it 
can provide satisfactory levels of reliability and save 
resources by avoiding unnecessary maintenances [5]. 
As a result, numerous mathematical models have been 
developed in the area of CBM [6].  
Generally CBM models can be divided into two 
categories, models studying completely observable 
systems and models considering partially observable 
systems. In a completely observable system it is 
possible to identify the state of system entirely. There 
is a lot of research that investigates CBM models for 
completely observable systems. Grall et al. [7] focus on 
the analytical modeling of a condition based 
inspection/replacement policy for a stochastically and 
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continuously deteriorating single component system. 
They consider both the replacement threshold and the 
inspection schedule as decision variables. Their model 
minimizes the long run expected cost per component 
time by using the stationary law for the system state. 
Amari and McLaughlin [8] utilize a Markov chain to 
describe the CBM model for a deteriorating system 
subject to periodic inspection. In their study, the 
optimal inspection frequency and maintenance 
threshold are found in order to maximize the system 
availability.  
Castanier et al. [3] consider a two components system 
which can be maintained by good as new preventive or 
corrective replacements. They develop a stochastic 
model based on the semi-regenerative properties of the 
maintained system state and apply the associated cost 
model to optimize the performance of the maintenance 
model. Barata et al. [9] use Monte-Carlo simulation to 
model the continuously monitored deteriorating 
system. They assume that after each maintenance 
action a random level of improvement is made on the 
state of the system which is independent of current 
system state. Then they determine thresholds of 
maintenance to minimize the total expected cost of 
system. 
Dieulle et al. [10] study a continuously deteriorating 
system which is inspected at random times. They 
assume that deterioration follows a gamma distribution 
and the system fails if its condition lies upper than a 
pre-specified threshold. In their model two types of 
replacement can be done depending on whether the 
system is failed or the condition of the system exceeds 
a critical threshold.  
Van der Weide et al. [11] present a conceptually 
comprehensive derivation of formulas for computing 
the discounted cost associated with a maintenance 
policy combining both condition-based and age-based 
criteria for preventive maintenance. Liao et al. [12] 
consider a condition-based maintenance model for 
continuously degrading systems under continuous 
monitoring.  
After maintenance, the states of the system are 
randomly distributed with residual damage. They 
examine a realistic maintenance policy, referred to as 
condition-based availability limit policy, which 
achieves the maximum availability level of such a 
system. The optimum maintenance threshold of their 
model is determined using a search algorithm.  
There has been some research that examines CBM 
models for partially observable system in which the 
state of the system is not identified completely. 
Barbera et al. [13] propose a CBM model which 
assumes that failure rate of the system depends on the 
variables of the system state and fixed inspection 
periods. In their model the maintenance action is 
optimized so that the long term cost of maintenance 
actions and failures are minimized. Marseguerra et al. 
[2] investigate a continuously monitored multi-
component system and use a generic algorithm for 

