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The eternal need for humans' blood as a crucial commodity is the 
main stimulus for the healthcare systems to provide efficient blood 
supply chains (BSCs) by which the requirements are satisfied at the 
maximum level. To have an efficient supply of blood, an appropriate 
planning for blood supply chain is of a challenge which requires 
more attention. In this paper, we address a mixed integer linear 
programming model for blood supply chain network design 
(BSCND) with the need for making both strategic and tactical 
decisions throughout a multiple planning period. A robust 
programming approach is devised to deal with inherent randomness 
in parameters of the model. To illustrate the usefulness of the model 
as well as its solution approach, it is tested into a set of numerical 
examples, and the sensitivity analysis is conducted. Finally, two 
performance criteria, i.e., the mean and standard deviation of 
constraint violations, under a number of random realizations are 
employed to evaluate the performance of both of the proposed 
robust and deterministic models. For all test problems, the results 
imply the domination of robust approach over the deterministic one. 

  © 2016 IUST Publication, IJIEPR. Vol. 27, No. 4, All Rights Reserved 
 

1. Introduction1 
In spite of technological developments in 
medicine industries to find a substitution for 
blood, it is a life-saving commodity for which 
there is almost an everlasting need. Blood is 
donated fairly irregularly and demand for blood 
is as stochastic. Thus, an efficient conformity of 
blood supply and demand is not straightforward. 
Furthermore, any shortages and interruptions in 
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blood supply lead to humans' death [1]. With 
respect to these difficulties, blood supply chain 
management is of a challenge for governments' 
healthcare systems. Moreover, it will be more 
complicated considering the perishability of 
blood products, besides the fact that blood 
outdates impose high wastage cost since blood 
donors are scarce precious resources. 
In general, supply chain management (SCM) 
deals with planning, managing and controlling 
the operations of a supply chain [2]. The 
performance of a supply chain highly depends on 
supply chain network design (SCND), which 
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totally corresponds to determining the optimal 
number, location, and capacity of facilities [3]. 
Healthcare systems are vast and complicated 
whose planning and designing are not 
straightforward [4]. Generally, a blood supply 
chain as a substantial segment of any healthcare 
systems is comprised of four stages (echelons) 
which are blood collection and production along 
with inventory control and distribution processes. 
The process of procurement of blood and blood 
products is handled in the collection stage which 
aims to support the quantity of blood and its 
products required to satisfy demands. The main 
sorts of decisions in blood collection 
management are the ones related to locating a 
facility and determining its capacity, collection 
methods, and donor management. Blood units 
received by blood centers are supposed to be 
tested and fractionated (broken down into 
components) in production echelon. Blood 
products are then stored at the blood centers 
banks considering their perishable nature, and 
finally, distribution will take place from one 
blood center to another, provided that there is a 
shortage in one location and an over-supply in 
another, and also from a blood center to hospitals 
when a demand is realized. [5] 
The efficiency and effectiveness of blood supply 
chains can be remarkably improved through 
mathematical programming such as operational 
research methods. It is worth mentioning that to 
design an efficient blood supply chain network, 
having an optimal network of blood collection 
and distribution is of great significance [3]. 
Since blood demand as a critical parameter of 
blood supply chains is tainted with uncertainty, it 
is of great significance to take this specific issue 
into account while planning a blood supply chain 
by optimization models [6]. The uncertainty 
environment is divided into three main parts: 
fuzzy, stochastic, and robust environments [7]. 
To cope with data randomness, either stochastic 
or robust programming approaches can be 
applied. Notably, the stochastic programming 
approach is applicable, in case sufficient 
information about distribution functions of 
random data is accessible, or we face a repetitive 
action during the planning horizon. The robust 
programming approach is employed whenever 
we cannot get enough information about 
distribution functions of random variables [8, 9]. 
However, in some cases, we have to deal with 
epistemic uncertainty (an inherent impreciseness) 
when enough historical data are not available, or 
no repetition of a specific action is realized [10]. 
In these situations, the epistemic parameters will 

be estimated with respect to the field experts' 
subjective knowledge/professional opinions. In 
this paper, we devise a robust programming 
approach to deal with inherent randomness in the 
amount of blood demand.  
The reminder of the paper is organized as 
follows: a review of the relevant literature is 
presented in Section 2. Section 3 is dedicated to 
define the problem and mathematical formulation 
of the model, and the solution technique is 
applied in Section 4. In Section 5, we examine 
the proposed model and its solution approach 
through several numerical experiments, and a 
number of sensitivity analyses are also carried 
out. At last, concluding remarks and future 
research trends comprise Section 6. 
 
2. A review of the Relevant Literature 
The importance of blood supply chain 
management has attracted researchers in recent 
years. In this section, we have a review of the 
existing literature of planning for blood supply 
chains. In line with the structured review 
provided by Osorio et al. [11], the quantitative 
models in blood supply chains can be categorized 
based on different attitudes. For instance, 
Prediction and classification of donor arrivals, 
planning for disasters and emergencies, donor 
motivation and behavior, different collection 
policies and capacity planning comprise the main 
body of problems studied.  
One of the earliest studies in blood collection 
stage was addressed by Cumming et al. [12]. 
They developed a planning model to alleviate 
imbalances between blood supply and demand. 
Their model consists of transfusion and issuing 
sub-models, considering preferences as well as 
differences in the use of blood over a seven-day 
time period. In another work, Sahin et al. [13] 
conducted a bi-objective integer mathematical 
model for the Turkish Red Crescent Society 
blood bank location-allocation problem. In their 
developed model, the weighted traveled distance 
as well as the number of blood terminals were to 
be minimized while maximizing the covered 
population was the aim of the second objective 
function. Jacobs et al. [14] outlined the integer 
programming models to investigate a facility 
relocation problem for the American Red Cross 
in Norfolk, Virginia by which they provided 
insights into the current scheduling activities of 
blood collection and distribution along with 
handling the decisions such as donors' allocation 
to collection points, and so collection points to 
blood centers and quantities of blood to be 
collected. The main objective of their model was 
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to minimize distance while satisfying capacity 
and demand constraints. 
In other efforts, logistics regression and log-
linear models along with chi-square tests (i.e., 
tests that measure how well a set of observed 
counts fits a matching set of expected counts) 
were devised by Glynn et al. [15] and 
Sonmezoglu et al. [16] to evaluate indicators, 
such as reaction rates and blood collection 
volume, over both normal and disaster periods. 
Their studies represent that higher adverse 
reaction rates for the first-time donors in 
comparison with those for regular donors lead to 
the risk increase. Furthermore, in their model, the 
volume of collections is remarkably increased as 
disasters have considerable impact on the donors' 
motivation for blood donation. Notably, it may 
not be always possible to collect a huge amount 
of blood in a very short-time period. 
The configuration of collection points for 
different donor arrival rates was investigated by 
Brennan et al. [17] accounting for the allocation 
of staff and work rules. They applied a simulation 
approach and indicators such as the time taken in 
different stages in the collection process to 
measure the impact of changes. Custer et al. [18] 
employed Monte Carlo simulation and decision 
trees to investigate different aspects of blood 
collection including cost, strategies for blood 
collection, and deferral policies. Their findings 
indicated that improving the location of 
collection facilities and advertising strategies 
could assist operation managers and decision-
makers to improve collection process. 
Alfonso and Xie [19] investigated a mathematical 
model for blood collection planning. Their 
proposed model aimed to minimize products 
provided by external suppliers and optimize the 
quantity of blood to be collected in each period. 
Ghandforoush and Sen [20] presented a nonlinear 
integer programming model to determine the 
minimum cost of platelet production and blood 
mobile scheduling for a regional blood center. 
Their model was subsequently converted to a 
linear 0–1 problem applying a two-step 
conversion process to guarantee optimality since 
the initial formulation carried a non-convex 
objective function with no convergence to 
optimal solutions. Gunpinar [21] developed an 
optimization model for collection planning. The 
model investigated a vehicle routing problem for 
blood centers to minimize the distance travelled 

by mobile blood facilities over the blood 
collection process. He used three different 
methods including CPLEX solver, branch & 
bound, and column generation algorithms to 
determine optimal routing for each mobile blood 
facility. A mixed integer non-linear programming 
model was proposed by Sha and Huang [22] with 
the purpose of minimizing the total cost and 
unsatisfied demands. Then, a heuristic algorithm 
was developed based on lagrangean relaxation 
approach, and a case study in Beijing was 
implemented to illustrate the applicability of the 
proposed model.  
A multi-objective mixed-integer programming 
(MOMIP) model for emergency services was 
addressed by Zhang and Jiang [23]. The 
allocation of demand zones to emergency 
facilities, the optimal number, and location of 
emergency facilities with the aim of minimizing 
total cost was determined by their proposed 
model. They applied the robust programming 
approach to handle data uncertainty. A mixed-
integer linear programming model for blood 
supply chain in emergency situation was 
developed by Jokar and Hosseini-Motlagh [24] to 
reduce the total cost including blood shortage and 
wastage costs. Their model was supposed to 
determine the optimal number of blood facilities 
and their coverage area under several disaster 
scenarios. They considered the capacity of 
mobile blood facilities as a variable, and 
illustrated that the optimal number of permanent 
and mobile facilities is highly affected by 
changes in the capacity of mobile blood facilities. 
In another work, Cheraghi and Hosseini-Motlagh 
[25] addressed a fuzzy-stochastic model for blood 
supply chain in disaster condition. To handle data 
uncertainty, they applied a fuzzy programming 
approach and a combination of the expected 
value and chance-constrained programming 
approaches. The applicability of their considered 
problem was illustrated by applying a real case 
study. Zahiri et al. [26] presented a mixed-integer 
programming model for blood collection and 
distribution network design to minimize the total 
cost, as the sole objective function. They dealt 
with uncertain parameters of their model by 
utilizing a robust stochastic programming 
approach. The important features of the 
aforementioned papers are summarized and 
compared with the model developed in this work, 
as shown in Table 1. 
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Cumming et al. 
[12] 

 ●
  

     ●  ●   ●    ●  

Sahin et al. [13] ●   ●     ●     ●   ●  
Jacobs et al. [14] ●        ● ●     ●   ●  
Glynn et al. [15]    ● ●        ●      ● 
Sonmezoglu et 
al.[16] 

  ●
  

 ●        ●       

Brennan et al. 
[17] 

●        ●   ●     ● ●  

Custer et al. [18] ●       ●   ●  ●      ● 
Alfonso and Xie 
[19] 

 ●  ●     ●        ●  

Ghandforoush 
and Sen [20] 

   ● ●     ●    ●    ●  

Gunpinar [21] ●  ●      ● ●    ● ● ●   ● 
Sha and Huang 
[22] 

 ●         ●   ●  ●   ● 

Zhang and Jiang 
[23] 

●     ●   ●    ●  ●  ●  

Jokar and 
Hosseini-
Motlagh [24] 

● ●      ● ●    ●    ●  

Cheraghi and 
Hosseini-
Motlagh [25] 

●    ●    ●    ●     ● 

Zahiri et al. [26] ● ●      ● ●    ●     ● 
Our study ● ●    ●   ●      ●     ● 

 
As far as we are concerned, there are only two 
studies [22] [26] with slightly similar models to 
ours which regard the location–allocation 
problem of mobile blood facilities in a multiple 
period of planning horizon. The majority of 
papers associated with blood management are 
mainly discussed in the inventory aspects. To fill 
this gap, this paper contributes to the area as 
follows by considering inherent randomness of 
input data, since no papers could be addressed in 
the literature taking into account the random 
uncertainty in the integrated collection and 
distribution problem for blood bank facilities.  
 
 Integrated planning for blood collection and 

distribution network consisting of both 
temporary and fixed (main) blood facilities as 
collection sites and hospitals as demand 
points. 

 Developing a mixed integer linear 
programming model to determine the optimal 

locations for blood collection facilities (i.e., 
both temporary and fixed facilities) during a 
multiple period of planning horizon. 

 Employing a robust programming approach 
to deal with the inherent randomness in 
parameters with the aim of obtaining robust 
solution. 
 

3. Problem Description 
In this paper, a blood collection and distribution 
network is considered in which temporary blood 
facilities, fixed blood centers, and hospitals are 
the main components. The concerned network 
aims to minimize the total costs.  The 
establishment cost of blood collection facilities, 
the cost of temporary facilities repositioning, 
blood delivery cost from temporary facilities to 
the main ones and from main facilities to demand 
zones comprise the network costs. The blood 
collection facilities are different in capacity and 
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the nature of locations. The capacity of fixed 
blood collection sites is more than temporary 
sites, and the fixed centers must be established at 
the beginning of the planning horizon. In other 
words, the locations of fixed blood centers cannot 
be changed over the planning horizon while each 
temporary facility can move to a different 
location in each period at an extra cost. The 
volume of demand and geographic dispersion of 
the demand points in each period affect the 
associated cost. On the other hand, the opening 
cost for the fixed blood center is much more than 
that of a temporary blood facility. Moreover, 
blood donation can directly occur at either 
temporary collection sites or the fixed ones. 
Subsequently, the blood units collected by each 
temporary facility must be directed to one or 
more fixed blood banks at the end of each period. 
Fig. 1 depicts the concerned blood collection and 
distribution network schematically. 
The following values are determined through 
solving the proposed model:   
 The optimal locations of the fixed blood 

centers throughout the planning horizon. 

 The optimal locations of the temporary blood 
facilities in each period. 

 The optimal number of blood facilities 
needed during the planning horizon along 
with the optimal allocation of demand zones 
to the established blood sites  

 The number of temporary blood collection 
sites repositioned in successive periods and 
the associated moving cost.  

 The volume of blood donation in each period 
and blood transportation cost between 
facilities and demand points.  

It is worth mentioning that we assume each 
planning period to be shorter than the blood 
lifetime for the sake of noting the perishability 
characteristics of blood units; however, this 
assumption makes the application of this model 
limited to city-wide levels. Besides, donors’ 
regions along with the candidate locations for 
both temporary and fixed blood centers are 
assumed to be given. In addition, the center of 
each region represents donors’ points. 

 

 
Fig. 1. An overview of the considered network 

Established 
facility

Blood 
flow    Pre-determined 

location 

Temporary facility 

Group of donors Fixed facility Hospital/Healthcare 
center 
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3-1. Notations 
The following notations are adopted to formulate the 
proposed model. 
 