determining the optimal degradation level beyond 
which Preventive Maintenance is to be performed. 
Kumar and Westberg [14] suggest an approach based 
on reliability where inspection periods and 
maintenance thresholds are estimated in order to 
minimize the global cost per component time. Wang 
and Christer [15] consider a stochastic dynamic system 
subject to random deterioration, with regular condition 
monitoring and preventive maintenance. They propose 
the model that determines what maintenance action to 
take based upon the condition monitoring and 
preventive maintenance information obtained to date. 
A general assumption adopted in their paper is that the 
performance of the system concerned cannot be 
described directly by the monitored information, but is 
correlated with it stochastically. 
Chen and Trivedi [16] have built the semi-Markov 
decision process for the maintenance policy 
optimization of condition based preventive 
maintenance problems and present an approach for 
joint optimization of inspection rates and maintenance 
policies.  
Jamali et al. [17] have developed a joint optimal 
periodic and conditional maintenance strategy for 
CBM problems under budgetary constraints. Wang 
[18] applies a stochastic recursive control model for 
CBM optimization based on the assumptions that the 
item monitored follows a two-period failure process 
with the first period of normal life and the second 
period of potential failure.  
In this problem a stochastic recursive filtering model is 
used to predict the residual, and then a decision model 
is considered to recommend the optimal maintenance 
actions. Also, the optimal condition monitoring 
intervals are determined by a hybrid of simulation and 
analytical analysis. Goode et al. [19] study a model that 
provides the necessary basis to optimize condition 
monitoring intervals. 
In order to formulate the CBM problems, typically two 
main types of modeling methods have been used in the 
literature. The first type formulates the problem using 
Markov decision process [2, 8, 20, 21, 22] in which the 
deteriorating process is considered as a multi state 
system. The other type of modeling applies renewal 
models to formulate the maintenance policies [3, 7, 10, 
13, 23, 24, 25, 26, 27], where the system deterioration 
is considered as continuous and stochastic [28, 29, 30]. 
Most CBM models in the literature optimize the 
maintenance policies by minimizing the long run cost 
per time component [29].  
However, in the real world there are critical systems 
such as power plants, aircrafts, submarines, military 
systems, and nuclear systems, in which failure during 
actual operation may lead to disastrous events [6]. In 
such systems, minimizing failure probability of the 
system seems more important than minimizing the long 
run cost. This implies that developing CBM models 
considering the failure probability for these systems 
deserves more attention. Also, most of the CBM 
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models are derived for single-component systems; still, 
there is more need for developing CBM models in 
respect of multi-components systems.  
In this study a novel CBM model is presented that can 
be used in many real applications such as hydraulic 
structures [31], cutting tools [32], airplane engine 
compressor blades, brake linings [33], consumption, 
corroding pipe lines [34] and power plants [7]. 
Specifically, this paper considers a CBM problem for a 
critical system composed of two components that are 
subject to gradual deterioration and consequent random 
failure.  
Failure of either or both components will result in 
failure of the system. In order to prevent failure, the 
system is inspected in periodic times and the levels of 
deterioration for components are monitored. Based on 
the deterioration levels of components, appropriate 
maintenance actions may be performed. The possible 
maintenance actions for such system are assumed to be 
preventive maintenance and preventive replacement. A 
preventive maintenance for each component is an 
imperfect (partial) repair action performed on it prior to 
a failure, while preventive replacement is a complete 
renewal of the component. In other words, preventive 
maintenance action reduces the deterioration level of 
the component without returning it to its initial state as 
well as new state, whereas preventive replacement 
renews the component to its initial condition. These 
kinds of maintenance actions are common in the 
literature and can be found in several papers such as [3, 
4, 7, 10, 13].  
The problem lies in determining maintenance policies 
that includes when components must be inspected, and 
when maintenance actions must be performed. In order 
to determine maintenance policies, a stochastic model 
based on the regenerative properties of the system is 
developed followed by a novel approach. In the 
proposed approach decision on the maintenance policy 
is made in two phases.  
The first phase obtains the policies ensuring that the 
failure probability of the system does not exceed a pre-
specified value. The second phase calculates the long-
run expected cost of the system for each of the 
obtained policies in the first phase. Then, the policy 
which leads to the minimum long-run expected cost of 
the system is selected as the desired maintenance 
policy.  
The reason for using this two phase method is that it 
considers not only long-run expected cost of the 
system, but also takes account of failure probability of 
the system. Thus, this work differs from earlier papers 
in two main directions. First, the proposed model in 
this article does not ignore the failure probability as a 
crucial criterion in critical systems. In fact, the failure 
probability of the system as well as the long-run 
expected cost of the system is considered closely in 
order to determine maintenance policies. Furthermore, 
in this study there is no restrictive assumption that the 

system is composed of only single component. The 
remainder of the paper is organized as follows. Section 
2 states the assumptions of the problem, illustrates 
maintenance strategies and formulates the model. The 
approach for determining the desired maintenance 
policy is described in section 3. Section 4 provides 
numerical example in order to illustrate the 
implementation of the proposed approach. Finally, the 
last section concludes the paper along with suggestions 
for future research.    

 
22..  MMooddeelliinngg  FFrraammeewwoorrkk  

         In this section, we provide a modeling frame 
work for a problem stated in section 1. 
 
2.1. Notation 

Following notation will be used throughout this 
paper: 
i : index of components ( 1, 2i  ); 
t : index of inspection periods ( 1,2,3,...t  ); 

i
tX : state (deterioration level) of the component i at 

the end of inspection period t ; 
i

tZ : state (deterioration level) of the component i at 

the beginning of inspection period t ; 
i

tY : deterioration level of the component i occurred in 

period t ; 

1 :preventive maintenance (repair) threshold for 

(decision variable);  

2 : preventive replacement threshold (decision 

variable); 
T :the time between two successive inspection periods 
(decision variable); 

pmC : the cost incurred by preventive maintenance 

action; 

prC : the cost incurred by preventive replacement 

action;  
( )E C


: the long-run expected cost of system; 

1 2( , )x x : stationary law of the deterioration process; 

( )i
tX : failure rate of component i ; 

( )f x : probability density function of the deterioration 

occurring during one period; 
( ) ( )Tf x : T th convolution of ( )f x ; 

p : maximum allowed failure probability determined 

by decision maker; 
( )iR t : Reliability of the component i in period t ; 

( )R t : Reliability of the system in period t ; 