3-1-1. Indices 
d=1,2,…,I Index of dth group of donors 

b=1,2,...,J Index of bth candidate location for 
temporary blood facilities 

g=1,2,…,G Index of gth  candidate location for main 
(fixed) blood facilities 

h=1,2,…,H Index of hth hospital / healthcare center 

t=1,2,…,T Index of tth  time period 
 

3-1-2. Technical parameters 
݀݁݉ܽ݊݀௛,௧ Total blood demand of each hospital h in 

period t 
 ௗ௕ Distance between dth donors group andܾ݀ݏ݅݀

bth candidate temporary blood facility 
 ௗ௚ Distance between dth group of donors݃݀ݏ݅݀

and gth main blood center 
 ௕௚ Distance between bth candidateܾ݃ݏ݅݀

temporary blood facility and gth main 
blood center 

 Coverage radius of temporary blood ܾ݀ݎ
facilities by which group of donors d is 
served, provided that   ܾ݀݅݀ݏௗ௕ ≤  ܾ݀ݎ

 Coverage radius of main blood centers by ݃݀ݎ
which group of donors d is served, 
provided that ݀݅݃݀ݏௗ௚ ≤  ݃݀ݎ

 Coverage radius of main blood centers by ܾ݃ݎ
which temporary blood facility b is 
served, provided that disbg௕௚ ≤ rbg 

 ௕ The capacity of each candidate temporary݌ܽܿ
blood facility  

 ௚ The capacity of each main (fixed) blood݌ܽܿ
facility  

 ௛ The capacity of each hospital/healthcare݌ܽܿ
center h 

 ௗ௧ Total blood donation by dth group of݁ݐܽ݊݋݀
donors in period t  

M An arbitrary large number 

  Minimum demand satisfaction ߚ
 

3-1-3. Cost parameters 
݉ܿ௕భ ,௕మ  Relocation cost of each temporary blood 

facility moving from location ܾଵ  to 
location ܾଶ in two successive time periods   

݈ܿ௚ Establishment cost of a main blood center 
in candidate location g 

 ௕௚ Transportation cost of blood units from bthܿݐ
temporary blood facility to gth  main blood 
center 

௚௛ܿݐ  Transportation cost of blood units from 
main blood facility g  to hospital h 

3-1-4. Discrete decision variables 
ܰ The number of temporary blood facilities 

needed in each period   
 

3-1-5. Continuous decision variables 
 ௗ௕௧ The blood volume donated by dth groupݒܾ

of donors at bth  temporary blood 
facility in period t 

 ௗ௚௧ The blood volume donated by dth group′ݒܾ
of donors at gth  main blood facility in 
period t 

  ௕௚௧ The blood volume transferred from bth′′ݒܾ
temporary blood facility to gth  main 
blood facility in period t 

 ௚௛௧ The blood volume transported from′′′ݒܾ
main blood facility g  to hospital h in 
period t 
 

3-1-6. Binary decision variables 
݀ ௗ௕௧ Is equal to 1 ifݕ th group of donors is 

assigned to a temporary blood facility 
which is located at ܾth site in period t; 0, 
otherwise 

݀ ௗ௚௧ Is equal to 1 if′ݕ th group of donors is 
assigned to a main blood facility which is 
located at ݃th site in period t; 0, otherwise 

 ௕௚௧ Is equal to 1 if a temporary blood facility′′ݕ
located at ܾ th site is assigned to a main 
blood facility at ݃ th site in period t; 0, 
otherwise  

 ௕భ,௕మ,௧ Is equal to 1 if a temporary blood facilityݔ
is located at ܾଵ

th site in period t–1, and 
moves to site ܾଶ in period t; 0, otherwise 

 ௚ Is equal to 1 if a main blood facility is݌
located at ݃th site; 0, otherwise  
 

3-2. Mathematical formulation 
The concerned problem can be formulated in the form 
of a MILP model as follows: 
 
3-1-2. Objective function 
ܼ ݊݅ܯ =  ෍ ௕భ,௕మ,௧ݔ ∗

௕భ,௕మ,௧

 ݉ܿ௕భ ,௕మ 

+ ෍ ௚݌ ∗ ݈ܿ௚
௚

+ ෍ ௕௚௧′′ݒܾ ∗ ௕௚ܿݐ
௕,௚,௧

+ ෍ ௚௛௧′′′ݒܾ ∗ ௚௛ܿݐ
௚,௛,௧

 

(1) 

The above objective function aims to minimize the 
network total cost involving establishment cost of main 
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blood centers, repositioning cost of temporary blood 
facilities as well as blood delivery cost from temporary 
facilities to main facilities and from main facilities to 
hospitals or healthcare centers over the multiple 
planning horizon. 
 
3-2-2. Model constraints 
෍ ௕భ,௕మ,௧ݔ  ≤ 1,          
௕భ

 ∀ܾଶ,  (2)    ݐ

Constraint (2) guarantees that only one temporary 
facility can move to candidate location ܾଶ from other 
locations in each period. 
 
෍ ௕భ,௕మ,௧ݔ = ܰ,           

௕భಯ௕మ

 (3)    ݐ∀ 

The number of temporary blood facilities opened in 
each period is determined by constraint (3). Notably, the 
same number of temporary sites is selected in each 
period so as to avoid costs caused by the facilities 
closure and opening at successive periods. 
 
෍ ௕భ,௕మ,௧ݔ ≤ ෍ ௕,௕భ,௧ିଵݔ

௕

,   
௕మ

 ∀ܾଵ, ݐ ≥ 2    (4) 

Each temporary facility can move to another location in 
the next period only if it has been established before. 
This constraint is held by relationship (4). 
 
෍ ௗ௕௧ݕ + ෍ ௗ௚௧′ݕ

௚

≤ 1,          
௕

 ∀݀,  (5)    ݐ

The blood from every group of donors can only be 
donated in at most one type of facilities either 
temporary or fixed ones represented by constraint (5). 
 
ௗ௕௧ݕ ∗ ௗ௕ܾ݀ݏ݅݀ ≤ ܾ݀ݎ

∗ ෍ ௕భ,௕,௧ିଵݔ
௕భ

, ∀݀, ܾ,  (6)    ݐ

ௗ௚௧′ݕ ∗ ௗ௚݃݀ݏ݅݀ ≤ ݃݀ݎ ∗ ௚݌ , ∀݀, ݃,  (7)    ݐ
௕௚௧′′ݕ ∗ ௕௚ܾ݃ݏ݅݀ ≤ ܾ݃ݎ ∗ ௚݌ , ∀ܾ, ݃,  (8)    ݐ
Relationships (6)–(8) represent the constraints on the 
coverage radius of facilities.  
Constraint (6) determines that each group of donors can 
be assigned to a temporary facility, provided that it is 
within the facility coverage radius. Also, constraint (7) 
implies that a group of donors can be served by a main 
blood facility only if it is positioned within the facility 
service radius. 
Similarly, constraint (8) indicates that a temporary 
blood facility can be supported by a main blood facility 
if it is covered by the main facility. 
 
ௗ௕௧ݒܾ ≤ ܯ ∗ ௗ௕௧ݕ , ∀݀, ܾ,   (9)   ݐ
ௗ௚௧′ݒܾ ≤ ܯ ∗ ௗ௚௧′ݕ , ∀݀, ݃,  (10) ݐ
௕௚௧′′ݒܾ ≤ ܯ ∗ ௕௚௧′′ݕ , ∀ܾ, ݃,  (11) ݐ

Constraints (9)–(11) ensure that blood can be collected 
by both temporary and fixed facilities if they have 
already been opened. The blood would flow from 
donors to either temporary or main facilities and from 
temporary sites to fixed ones. 
 
෍ ௗ௚௧′ݒܾ + ෍ ௕௚௧′′ݒܾ

௕ௗ
≤ ௚݌ܽܿ , 

∀݃,  (12) ݐ

The maximum capacity of gth main facility is stated via 
constraint (12).   
 
෍ ௗ௕௧ݒܾ + ෍ ௗ௚௧′ݒܾ

௚௕
≤ ௗ௧݁ݐܽ݊݋݀ , 

∀݀,  (13) ݐ

Constraint (13) puts restrictions on the blood volume 
donated by each donor’ group in each period. 
 