 
2.2. Assumptions 

In this problem the deterioration level of each 
component is measured on a continuous scale. The 
deterioration level is strictly increasing which means 
that the components worsen with time because of 
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ageing and accumulated wear or damage. It is assumed 
that the time to failure of each component follows a 
non homogeneous exponential distribution. The failure 
rate, ( )i

tX , is considered as an increasing linear 

function of the deterioration level of the component. It 
means that the failure rate of each component is 
variable and increases with an increase in the 
deterioration level of the component. Therefore, the 
increase in deterioration levels of components raises 
the probability of failure. The reason for assuming 
proposed failure distribution is the ability of such 
distribution to properly describe a period of steady 
damage accumulation of machinery for continuous 
production or a hydraulic structure subject to erosion 
[35, 36]. This failure distribution, also, has been used 
in several published works for continuously 
deteriorating systems [3, 4, 7, 10, 35, 37]. It is assumed 
that the system is inspected at equidistant periods. At 
the end of each period a decision is taken to determine 
whether each component needs preventive 
maintenance or preventive replacement. The decision 
is made based on the states of components and the 
maintenance thresholds ( 1 and 2 ). Figure 1 

demonstrates how this decision is taken according to 
the observed states of the components. Note that 
without loose of the generality, we assume the two 
components are the same. 
 

2

1 2

1

If         Preventive replacement action is needed. 

If  Preventive maintenance action is needed. 

If         No maintenance action is needed.

i
t

i
t

i
t

X

X

X



 



 

  

 

Fig. 1.The needed maintenance actions according to 
deterioration levels of the components. 

 
It follows from figure 1 that the preventive replacement 
action is performed on each component i at the end of 
period t, if its deterioration level exceeds 
threshold 2 (when 2

i
tX  ).  

However, the preventive maintenance action is carried 
out when the deterioration level of component exceeds 
threshold 1 . Specifically, preventive maintenance 

action is carried out when 1 2
i
tX    (it is obvious 

that 2 1  ). If the deterioration level of the 

component is less than threshold 1  (when 1
i
tX  ), 

no maintenance action is performed. Within this 

structure, the thresholds 1  and 2  define the 

maintenance policy. These thresholds have to be tuned 
by the decision maker in order to optimize the 
performance of the policy [4]. It should be noted that 
the maintenance actions improve the states of 
components. In case that preventive replacement action 
is performed on a component, the component is 
replaced by the new one. As a result, the deterioration 

level of the component at the beginning of the next 
period will be zero. On the other hand, it is assumed 
that after each preventive maintenance action, the 
component state improves partially and the percent of 
improvement is a random variable. Thus, the state of 
the component at the beginning of the next period will 
be i

t tX  where [0,1)t   are independent random 

variables following a normal distribution. If denotes 
expected value of t , the expected value of the state of 

component after preventive maintenance will be i
tX . 

This demonstrates that the state of the component after 
preventive maintenance is directly proportional to its 
state before the maintenance action. This is a 
reasonable assumption, since for a large level of 
deterioration, it is expected that the state of restored 
component to be large. 
 

2.3. Semi-Regenerative Property of the System 
         As mentioned in the previous section, after 
preventive replacement action the component is as 
good as new and its deterioration level is equal to zero. 
Also, after preventive maintenance action, the state of 
the component is directly proportional to its state 
before the maintenance action. Thus, after maintenance 
actions the component evolution depends only on the 
deterioration level before the maintenance action. In 
other words, conditional to the state of the component 
before maintenance action, the component state until 
the next maintenance action can be completely 
characterized independent of the past events. 
Therefore, the stochastic process created by the 
deterioration levels of the components, iX , is a semi-

regenerative process in which the semi-regeneration (or 
Markov renewal) points are the starting times of every 
maintenance action [4]. Ross [38] shows that as time 
increases a semi-regenerative process converges to a 
steady state distribution. So, we can infer that i

tX  

converges to steady state distribution.  
 

2.4. Maintenance Scenarios on a Markov Renewal 
Cycle and Stationary Probability  

The construction of the stationary probability 
density of the system state at the beginning of 
maintenance actions, relies on an enumeration and 
description of its different possible behaviors from the 
beginning to the end of a Markov renewal cycle [4]. 
Let 1x and 2x respectively denotes the observed states 

of components 1 and 2 at the end of a period (before 
performing any maintenance actions). Also, 
let 1y and 2y denotes the states of the components 1 and 

2 at the end of the next period (before performing any 
maintenance actions). Then, if no failure occurs until 
the next period, possible scenarios on a Markov 
renewal cycle are as follows:   

 

Scenario 1: 1 1 2 1,x x   . The two components are 

left as they are and no maintenance action is performed 
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on them. The transition probability density function 
from ix to iy  for each component can be gained by 

( ) ( )T
i if y x . 

 
Scenario 2: 1 1 1 2 2,x x      or 2 1 1 1 2,x x     . 