෍ ௗ௕௧ݒܾ

ௗ

≤ ,ܾ∀ ,ܾ݌ܽܿ  (14) ݐ

Constraint (14) limits the capacity of each temporary 
blood site. 
 
௕௚௧′′ݕ ≤ ෍ ௕భ,௕,௧ݔ

௕భ

, ∀ܾ, ݃,  (15) ݐ

The blood units can only be delivered from a temporary 
site to a main center, provided that it has been 
established before assured by constraint (15). 
 
෍ ௚௛௧′′′ݒܾ ≥

௚

ߚ ∗ ݀݁݉ܽ݊݀௛,௧  ∀ℎ,  (16) ݐ

In the concerned network, at least ߚ percent of demand 
must be satisfied for each hospital/healthcare center in 
each period. This requirement is guaranteed by 
constraint (16). 
 
෍ ௚௛௧′′′ݒܾ ≤

௚

,௛ ∀ℎ݌ܽܿ  (17) ݐ

Constraint (17) defines the maximum capacity of 
hospital/ healthcare center h. 
 
෍ ௗ௕௧ݒܾ

ௗ

= ෍ ௕௚௧′′ݒܾ
௚

, ∀ܾ,  (18) ݐ

All blood units collected by temporary blood facilities 
are supposed to be transferred to main blood banks at 
the end of each period, defined by constraint (18). 
 

෍ ௗ௚௧′ݒܾ + ෍ ௕௚௧′′ݒܾ
௕ௗ

= ෍ ௚௛௧′′′ݒܾ
௛

 
∀݃,  (19) ݐ
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Constraint (19) ensures that all blood units arrived at 
each main blood center are distributed to hospitals/ 
healthcare centers at the end of each period. 
 
ௗ௕௧ݕ , ௗ௚௧′ݕ , ௕௚௧′′ݕ , ௕భ,௕మ,௧ݔ  , ௚݌  

∈ {0,1},             
∀݀, ܾ, ݃,  (20) ݐ

ௗ௕௧ݒܾ , ௗ௚௧′ݒܾ , ௕௚௧′′ݒܾ , ௚௛௧′′′ݒܾ
≥ 0, ∀݀, ܾ, ݃, ℎ,  (21) ݐ

Eventually, the type of decision variables is indicated 
via constraints (20) and (21). 
 

4. Robust Programming Approach 
To handle uncertainty in the optimization problems 
requiring both feasibility and optimality robustness 
simultaneously, the robust programming (RP) presents 
risk-averse methods. The feasibility robustness is 
defined as the feasibility of results obtained under 
almost all possible values of uncertain parameters. In 
the meantime, the obtained result will remain near-
optimal under different realizations of the uncertain 
parameters by means of the optimality robustness [27]. 
Consequently, since uncertain parameters may possibly 
change over a long-term planning horizon, the critical 
role of robustness, especially in problems with strategic 
decision level, such as facility location, cannot be 
ignored. 
A various number of robust approaches have been 
applied to optimization models so far. For instance, 
Soyster [28] addressed the first approach to cope with 
data uncertainty by mathematical models whose attempt 
often led to over-conservative models and poor 
solutions in term of optimality. Later, Ben-Tal and 
Nemirovski [29], [30] and [31] developed less 
conservative models by taking into account ellipsoidal 
uncertainties. Bertsimas and Sim (BS) [32, 33] 
proposed an approach according to the observation that 
in real situations, it is unrealistic to assume that all 
coefficients take their worst-case values simultaneously.  
 
4-1. A light robust heuristic approach 
In this paper, we devise an efficient uncertainty 
modelling approach called Light robustness which 
couples robust optimization with a simplified two-stage 
stochastic programming approach and is benefited from 
flexibility and ease of use. Furthermore, Light 
Robustness is sometimes able to produce solutions 
having comparable quality with those achieved via 
stochastic programming or robust models while it 
requires less effort in terms of model formulation and 
solution time [34]. The slack variables related to the 
constraints of the nominal problem are determined by 
this approach. The underlying assumption is that the 
degree of solution robustness corresponds to the slack 
left in the constraints employed to absorb variations of 
uncertain parameters. This method requires the solution 

of three LPs containing nominal problem and two other 
LP models discussed in the following. 
Assume that ݔ∗  is an optimal solution to nominal 
problem (22)–(24).   
 
min ෍ ௝ܿ  ݔ௝

௝∈ே

     (22)  

෍ ܽ௜௝
௝∈ே

≤  ௝ݔ ݀௜   ݅
∈  (23)          ܯ

≤  ௝ݔ 0          ݆
∈ ܰ         (24) 

Now, let matrix D take a value, say ሚ݀௜ ∈ [݀௜ , ݀௜ + መ݀௜], 
and M and N represent the number of constraints and 
variables in the LP model, respectively. The maximum 
violation of the ith uncertain constraint with respect to 
optimal solution ݔ∗ is defined via the following 
relationship: 
௜ܮ

∗ = ൫݀௜ + መ݀௜൯ − ෍ ܽ௜௝ ݔ௝
∗

௝∈ே

           (25) 

Also, we consider set ܷ = {݅ ∈ ௜ܮ :ܯ
∗ > 0}  comprised 

of the rows for which enough slack should be assigned 
such that ܷ ≥ 1 , indicating that at least one row 
requires the slack variable since otherwise optimal 
solution ݔ∗ of the nominal problem would be feasible 
and optimal in any realizations of the uncertain 
parameter. 
Firstly, the following LP model is solved: 
 
 (26)              ߪ ݔܽ݉

෍ ܽ௜௝ ݔ௝ − ௜ݏ
௝∈ே
= ݀௜       

 ݅
∈  (27)                        ܯ

ߪ ≤
௜ݏ

௜ܮ
∗ ݅ ∈ ܷ             (28) 

෍ ௝ܿ ݔ௝
௝∈ே
≤ (1 +  ∗ݖ (ߜ

             (29) 

௝ݔ ≥ 0 ݆ ∈ ܰ             (30) 

௜ݏ ≥ 0                            ݅ ∈  (31)             ܯ

   
where the minimum slack that can be assigned to any 
uncertain rows would be maximized. The uncertainty 
for each row can be considered separately by 
normalizing slack variable ݏ௜ in the uncertain constraint 
i via dividing it by ܮ௜

∗  (i ∈ U) as represented in 
"constraint (28)". 
Notably, several equivalent optimal solutions can be 
obtained, owing to the max-min nature of the above LP 
model. Actually, there is no force to assign large slacks, 
which are of importance to improve robustness, to the 
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remaining rows since only the minimum normalized 
slack is considered by the objective function. Thus, the 
slacks are supposed to be balanced among uncertain 
rows. To this end, the second LP is regarded as below.  
Let (ߪ,∗ݏ,∗ݔ∗) be an optimal solution of models (26)–
(31), so the average of the normalized slacks is defined 
as follows: 
 
௔௩௚ݏ = ∑ ௦೔

∗ ௅೔
∗⁄೔∈ೆ

|௎|
       (32) 

Also, the minimum value of the normalized slacks is 
obtained as follows: 
 
௠௜௡ݏ = ௜ݏ}݊݅݉

∗ ௜ܮ
∗⁄ : ݅ ∈ ܷ}       (33) 

Then, the LP models (34)-(40) are solved. 
 
݉݅݊ ෍                                             ௜ݐ

௜∈௎

            (34) 

෍ ܽ௜௝ ݔ௝ − ௜ݏ 
௝∈ே
=  ݀௜     

݅ ∈ ܷ                    (35) 

෍ ௝ܿ  ௝ݔ 
௝∈ே
≤ (1 +  ∗ݖ (ߜ

            (36) 

௜ݏ  
௜ܮ

∗ + ≤ ௜ݐ ݅ ௔௩௚ݏ ∈ ܷ                    (37) 

≤ ௝ݔ 0 ݆ ∈ ܰ                    (38) 
௜ݏ  
௜ܮ

∗ ≥ ݅              ௠௜௡ݏ ∈ ܷ                    (39) 

௜ݏ ≥ 0 , ≤ ௜ݐ 0            ݅ ∈ ܷ                    (40) 

Where objective function (34) penalizes the sum of 
variables ݐ௜ assigned to each uncertain constraint, which 
takes positive values, provided that the associated 
normalized slack is smaller than the average, with the 
aim of balancing the normalized slacks among all 
constraints. 
4-2. The equivalent robust model 
In this paper, the amount of blood demand, which plays 
a critical role in blood supply chain planning, is tainted 
with inherent random uncertainty, such that 
 ݀݁݉ܽ݊݀෫ ௛,௧ ∈ ൣ݀݁݉ܽ݊݀௛,௧ , ݀݁݉ܽ݊݀௛.௧ + ݀෢݁௛,௧൧ , in 
which ݀݁݉ܽ݊݀௛,௧  represents the nominal value of the 
uncertain parameter and ݀෢݁௛,௧  defines the maximum 
violation (worst case) of blood demand. 
Regarding the steps of the aforementioned approach, 
our model would be formulated as below: 
After the nominal models (1)-(21) are solved, the 
second LP problem would be modeled as follows with 
respect to ܮ௛,௧

∗  such that: 
 

 ௛,௧ܮ
∗ = ߚ ∗ [݀݁݉ܽ݊݀௛,௧ + ݀෢݁௛,௧] − ෍ ௚௛௧′′′ݒܾ

௚

 

 
 ∀ℎ,  (41)           ݐ
Also, set U could be defined as: 
 ܷ = {(ℎ, (ݐ ∈ ௛,௧ܮ :ܯ

∗ > 0}.  
Thus, the second LP problem would be represented as: 
 
 (42)                                                               ߪ ݔܽ݉

෍ ௚௛௧′′′ݒܾ
௚

= ߚ ∗ [݀݁݉ܽ݊݀௛,௧] + ௛,௧ݏ  

 ∀ℎ, ݐ
∈ ܷ                   (43) 

ߪ ≤
௛,௧ݏ

௛,௧ܮ
∗  ∀ℎ, ݐ

∈ ܷ                    (44) 

෍ ௕భ,௕మ,௧ݔ ∗
௕భ,௕మ,௧

 ݉ܿ௕భ ,௕మ 

+ ෍ ௚݌ ∗ ݈ܿ௞
௚

+ ෍ ௕௚௧′′ݒܾ ∗ + ௕௚ܿݐ
௕,௚,௧

෍ ௚௛௧′′′ݒܾ ∗ ௚௛ܿݐ
௚,௛,௧

≤ (1 + (ߜ ∗ ܼ∗ 
                 (45) 
In constraint (45), ܼ∗ represents the objective function 
value of nominal modesl (1) – (21), and ߜ    indicates 
deterioration degree in the objective function value 
resulted from the DM's conservative approach 
 
௛,௧ݏ ≥ 0   ∀ℎ, ݐ ∈ ܷ          (46) 
and relationships (1) – (21). 
By defining ݏ௔௩௚ as: 

= ௔௩௚ݏ
∑ ௦೓,೟

∗ ௅೓,೟
∗ൗ ∀(೓,೟)∈ೆ

|௎|
         (47) 

The third LP model could be formulated as follows: 
 
݉݅݊ ෍       ௛,௧ݐ

௛,௧∈௎

  
            (48) 

௛,௧ݏ  
௛,௧ܮ

∗ + ≤ ௛,௧ݐ ,௔௩௚ ∀ℎݏ ݐ ∈ ܷ              (49) 
௛,௧ݏ  
௛,௧ܮ

∗ ≥ ,௠௜௡ ∀ℎݏ ݐ ∈ ܷ             (50) 

In constraint (50),  ݏ௠௜௡ = ∗ߪ  represents the objective 
function value of the second LP problem. 
 
≤ ௛,௧ݐ 0 ∀ℎ, ݐ ∈ ܷ             (51) 
 

5. Computational Experiments 
In order to cope with the uncertainty in parameters, 
robust programming approach is utilized due to its 
capability of obtaining robust solutions. In this section, 
we intend to evaluate the performance of the proposed 
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robust model through implementing several numerical 
experiments. To this end, three different test problems, 
as shown in Table 2, are designed and the experiments 
are carried out for each one under different uncertainty 
levels. 
 First of all, both of the deterministic and robust models 
are solved under nominal values of the parameters 
which are randomly generated as specified in Table 3. 
Then, we conduct two types of sensitivity analyses: one 
on the demand satisfaction level (β) and uncertainty 

level (δ); another on the realization values to examine 
the efficiency of the robust strategy versus the 
deterministic approach. All experiments are conducted 
using GAMS software on a laptop computer with Intel 
Core i5, CPU 2.5GHz and 6GB of RAM. Eventually, to 
assess the robustness of the solutions obtained by the 
robust optimization model, they are compared to those 
generated by the deterministic mixed-integer linear 
programming model under a number of realizations for 
each test problem. 
 

Tab. 2. The size of test problems 
Problem No. donors Temporary Blood 

Facilities 
Hospitals/Healthcare 
centers Main Blood Facilities Time periods 

1 4 3 3 3 4 

2 5 4 4 5 5 

3 8 5 5 6 6 

 
Tab. 3. Random generation of nominal parameters 

parameters Value parameters Value 

݀݁݉ܽ݊݀௛,௧ ~(20,50) ݉ݎ݋݂݅݊ݑ~ ܾ݌ܽܿ (100,500) ݉ݎ݋݂݅݊ݑ 

௚݌ܽܿ (100,150) ݉ݎ݋݂݅݊ݑ~ ௗ௕ܾ݀ݏ݅݀  (70,100) ݉ݎ݋݂݅݊ݑ~ 

ௗ௧݁ݐܽ݊݋݀ (200,250) ݉ݎ݋݂݅݊ݑ~ ௗ௚݃݀ݏ݅݀  (100,400) ݉ݎ݋݂݅݊ݑ~ 

 (0.6,0.9) ݉ݎ݋݂݅݊ݑ~ ߚ (90,100) ݉ݎ݋݂݅݊ݑ~ ௕௚ܾ݃ݏ݅݀

 (50,70) ݉ݎ݋݂݅݊ݑ~  ௕భ ,௕మܿ݉ (5,9) ݉ݎ݋݂݅݊ݑ~ ܾ݀ݎ

௚݈ܿ (10,17) ݉ݎ݋݂݅݊ݑ~ ݃݀ݎ  (1000,1500) ݉ݎ݋݂݅݊ݑ~ 

 (0.05,0.06) ݉ݎ݋݂݅݊ݑ~ ௕௚ܿݐ (5,10) ݉ݎ݋݂݅݊ݑ~ ܾ݃ݎ

௛݌ܽܿ    (200,300) ݉ݎ݋݂݅݊ݑ~ 

 
It is noteworthy that we regard the amount of demand as 
the only uncertain parameter, while the rest are assumed 
to be deterministic. Therefore, we put the proposed 
robust and deterministic models into analysis via 
uniformly generating random realizations of the 
uncertain parameter in the respective uncertainty set. In 
this study, the value of ݀෢݁௛,௧  is considered to be 20% of 
the demand nominal value. 
5-1. Sensitivity analysis on demand satisfaction level 
(β) and uncertainty level (઼) 
In this section, we analyze the impact of changing 
demand satisfaction level and uncertainty level on the 
objective function values of both deterministic and 
robust models. The impact of changing these parameters 
on the number of facilities required for blood collection 
is also considered. To this aim, the values of β and ߜare 
varied for each test problem, then the results are 
reported in Table 4. 
As the results show, the number of blood collection 
facilities (|P|), and thus the supply chain cost will 
increase owing to an increase in the level of demand 
satisfaction. For instance, for the first test problem (see 