The component for which 1 2ix    is preventively 

maintained and its transition probability density 
function from ix to iy  can be obtained by 

( ) ( )T
i if y x . The other one is not maintained and its 

transition probability density function from ix to iy can 

be gained by ( ) ( )T
i if y x . 

 

Scenario 3: 1 1 2 2,x x    or 2 1 2 1,x x     . 

The component for which 2 ix    is replaced and 

its transition probability density function from ix to iy  

can be obtained by ( ) ( )T
if y . The other one is not 

maintained and its transition probability density 
function from ix to iy can be gained by ( ) ( )T

i if y x . 
 

Scenario 4: 1 1 2 2 2,x x      or 1 2 2,x    

2 1x   . The component for which 1 2ix    is 

preventively maintained and its transition probability 
density function from ix to iy  is gained by 

( )( )T
i if y x . The other component is replaced and its 

transition probability density function from ix to iy  is 

obtained by ( ) ( )T
if y . 

 

Scenario 5: 1 1 2 1 2 2,x x       . The two 

components are preventively maintained and the 
transition probability density functions from ix  to 

iy for each component is calculated by 
( ) ( )T

i if y x . 
 

Scenario 6: 2 1 2 2,x x   . The two components are 

replaced and the transition probability density 
functions from ix to iy for each component is obtained 

by ( ) ( )T
if y . 

Let 1 2( , )y y denotes the stationary probability density 

for the deterioration process at inspection times. 
Furthermore, 1 2 1 2( , , )F y y x x denotes the transition 

probability density functions from 1 2( , )x x to 1 2( , )y y . 

Using conditional probability theory [38], we will 
have: 
 

1 2 1 2 1 2 1 2( , ) ( , ) ( , , )y y x x F y y x x                        (1) 

 
Considering (1), the scenarios and their transition 
probability density functions listed above, the 
stationary probability density of the system state can be 
written as follows: 

1 1

1 2
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2
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1 2 1 2 1 2 1 1 2 2 1 2
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 

 

 

 

  





  
    
  
  


  
   
  
  

  

 

 

 





2 2

1 1

2 1 2

Scenario 5

( ) ( )
1 2 1 2 1 2 1 2

Scenario 6

)

( , ) ( ) ( )                         (2) T T

dx dx

x x dx dx f y f y dx dx
 

 



 
 
 
 

 
 
 
 
 





 
Analyzing the probability density function 1 2( , )y y is 

difficult and requires solving a bi-dimensional one 
sided integral equation. This kind of equation can be 
solved numerically, for which Monte-Carlo simulation 
techniques are the only solution [4, 9, 39]. 
Using 1 2( , )y y , the expected failure probability and 

long run cost of the system are obtained in the 
following section. 

 
3. Finding the Desired Maintenance Policy 

       In this section an efficient approach is presented to 
find the desired maintenance thresholds 1 , 2 and the 

length of inspection periods T. This approach consists 
of two phases: The first phase finds different 1 , 2 and 

T which cause the probability of system failure not to 
exceed the maximum allowed probability p . In the 

second phase, the long-run cost of system is calculated 
for all the policies provided by the first phase. The 
policy which results in the lowest cost is selected as the 
desired policy. 
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3.1. The First Phase  
        In order to determine 1 , 2 andT , the reliability 

of the components are used in the first phase. The 
reliability of a component in the period t is the 
probability that the component will not fail by the end 
of period t [38]. Thus, the reliability of 
component i can be obtained by: 
 

1( )( )
i i
t tX Y T

iR t e   
                                                 (3) 

  
Formula (3) calculates the probability that the time 
between failures is greater thanT considering the fact 
that the time to failure of the component follows a non 
homogeneous exponential distribution. Since failures 
of either or both of the components will result in the 
failure of the system, the reliability of the system in the 
period t is the probability that both components will 
not fail by the end of the period t . Therefore, the 
reliability of system can be gained by: 
 

2

1
1

( )

( )
i i
t t

i

X Y T

R t e
 



 
                                                   (4) 

 
The failure probability of the system in period t can be 
calculated based on the reliability of the system as 
follows: 
 

2

1
1

( )

1 ( ) 1
i i
t t

i

X Y T

fP R t e
 



 
                                    (5) 

  
It is assumed that preventing failure of this critical 
system is of great importance. As a result, the failure 
probability of the system at the steady state must be 
equal or less than maximum allowed probability p . In 

the first phase we obtain different thresholds 1 , 2 and 

length of inspection periods T which cause that the 
failure probability of the system at the steady state not 
to exceed p .  