Table. 4), the number of established blood centers 
increases from 2 to 3 as the value of β changes from 0.6 
to 0.7 which imposes about 25200$ cost on the system. 
For test problems 2 and 3, as presented in Table 4, the 
number of required blood facilities changes from 3 to 4 
to satisfy the demand at the level of 80%. Additionally, 
higher uncertainty levels (i.e., conservation levels 
considered by the decision-maker) eventuate in 
increasing the objective function value of the robust 
approach. 
Subsequently, we observe how different uncertainty 
levels affect the performance of robust approach in 
terms of both objective function values and constraint 
violation costs. To do so, we put the three test problems 
into practice by varying the uncertainty levels for each 
one, and then the results are shown in Table 5. Note that 
each unit of constraint violation imposes 20$ cost.   
Now, we normalize the values of robust violation cost 
and objective function for each test problem via 
dividing each value by the sum of its respective column. 
Subsequently, for the three test problems, the 
normalized values are compared as represented in Figs. 
2 - 7.  
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Fig. 2. Objective function value versus violation cost 
under different uncertainty levels for the first test 

problem 
 
For the DM, the most pessimistic approach to determine 
the optimal conservation level (ߜ∗) may be to set ߜ as 
the level at which the constraint violation is equal to 
zero (i.e., 0.3, 0.3 and 0.4 for Figs. 2, 4, and 6, 
respectively). We must seriously regard the matter of 

customers' demand satisfaction, since in this case (i.e., 
blood supply chains), the shortage of blood can lead to 
humans' death. 

Fig. 3. Cost performance under different uncertainty 
levels for the first test problem. 

 
However, the main disadvantage of this approach is that 
the supply chain costs are totally neglected and the main 
focus is on the violation cost.  

 

Tab. 4. The summary of results under different demand satisfaction levels and uncertainty levels. 
Problem 
no. 

 P| Objective function values under nominal| ߜ ߚ
data ($) 

CPU time (s) 

Deterministic  Robust  Deterministic  Robust  Deterministic  Robust  

1 

0.6 0.2 2 2 20456 24547.2 0.228 1.521 
0.5 2 3  30684  1.507 
0.7 2 3  34775.2  1.469 
1 2 3  40912  1.446 

0.7 0.2 3 3 25255.5 30306.6 0.223 1.864 
0.5 3 3  37883.25  2.068 
0.7 3 3  42251.661  1.385 
1 3 3  45196.047  1.212 

0.8 0.2 3 3 29210 35052 0.247 1.704 
0.5 3 3  42086.542  1.489 
0.7 3 3  43704.542  1.316 
1 3 3  44523.810  1.905 

0.9 0.2 3 3 33218 39861.600 0.223 1.334 
0.5 3 3  44708.041  1.350 
0.7 3 3  44708.041  1.253 
1 3 3  44708.041  1.157 

2 

0.6 0.2 3 3 32104.199 38525.039 0.345 1.744 
 0.5 3 4  48156.299  1.759 
 0.7 3 4  54577.139  1.722 
 1 3 4  64036.400  1.72 
0.7 0.2 3 4 37594.399 45113.279 0.255 2.041 
 0.5 3 4  56391.599  1.292 
 0.7 3 5  63581.235  1.380 
 1 3 5  75188.799  1.049 
0.8 0.2 4 4 44534.599 50084.743 0.354 1.714 
 0.5 4 4  62605.929  1.743 
 0.7 4 4  70953.386  1.474 
 1 4 4  75436.569  1.509 
0.9 0.2 4 4 50444.799 60533.759 0.239 1.523 
 0.5 4 4  71134.061  1.511 
 0.7 4 5  71134.061  1.273 
 1 4 5  71134.061  1.385 

3 

0.6 0.2 3 3 30599.99 36719.999 0.459 3.915 
 0.5 3 3  45899.999  3.915 
 0.7 3 4  52019.999  3.335 
 1 3 4  61199.999  2.98 
0.7 0.2 3 3 35921.49 43105.799 0.587 3.686 
 0.5 3 4  53882.249  3.537 
 0.7 3 4  61066.548  2.664 
 1 3 4  71842.998  2.846 
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0.8 0.2 4 4 42758.9 51310.7 0.571 3.57 
 0.5 4 4  64138.4  3.521 
 0.7 4 5  72690.2  3.083 
 1 4 6  85517.9  2.446 
0.9 0.2 4 4 47292.49 56750.999 0.559 2.984 
 0.5 4 5  70938.749  2.364 
 0.7 4 6  80397.249  2.632 
 1 4 6  89240.375  2.446 

Accordingly, the DM has to investigate other 
approaches to find the most appropriate value of ߜ. As 
can be observed in Figs. 2, 4, and 6, increased 
uncertainty level ( ߜ ) results in the increased supply 
chain costs on one hand and the reduced violation cost 
on the other hand. Additionally, for all test problems, as 
can be seen in Figs. 3, 5, and 7, by increasing the value 
of ߜ  from zero to 0.23, the violation cost decreases 
dramatically to more than 70%; however, an increase of 
less than 30% in supply chain costs will be imposed on 
the network.Finally, we will have the maximum 
reduction (i.e. 100%) in violation cost at ߜ = 0.3 for test 
problems 1 and 3 (see Figs. 5 and 9) and  ߜ = 0.4 for 
the second test problem (Fig. 7). In other words, at  ߜ =
0.3 and 0.4 for test problems 1, 3, and 2, respectively, 
no violation cost will be observed, while having an 
increase of 30% in network cost.  
 
 
 
 
 
 
 
 
 
 
Fig. 4. Objective function value versus violation cost 
under different uncertainty levels for the second test 

problem. 
 
 
 
 
 
 
 
 
 
 
Fig. 5. Cost performance under different uncertainty 

levels for the second test problem. 
It is worth mentioning that from these points on, 
increasing the uncertainty level only leads to further 
cost, called missed opportunity cost. This cost is due to 
indulgence in conservatism (i.e., taking a higher 
uncertainty level than required to minimize the 
constraint violations), which is determined by the 

decision maker. Note that missed opportunity cost can 
be calculated as the difference between the objective 
function values of robust and deterministic models 
when the violation cost is zero. Table 6 reports the 
values of violation cost and missed opportunity cost 
under different realizations for the uncertain parameter 
(i.e., demand amounts) and uncertainty levels. 
 
 

 
 
 
 
 
 
 
 
 
 

Fig. 6. Objective function value versus violation cost 
under different uncertainty levels for the third test 

problem. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. Cost performance under different uncertainty 
levels for the third test problem. 