Let triples 1 2( , , )T   denote a combination of 

thresholds and inspection periods for the critical 
deteriorating system. First, different thresholds and 
inspection periods 1 2( , , )T   are selected for 

simulation. Then, the failure probability of the 
simulated system at a steady state is calculated for all 
of these policies. Considering (5), the failure 
probability of the simulated system at steady state can 
be obtained as: 
 

2

2 1
1

2 1

( )

1 2 1 20 0
(1 ) ( , )

i i
t t

i

X Y Tx x

f x x
P e x x dx dx





  

 


       (6) 

 
The maintenance thresholds and inspection periods for 
which the failure probability is less than or equal to 
p are selected for the next phase of the solution 

approach. In the second phase, the desired value 

for 1 , 2 andT are obtained by minimizing long run 

expected maintenance costs. 

 
3.2. The Second Phase  
       In this phase, the long-run expected costs of the 
system are computed for all of the maintenance 
policies provided by the first phase. Among these 
maintenance policies, 1 2( , , )T  having the minimum 

expected cost is chosen as a desired maintenance 
policy.  
In order to calculate expected costs of the system for 
each policy, the scenarios defined in subsection 2.4 are 
considered. Table 1 demonstrates the probability of 
occurrence and cost of the system for each of the 
scenarios.  
 
Tab. 1. Probability of occurrence and total cost for 

each scenario defined in section 2. 

Scenario Probability of Occurrence 
Cost of 
System 

Scenario 1 
1 1 2 1

1 2

1 2 1 2

0 0

( , )
x x

x x

x x dx dx
 



 

 

   0 

Scenario 2 

1 1 2 2

1 2 1

1 2 2 1

1 1 2

1 2 1 2

0

1 2 1 2

0

( , )

( , )

x x

x x

x x

x x

x x dx dx

x x dx dx

 



 







 

 

 

 



 

 

 pmC  

Scenario 3 

1 1 2

1 2 2

1 2 1

1 2 2

1 2 1 2

0

1 2 1 2

0

( , )

( , )

x x

x x

x x

x x

x x dx dx

x x dx dx













 

 

 

 



 

 

 prC  

Scenario 4 

1 2 2

1 1 2 2

1 2 2

1 2 2 1

1 2 1 2

1 2 1 2

( , )

( , )

x x

x x

x x

x x

x x dx dx

x x dx dx



 



 





 

 

 

 



 

 

 pm prC C  

Scenario 5 
1 2 2 2

1 1 2 1

1 2 1 2( , )
x x

x x

x x dx dx
 

 



 

 

   2 pmC  

Scenario 6 
1 2

1 2 2 2

1 2 1 2( , )
x x

x x

x x dx dx
 



 

 

   2 prC  

 
Considering Table 1, the expected cost of the system at 
a steady state can be obtained as follows:  
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1 2 2 1

1 1 2
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1 2 1 2
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( , )
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




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 

 





 

 

  

 

 
   

  

 

 

 
 

Where kC and kP denotes the probability of occurrence 

and cost of system for the scenario k (k=1,�, 6).  
  

44..  NNuummeerriiccaall  EExxaammppllee  
       In this section a numerical example is presented in 
order to demonstrate the implementation of the 
proposed approach. Recall that this problem could only 
be studied through Monte-Carlo simulations due to the 
complexity of computation [4, 9, 39]. The deterioration 
process is simulated for 10000000 periods using C++ 
program for following data: 
 

1 2
0 01, 0.3, 0.2, 0.1, 0, 0p X X       . 

 

In order to simulate a continuous deterioration process, 
the states of the components are considered discrete. In 
other words, it is assumed that for each t we have 

i i
t tX Z N    where   denotes a small level of 

deterioration and N follows a Poisson distribution. The 
deterioration process is simulated for 10,000,000 
periods. In the beginning of each period, if the 
component state appears to be n , then, 1 is added to 
the frequency of state variable in n . The frequency 
of each state is divided by 10,000,000 to obtain a 
probability distribution.  

 
4.1 Implementing the First Phase  
       In the first phase, the failure probability of the 
system at the steady state is calculated for different 
values of 1 , 2 and T using (6). Figure 2-4 respectively 

illustrate the results for T = 2, T = 4 and T = 8. In each 
of these figures different values of 2 are represented 

using different curves. Similarly, different values of 1  

are indicated by a horizontal axis. A vertical axis, also, 
represents the failure probability at the steady state 
corresponding with different pairs of 1 and 2 .For 

instance, the failure probability of the system at a 
steady state of 1 = 3, 1 = 8 and T = 8 is equal to 0.25. 

It follows from figures 2 to 4 that the policies which 
result in the failure probability less than 0.2p   are as 

follows: 
 
(1, 2, 2), (2, 2, 2), (1, 4, 2), (2, 4, 2), (3, 4, 2), (4, 4, 2),

(1, 6, 2), (2, 6, 2), (3, 6, 2), (1, 8, 2), (2, 8, 2), (3, 8, 2),

(1, 2, 4), (2, 2, 4), (1, 4, 4), (2, 4, 4), (3, 4, 4), (4, 4, 4),

(1, 6, 4), (2, 6, 4), (1, 8, 4), (1, 2, 8), (2, 2, 8), (1, 4, 8),

(2, 4, 8), (1, 6, 8)
 

where each of triples corresponds to 1 2( , , )T  . As a 

result, these policies are selected for the next step. 