 
Note that missed opportunity cost can be calculated as 
the difference between the objective function values of 
robust and deterministic models when the violation cost 
is zero. Table 6 reports the values of violation cost and 
missed opportunity cost under different realizations for 
the uncertain parameter (i.e., demand amounts) and 
uncertainty levels. 
Figs. 8, 9, and 10 depict the average values of violation 
cost versus missed opportunity cost, respectively, for 
test problems 1, 2, and 3, respectively. A general 
observation shows that the increased uncertainty level 
resulting from the DM's conservative approach ends in 
decreased violation cost on one hand and increased 
missed opportunity cost on the other hand. In Fig.8, we 
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will witness a decrease in violation cost, but 
simultaneously an increase in missed opportunity cost 
as the uncertainty level changes from 0 to 0.2. The 
average violation cost comes to 0$ when δ changes 
from 0.2 to 0.4, while the average value of missed 
opportunity cost increases to 6542$. 
Figs.9 and 10 show quite similar patterns as the 
uncertainty level changes. 
For the second test problem (Fig. 9), the average 
violation cost dramatically decreases when δ  changes 
from 0 to 0.2 and reaches the lowest level (i.e., zero) 
at  δ = 0.4  ; however, at the same time, the average 
missed opportunity cost increases to 10647.3$ and 
continues sharply to 27647.3$ at δ =1. Finally, for test 
problem 3 (see Fig.10), the lowest violation cost will be 
obtained if the uncertainty level reaches 0.3 where the 
network carries a cost of more than 3456.31$ resulting 
from missed opportunities. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. Violation cost versus missed opportunity cost 
for the first test problem  

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9. Violation cost versus missed opportunity cost 
for the second test problem 

 
Therefore, the trade-off between these two costs (i.e., 
violation cost and missed opportunity cost) could 
provide an insight for the DM to decide on an 
appropriate value of ߜ under different realizations. 
In order to expose a better attitude to discussion which 
accounts for both the feasibility and optimality criteria 
by making a trade-off between constraint violation cost 
and missed opportunity cost, we consider a cost 
measure defined in relationship (52) which can assist 
the DM to determine an appropriate level of 

conservation by taking into account both the feasibility 
(by regarding constraint violation cost) and optimality 
(by considering missed opportunity cost) conditions, 
simultaneously. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10. Violation cost versus missed opportunity cost 
for the third test problem 

 
்ܥ = ଵݓ (violation cost) + ଶݓ (missed 
opportunity cost) 
 

(52) 

Where ݓଵ ଶݓ , ∈ [0,1]  are the weights determined by 
the DM to represent the importance degree of constraint 
violation cost and missed opportunity cost, respectively. 
Since in this case (i.e., blood supply chains), the 
constraint violation is much more important than missed 
opportunity cost, we consider weights of ݓଵ = 0.8 and 
ଶݓ = 0.2 for these two costs. We calculate ்ܥ  for each 
realization under different values of ߜ, and then find the 
minimum value of ்ܥ  for each column as shown in 
Table 7. Lastly, we choose the most repeated ߜ at which 
்ܥ   has the minimum value. Fig.11 depicts the 
frequency of uncertainty levels at which the minimum 
value of  ்ܥ  is realized. 

Fig. 11. The uncertainty levels’ frequencies under 
different realizations 

 

As can be observed in Fig. 11, for all test problems, the 
minimum value of cost measure ( ்ܥ) occurs at δ = 0.2 
in 60% of the realizations. Accordingly, we assume δ =
0.2 as the basis for the next sensitivity analysis by 
which we compare the performance of the proposed 
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robust model and the deterministic model under a number of realizations.  
 

Tab. 5. The summary of results under different uncertainty levels. (Supply chain cost versus violation cost) 
β=0.8         
Problem 
no. 

z୰୭ୠ୳ୱ୲  zୢୣ୲ୣ୰୫୧୬୧ୱ୲୧ୡ ߜ  Supply chain cost 
increase (%) 

Violation 
cost  

Violation cost 
reduction (%) 

CPU time (s) 

       Deterministic  Robust  

1 

0 29210 29210 0 1119.98 0 0.247 1.569 

0.1 32131 10 710.897 36.52  1.621 

0.2 35052 20 305.404 72.73  1.704 
0.3 37973 30 0 100  1.584 

0.4 38869.424 33.06 0 100  1.357 

0.5 42086.542 44.08 0 100  1.489 

0.6 43704.542 49.62 0 100  1.435 

0.7 43704.542 49.62 0 100  1.383 

0.8 44523.810 54.42 0 100  1.316 

0.9 44523.810 54.42 0 100  1.362 

1 44523.810 54.42 0 100  1.905 

2 

0 44534.599 44534.599 0 1221. 4 0 0.354 2.622 
0.1 45911.014 3.09 816.984 33.11  2.124 
0.2 50084.743 12.46 407.537 66.63  1.568 
0.3 54258.472 21.84 4.123 99.66  1.895 
0.4 58432.2 31.2 0 100  1.889 
0.5 62605.929 40.57 0 100  1.743 
0.6 66779.657 49.95 0 100  1.736 
0.7 70953.386 59.32 0 100  1.746 
0.8 75127.114 68.69 0 100  1.474 
0.9 75436.569 69.38 0 100  1.732 
1 75436.569 69.38 0 100  1.714 

3 

0 42758.9 42758.9 0 1599.9 0 0.571 3.715 
0.1 47034.89 10 975.64 39..1  3.57 
0.2 51310.7 20 374 76.62  3.426 
0.3 55586.69 30 0 100  5.029 
0.4 59862.59 40 0 100  3.156 
0.5 64138.4 50 0 100  3.521 
0.6 68414.3 60 0 100  2.9 
0.7 72690.2 70 0 100  3.138 
0.8 76966.1 80 0 100  2.637 
0.9 81242 90 0 100  2.477 
1 85517.9 100 0 100  2.446 
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Tab. 6. The summary of results under different realizations and uncertainty levels. (Violation cost versus missed opportunity cost) 
β=0.8       

Problem no. ߜ z୰୭ୠ୳ୱ୲  Realization Average ($) CPU time 
(s) 

    1 2 3 4 5   

1 0 29210 

zୢୣ୲ୣ୰୫୧୬୧ୱ୲୧ୡ 29210 - - - -  

1.53 Violation cost 0 560 672 840 1119.98 638.396 
Missed opportunity cost 0 0 0 0 0 0 

 0.6 43704.54 

zୢୣ୲ୣ୰୫୧୬୧ୱ୲୧ୡ 29210 32411.2 33056.6 33621.6 35643.6  

1.39 Violation cost 0 0 0 0 0 0 
Missed opportunity cost 14494.5 11293.3 10647.9 10082.9 8060.94 10915.9 

 

 1 44523.81 

zୢୣ୲ୣ୰୫୧୬୧ୱ୲୧ୡ 29210 32411.2 33056.6 33621.6 35643.6  

1.48 Violation cost 0 0 0 0 0 0 
Missed opportunity cost 29210 32411.2 33056.6 33621.6 35643.6  

٢ 0 47713.55 

zୢୣ୲ୣ୰୫୧୬୧ୱ୲୧ୡ - - - - -  

2.54 Violation cost 140 560 672 840 1220. 4 553 

Missed opportunity cost 0 0 0 0 0 0 

 

0.6 66779.65 
zୢୣ୲ୣ୰୫୧୬୧ୱ୲୧ୡ 41737.28 47395.3 48188.9 49660.2 51942.8  

1.36 Violation cost 0 0 0 0 0 0 
Missed opportunity cost 25042.37 19384.3 18590.7 17119.4 14836.85 18994.7 

 

1 75432.2 

zୢୣ୲ୣ୰୫୧୬୧ୱ୲୧ୡ 41737.28 47395.3 48188.9 49660.2 51942.8  

1.54 Violation cost 0 0 0 0 0 0 
Missed opportunity cost 33694.92 28036.9 27243.3 25772 23489.4 27647.3 

٣ 0 42758.9 

zୢୣ୲ୣ୰୫୧୬୧ୱ୲୧ୡ - - - - -  

4.16 Violation cost 200 800 960 1200 1599.9 951.98 
Missed opportunity cost 0 0 0 0 0 0 

 

0.6 68414.3 
zୢୣ୲ୣ୰୫୧୬୧ୱ୲୧ୡ 43825.04 47142.9 48030 48963.3 51700.9  

3.21 Violation cost 0 0 0 0 0 0 
Missed opportunity cost 24589.26 21271.4 20384.3 19451 16713.4 20481.8 

 

1 85517.9 

zୢୣ୲ୣ୰୫୧୬୧ୱ୲୧ୡ 43825.04 47142.9 48030 48963.3 51700.9  

2.09 Violation cost 0 0 0 0 0 0 
Missed opportunity cost 41692.86 38375 37487.9 36554.6 33817 37585.4 
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5-2. Sensitivity analysis on different realization 
values 
In this section, we evaluate the robustness of 
solutions obtained by the proposed robust model 
in comparison with the solutions obtained by the 
deterministic mixed-integer linear programming 
model. To this end, 10 random realizations for 
the uncertain demand are uniformly generated in 
the corresponding uncertainty set. Eventually, 
two criteria (i.e. the mean and standard deviation 
of constraint violations) are tailored under 
random realizations to assess both the proposed 
robust and deterministic models. Given ߜ = 0.2, 
the test results are presented in Table 8. Figs. 12-
14 show the performance of the robust strategy 
versus the deterministic approach. 

Fig. 12. Constraint violation cost under 
deterministic versus robust approaches for 

test problem 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 13. Constraint violation cost under 
deterministic versus robust approaches for 

test problem 2 
 
As can be seen, the robust model obtains high-
quality solutions with lower standard deviations 
than the deterministic model. In other words, in 

all test problems, the robust approach highly 
outperforms the deterministic one with respect to 
the mean and standard deviation of constraint 
violations. As the results show, for test problem 1 
(Fig. 12), no constraint violations will be 
observed in the robust model for realizations 1 to 
9; however, the violation cost will reach 81.4$ 
under realization 10, while the violation cost of 
deterministic model increases from 56$ to 431.2$ 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 14. Constraint violation cost under 
deterministic versus robust approaches for 

test problem 3 
 
For the second test problem, as shown in Fig. 13, 
the robust model shows an average violation cost 
of 53.381$, which represents the superiority of 
the robust model over the deterministic one. 
Similarly, the domination of robust strategy over 
deterministic approach is obvious in test problem 
3 (see Fig. 14), where we witness an average 
violation cost of 37.4$ under the robust model 
versus 615.99$ under the deterministic model. 
 

6. Concluding Remarks and Future 
Research Recommendations 

In this paper, a mixed integer linear programming 
model is addressed for designing a blood 
collection and distribution system under demand 
uncertainty. The objective function attempts to 
minimize the network total costs involving 
establishment cost of the main centers, relocation 
cost of temporary blood facilities along with 
blood delivery cost from temporary facilities to 
the main ones and from the main blood centers to 
hospitals or healthcare centers throughout a 
multiple planning horizon. To handle the inherent 
randomness of demand amounts, we have 
devised a robust programming approach with the 
aim of achieving robust and reliable solutions. 
The superiority of the proposed robust model in 
dealing with uncertainty as well as the robustness 
of corresponding solutions over the ones obtained 
by the deterministic model is proved by 
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performing a number of computational 
experiments. 

 

 
Tab. 7. Cost measure ( ࢀ࡯) under different realizations and uncertainty levels 

Problem no. ߜ 
Realization 
1 2 3 4 5 

1 

0 0 448 537.6 672 895.98 
0.2 1168.4 528.16 399.08 20.32 244.32 
0.4 1931.88 1291.644 1162.564 1049.564 645.164 
0.6 2898.9 2258.66 2129.58 2016.58 1612.188 
0.8 3062.762 2422.52 2293.44 2180.44 1776.042 
1 5842 6482.24 6611.32 6724.32 7128.72 

 Min  244.32 20.32 399.08 448 0 ்ܥ 

 
Corresponding 
uncertainty level 
 (ߜ)

0 0 0.2 0.2 0.2 

2 

0 112 448 537.6 672 896.32 
0.2 1669.492 537.888 379.168 101.024 325.0296 
0.4 3338.984 2207.38 2048.66 1754.4 1297.88 
0.6 5008.474 3876.86 3718.14 3423.88 2967.37 
0.8 6677.964 5546.36 5387.64 5093.38 4636.86 
1 6738.984 5607.38 5448.66 5154.4 4697.88 

 Min  325.0296 101.024 379.168 448 112 ்ܥ 

 
Corresponding 
uncertainty level 
 (ߜ)

0 0 0.2 0.2 0.2 

3 

0 160 640 768 960 1279.92 
0.2 1497.132 833.56 656.14 469.48 299.2 
0.4 3207.51 2543.92 2366.5 2179.84 1632.338 
0.6 4917.852 4254.28 4076.86 3890.2 3342.68 
0.8 6628.212 5964.64 5787.22 5600.56 5053.04 
1 8338.572 7675 7497.58 7310.92 6763.4 

 Min  299.2 275.58 462.24 639.66 160 ்ܥ 

 
Corresponding 
uncertainty level 
 (ߜ)

0 0 0.2 0.2 0.2 

It is noteworthy to mention that we came up with 
several valuable insights via the results of the 
experiments.  
Particularly, robust optimization significantly 
prevents the model against constraint violations. 
To be more specific, for the small-sized problem 
(Fig. 3), spending 3% more money will decrease 
the violation cost about 33%. As the uncertainty 
level (conservation level) gets higher, the 
network cost will increase, while the violation 
cost will decrease. Thus, having an estimation 
about the appropriate conservation level to make 
a balance between the two costs is of importance. 
In line with the two criteria, i.e., standard 
deviation and mean of constraint violation cost 
(see Table 8), applying robust optimization 
enables us to achieve a model with the least 
undesirable changes and costs in comparison with 

the deterministic model under a number of 
realizations.   
A number of possible future research directions 
can be considered in this subject of investigation. 
 Applying heuristic and metaheuristic 

approaches in order to reach efficient solutions 
within reasonable computing time when it 
comes to solving the concerned problem in 
larger size, one that cannot be solved by the 
exact solvers in polynomial time. 

 The proposed model can be extended to a multi-
objective model considering other objectives 
including minimizing delivery time, 
maximizing responsiveness of the network, etc.  

Researchers could investigate other uncertainty 
approaches, such as fuzzy or stochastic 
approaches, to compare the respective results 
with the ones achieved by the current robust 
approach. 
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Tab. 8. Constraint violation for robust model versus deterministic model under a number of 

realizations  
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0.69 3.48 80 0 43201.2 51310.7 ١ 

0.2 ٣ 

0.71 3.38 120 0 43531.4 51310.7 ٢ 
0.8 3.02 200 0 43982.62 51310.7 ٣ 
0.7 3.14 240 0 44389.81 51310.7 ٤ 
0.72 3.16 400 0 43982.62 51310.7 ٥ 
0.72 3.12 560 0 44013.3 51310.7 ٦ 
0.71 3.36 800 0 44996.9 51310.7 ٧ 
0.84 3.26 960 0 46313.8 51310.7 ٨ 
0.8 3.24 1200 0 46960.17 51310.7 ٩ 
0.776 3.23 1599.9 374 47142.9 51310.7 ١٠ 
  615.99 37.4 44851.472 51310.7  Average  
  511.95 118.26 1443.308 0  Standard deviation 
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