��
Fig. 2. Expected failure probability of the system at the steady state of T = 2. 
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��
Fig. 3. Expected failure probability of the system at the steady state of T = 4. 

 

��
Fig. 4. Expected failure probability of the system at the steady state of T = 8. 

 
4.2. Implementing the Second Phase  
      In this phase, the long-run expected cost of the 
system is calculated for all of the maintenance policies 
selected by the first phase. Recall that long-run 
expected costs are obtained by (7). Table 2 
demonstrates the long-run expected cost for the chosen 
policies in the first phase of the optimization 
procedure. Recall that each policy has the failure 
probability less than 0.2p  . Table 2 reveals that the 

policy (2, 4, 2) leads to the less long-run expected cost; 

consequently, it is selected as the optimum policy. 

 
Tab.2. Expected long-run cost for the policies 

selected in the first phase. 

Policies selected in 
the first phase 

Expected long-run cost 

(1, 2, 2) 33 
(2, 2, 2) 35 
(1, 4, 2) 32.5 
(2, 4, 2) 31 

(3, 4, 2) 34.5 
(4, 4, 2) 38 
(1, 6, 2) 32 
(2, 6, 2) 32 
(3, 6, 2) 34 
(1, 8, 2) 34 
(2, 8, 2) 35 
(3, 8, 2) 36 
(1, 2, 4) 37 
(2, 2, 4) 39.5 
(1, 4, 4) 38.5 
(2, 4, 4) 36.5 
(3, 4, 4) 39.5 
(4, 4, 4) 42.5 
(1, 6, 4) 37 
(2, 6, 4) 37 
(1, 8, 4) 39 
(1, 2, 8) 41.5 
(2, 2, 8) 45 
(1, 4, 8) 41 
(2, 4, 8) 42.5 
(1, 6, 8) 43.5 
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55..  CCoonncclluussiioonnss  
In this paper, we have studied condition based 

maintenance (CBM) for a critical system composing of 
two components. The components deteriorate 
continuously over the time; as a result, the system is 
vulnerable to random failures. In order to overcome 
random failures, the system is inspected at equidistant 
periods and the deterioration levels (state) of the two 
components are monitored. Based on the observed state 
of the components, the preventive maintenance or 
replacement actions may be performed on them. In this 
paper a novel approach has been proposed that 
determines maintenance policies using regenerative 
property of the system. In fact, through two phases this 
approach determines when the components must be 
inspected and when they must be replaced or 
maintained preventively. The first phase of the 
approach finds the different maintenance policies for 
which failure probability of the system does not exceed 
maximum allowed probability. Then, among found 
policies in the first phase, the second phase selects a 
desired maintenance policy which results in minimum 
long-run expected cost of the system. The proposed 
model can be used in many real applications such as 
hydraulic structures, cutting tools, airplane engine 
compressor blades and power plants. 
This research can be extended in some directions. For 
instance, it would be possible to extend CBM models 
for n component systems. In order to formulate the 
problem for these systems, the number of parameters 
and scenarios defined for the Markov renewal model 
must be increased; as a result, models will be more 
complex. Similarly, studying multi-components system 
where components are different would be useful. In 
this condition, hidden Markov renewal cycle [40] can 
be applied to model the more complicated conditions. 
Also, developing the proposed model in the uncertain 
environment, where parameters can be fuzzy or 
stochastic, makes it more helpful in the practice. 
Finally, this research can be extended by coordinating 
production and maintenance decisions. As a case in 
point, in a flow shop and job shop scheduling problem 
typically it is assumed that machines are always 
available during the planning time horizon. However, 
this assumption does not hold for many real-world 
applications in which machines may be unavailable 
due to maintenance, breakdown, and repair. In these 
cases, it would be useful to optimize production 
decisions with regard to CBM effects on the production 
lines.     

 
References 

[1] Valdez-Flores, C., Feldman, R.M., "A Survey of 
Preventive Maintenance Models for Stochastically 
Deteriorating Single-Unit Systems", Naval Res 
Logistics, Vol. 36, 1989, pp. 419-46. 

 
[2] Marseguerra, M., Zio, E., Podofillini, L., "Condition 

Based Maintenance Optimization by Means of Genetic 

Algorithms and Monte Carlo Simulation", Reliability 
Engineering and System Safety, Vol. 77, 2002, pp. 151-
65. 

 
[3] Castanier, B., Grall, A., Berenguer, C., "A Condition 

Based Maintenance Policy with Non-Periodic 
Inspections for a Two Component Series System", 
Reliability Engineering and System Safety, Vol. 87, 
2005, pp. 109-120. 

 
[4] Castanier, B., Grall, A., Berenguer, C., "A Sequential 

Condition-Based Repair/Replacement Policy with Non-
Periodic Inspections for a System Subject to Continuous 
Wear", Applied stochastic models in business and 
industry, Vol.19, 2003, pp. 327-347. 

 
[5] Gertsbakh, I., "Reliability Theory with Applications to 

Preventive Maintenance", Berlin, Springer, 2000. 
 
[6] Wang, H., "A Survey of Maintenance Policies of 

Deteriorating Systems", European Journal of 
Operational Research, Vol.139, 2002, pp. 469-489. 

 
[7] Grall, A., Berenguer, C., Dieulle, L., "A Condition Based 

Maintenance Policy for Stochastically Deteriorating 
Systems", Reliability Engineering and System Safety, 
Vol. 76, 2002, pp. 167-180. 

 
[8] Amari, S.V., McLaughlin, L., "Optimal Design of a 

Condition-Based Maintenance Model", Proceedings of 
the Annual Reliability and Maintainability Symposium, 
Los Angeles, CA, USA, 2004, pp. 528-533. 

 
[9] Barata, J., Soares, C.G., Marseguerra, M., Zio, E., 

"Simulation Modelling of Repairable Multi-Component 
Deteriorating Systems for �on Condition� Maintenance 
Optimization", Reliability Engineering and System 
Safety, Vol.76, 2002, pp. 255-264. 

 
[10] Dieulle, L., Berenguer, C., Grall, A., Roussignol, M., 

"Sequential Condition-Based Maintenance Scheduling 
for a Deteriorating System", European Journal of 
Operational Research, Vol. 150, 2003, pp. 451-461. 

 
[11] Vander Weide, J.A.M., Pandey, M.D., Noortwijk, 

J.M.V., "Discounted Cost Model for Condition-Based 
Maintenance Optimization", Reliability Engineering and 
System Safety, In press, 2008. 

 
[12] Liao, H.T., Elsayed, E.A., Chan, L.Y., "Maintenance of 

Continuously Monitored Degrading Systems", European 
Journal of Operational Research, Vol. 175, 2006, 
pp.821�835. 

 

[13] Barbera, F., Schneider, H., Kelle, P., "A Condition 
Based Maintenance Model with Exponential Failures 
and Fixed Inspection Intervals", Journal of the 
Operational Research Society, Vol. 47, 1996, pp. 1037-
1045. 

 
[14] Kumar, D., Westberg, U., "Maintenance Scheduling 

Under Age Replacement Policy Using Proportional 
Hazards Model and TTT Plotting", European Journal of 
Operational Research, Vol. 99, 1997, pp. 507-515. 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ie
pr

.iu
st

.a
c.

ir
 o

n 
20

25
-0

7-
19

 ]
 

                             9 / 10

https://ijiepr.iust.ac.ir/article-1-72-en.html


116                                S.G. Jalali Naini, M.B. Aryanezhad, A. Jabbarzadeh & H. Babaei             CCoonnddiittiioonn  BBaasseedd  MMaaiinntteennaannccee  ffoorr  TTwwoo  ��  

 
[15] Wang, W., Christer, A.H., "Towards a General 

Condition Based Maintenance Model for a Stochastic 
Dynamic System", Journal of the Operational Research 
Society", Vol. 51, 2000, pp. 145-155.   

 
[16] Chen, D., Trivedi, K.S., "Optimization for Condition 

Based Maintenance with Semi-Markov Decision 
Process", Reliability Engineering and System Safety, 
Vol. 90, 2005, pp. 25-29. 

 
[17] Jamali, M.A., Ait-Kadi, D., Cle´roux, R., Artiba, A., 

"Joint Optimal Periodic and Conditional Maintenance 
Strategy", Journal of Quality in Maintenance 
Engineering, Vol. 11, 2005, pp. 107-114. 

 
[18] Wang, W.B., "A Stochastic Control Model for on Line 

Condition Based Maintenance Decision Support", Sixth 
World Multiconference on Systematics, Cybernetics and 
Informatics, Vol. VI, Proceedings of Industrial Systems 
and Engineering I, Orlando, 2002, pp. 370-374. 

 
[19] Goode, K.B., Roylance, B.J., Moore, J., "Development 

of Model to Predict Condition Monitoring Interval 
Times", Iron making and Steel making, Vol. 27, 2000, 
pp. 63-68. 

 
[20] Chen, C.T., Chen, Y.M., Yuan, J., "On a Dynamic 

Preventive Maintenance Policy for a System Under 
Inspection", Reliability Engineering and System Safety, 
Vol. 80, 2003, pp. 41�47. 

 
[21] Coolen, F.P.A., Dekker, R., "Analysis of a 2-Phase 

Model for Optimization of Condition - Monitoring 
Intervals", IEEE Transaction on Reliability, Vol. 44, 
1995, pp. 505�511. 

 
[22] Moustafa, M.S., Maksoud, E.Y.A., Sadek, S., "Optimal 

Major and Minimal Maintenance Policies for 
Deteriorating Systems", Reliability Engineering and 
System Safety, Vol. 83, 2004, pp. 363�368. 

 
[23] Barbera, F., Schneider, H., Watson, E., "A Condition 

Based Maintenance Model for a Two-Unit Series 
System", European Journal of Operational Research, 
Vol. 116, 1999, pp. 281�290. 

 

[24] Berenguer, C., Grall, A., Castanier, B., "Simulation and 
Evaluation of Condition-Based Maintenance Policies for 
Multi - Component Continuous - State Deteriorating 
Systems", 2000, Proceedings of the Foresight and 
Precaution Conference. 

 
[25] Chu, C., Proth, J.M., Wolff, P., "Predictive 

Maintenance: The One-Unit Replacement Model", 
International Journal of Production Economics, Vol.  54, 
1998, pp. 285�295. 

 
[26] Park, K.S., "Optimal Continuous-Wear Limit 

Replacement Under Periodic Inspections", IEEE 
Transaction on Reliability, Vol.  37, 1998, pp. 97�102. 

 
[27] Wang, W., "Modelling Condition Monitoring Intervals: 

A hybrid of Simulation and Analytical Approaches", 
Journal of the Operational Research Society, Vol. 54, 
2003, pp. 273�282. 

[28] Wang, L., Chu, J., Mao, W., "A Condition-Based 
Replacement and Spare Provisioning Policy for 
Deteriorating Systems with Uncertain Deterioration to 
Failure", European Journal of Operational Research, 
Vol. 194, 2009, pp. 184-205. 

 
[29] Jardine, A.K.S., Lin Daming, Dragan, B, "A Review on 

Machinery Diagnostics and Prognostics Implementing 
Condition Based Maintenance", Mechanical Systems 
and Signal, Vol. 20, 2006 pp. 1483-1510. 

 
[30] Tan, C.M., Raghavan, N, "A Framework to Practical 

Predictive Maintenance Modeling for Multi-State 
Systems", Reliability Engineering and System Safety, 
Vol.93, 2008, pp. 1138-1150. 

 
[31] Vander Weide, J.A.M., "A Survey of the Application of 

Gamma Processes in Maintenance, Reliability 
Engineering and System Safety, Vol. 94, 2007, pp. 2-21. 

 
[32] Jeang, A., "Tool Replacement Policy for Probabilistic 

Tool Life and Random Wear Process", Quality 
Reliability Engineering International, Vol. 15, 1999, 
pp.205�12. 

 
[33] Hopp, W., Kuo, Y., "An Optimal Structured Policy for 

Maintenance of Partially Observable Aircraft Engine 
Components", Naval Research Logistics, Vol. 45, 1998, 
pp. 335-352. 

 
[34] Hong, H., "Inspection and Maintenance Planning of 

Pipeline Under External Corrosion Considering 
generation of New Defects", Structure Safety, Vol. 21, 
1999, pp. 203�212. 

 
[35] Singpurwala, N., Wilson, S., "Failure Models Indexed 

by Two Scales. Advances in Applied Probability", Vol. 
30, 1998, pp.1058�1072. 

 
[36] Bogdanoff, J., Kozin, F., "Probabilistic Models of 

Cumulative Damage" Wiley, New York, 1985. 
 
[37] Speijker, L, van Noortwijk, J., Kok. M., Cooke, R., 

"Optimal Maintenance Decisions for Dikes", Probability 
in the Engineering and Informational Science, Vol. 14, 
2000, pp.101�121. 

 
[38] Ross, S.M., "Stochastic Processes" Wiley, New York, 

1983. 
 
[39] Barata, J., Soares, C.G., Marseguerra, M., Zio, E., 

"Modelling Components Degradation Processes by 
Monte-Carlo Simulation", Proceedings of the European 
Conference on Safety and Reliability, Italy, 2001, pp. 
879-886. 

 
[40] Rabiner, L.A., "A tutorial on Hidden Markov Models 

and Selected Applications in Speech Recognition", 
Proceedings of the IEEE, Vol. 77, 1989. 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ie
pr

.iu
st

.a
c.

ir
 o

n 
20

25
-0

7-
19

 ]
 

Powered by TCPDF (www.tcpdf.org)

                            10 / 10

https://ijiepr.iust.ac.ir/article-1-72-en.html
http://www.tcpdf.org

