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                                  ABSTRACT KEYWORDS
 

The Weibull distribution has been widely used in survival and 

engineering reliability analysis. In life testing experiments is fairly 

common practice to terminate the experiment before all the items have 

failed, that means the data are censored. Thus, the main objective of 

this paper is to estimate the reliability function of the Weibull 

distribution with uncensored and censored data by using Bayesian 

estimation. Usually it is assigned prior distributions for the 

parameters (shape and scale) of the Weibull distribution. Instead, we 

assign prior distributions for the reliability function for a fixed time, 

that is, for the parameter of interest. For this, we propose different 

non-informative prior distributions for the reliability function and 

select the one that provides more accurate estimates. Some examples 

are introduced to illustrate the methodology and mainly to investigate 

the performance of the prior distributions proposed in the paper. The 

Bayesian analysis is conducted based on Markov Chain Monte Carlo 

(MCMC) methods to generate samples from the posterior 

distributions. 
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1 1-Introduction

Life testing is an important statistical method 

for evaluating the reliability of electronics 

components and systems. With the advent of new 

technologies and manufacturing processes, the 

electronics operate for long time before failing hence 

the cost of a life test becomes more expensive. In this 

case, the life tests are usually finished after a specific 

period of time (Type I censoring) or after a specific 

number of failures have been observed (Type II 

censoring). Numerous references for life test planning 

are available in the statistical and engineering 
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literature, some of them are [1] and some more specific 

in engineering are given by [2], [3] and [4].  

The Weibull distribution is one of the most widely 

used distribution for analyzing lifetime data, 

particularly when the data are censored, due to its 

versatility to model a variety of lifetime data and 

properties. A detailed discussion about its applications 

and properties has been given by [5] and [6]. 

Several methods have been proposed in the literature to 

estimate the parameters and the reliability of the 

Weibull distribution, which the Maximum likelihood 

and Bayesian approaches are the most important.  

In many situations, the maximum likelihood estimation 

(MLE) provides satisfactory estimates mainly as the 

sample size is large, however in reliability analysis, we 

can have small and highly censored samples such that 

the MLE estimation of reliability functions turns out to 
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be imprecise or even unreliable (see for instance [7]). 

In this case, Bayesian inference is desirable for 

estimation of parameters. 

The estimation of parameters from Weibull 

distribution through Bayesian analysis based on 

Types I and II censored data has been considered by 

several authors. [8] explore and compare the 

performance of Maximum Likelihood and Bayesian 

for estimating the survival function. Some 

comparisons of estimation methods for Weibull 

parameters using complete and censored samples 

have been discussed by [9]. Others include [10], [11]. 

The use of Bayesian inference to estimate an 

unknown parameter requires specify a prior 

distribution for the parameter of interest. Usually it is 

assigned prior distributions for the parameters (shape 

and scale) of the Weibull distribution in order to 

estimate de reliability. Instead, in this paper we 

propose prior distributions for the reliability function, 

that is, for the parameter of interest.  

Thus, the main goal of this paper consist on proposing 

different non-informative priors for the reliability 

function with uncensored and censored data, and 

select the one that provides more accurate estimates. 

Bayes point estimates and credible intervals for the 

reliability are also provided. 

Firstly, Jeffreys [12] and reference [13], [14] priors 

are derived for the reliability in the presence of 

uncensored data. When the issue contains censored 

data we consider the proper priors Beta and Negative 

Log-gamma for the reliability under the assumption 

of independence of the parameters. However, in some 

cases we cannot assume independence of the 

parameters, then we propose an alternative prior 

distribution based on the copula function (see for 

example, [15] or [16-17]).  

A special case is given by the Farlie-Gumbel-

Morgenstern copula [18]. 

Secondly, we need to choose one appropriate prior 

distribution for the reliability in each situation: with 

uncensored and censored data set. 

Due to the complex analytical form of the posterior 

distributions obtained, we have used the Markov chain 

Monte Carlo (MCMC) techniques as the popular Gibbs 

sampling algorithm (see for example [19] and [20] or 

the Metropolis-Hastings algorithm [21] to simulate 

samples from the joint posterior in order to compute 

the Bayes estimators and also to construct the posterior 

distribution for the reliability. 

The paper is organized as follows: in Section 2, we 

derive the prior densities for the reliability by using 

Jeffrey and reference priors. Sections 3 and 4 show the 

Bayesian analysis with censored data type II and I, 

respectively. Three examples consisted on real lifetime 

data set are introduced in Section 5. Finally, in section 

6 we present the conclusions.  

 

2. Estimation of The Reliability for Uncensored 

 Data

In many applications we concentrate our interest 

on the reliability function R(t) of a process, defined as 

 ( )   *   +   for    . 

Let X be the lifetime of a component with a Weibull 

distribution, denoted by W(, ) and given by  
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Let x1,  . . ., xn be a random sample of n lifetime 

observations on X, then the likelihood function for the 

parameters  and , based on x, is given by 
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After simple but tedious calculations we find that the Fisher information matrix is given by 
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(4) 

where  (2) and  '(2) are called digamma and 

trigamma functions, respectively. See [22] for details 

of these calculations. 

To derive the asymptotic properties for the estimator 

reliability  ̂( ) we first transform (, ) to (R, W) 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ie
pr

.iu
st

.a
c.

ir
 o

n 
20

25
-0

7-
19

 ]
 

                             2 / 12

https://ijiepr.iust.ac.ir/article-1-636-en.html


259              Fernando Antonio Moala                                            Bayesian Estimation of Reliability of the Electronic 

International Journal of Industrial Engineering & Production Research, December 2014, Vol. 25, No. 4  

where W= and      { (
 

 
)
 

}. Thus, from 

(3), the likelihood function in these new parameters 

(R , W) is given by 
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where 0,10,  WR

t

x
y i

i
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[23] derive the expected information matrix for the parameters (R, W), as  
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(6) 

where    ( )   ( )   .  

In a Bayesian framework it is necessary to specify a 

prior distribution over the parameter space. If prior 

information is unavailable for a process, then initial 

uncertainty about the parameters can be quantified 

with a non-informative prior distribution.  

A well known non-informative prior was proposed by 

[12]. If the variable  has density  (   ), where   is 

an unknown parameter (scalar or vector), then the 

Jeffreys prior, denoted by  ( ), is proportional to 

the square root of the determinant of the Fisher 

information  ( ) , that is,  

)(det)(  I . 
(7) 

Jeffreys prior is widely used due to its invariance 

property under one-to-one transformations of 

parameters. See [24] for more details. 

Thus, from (6) and (7) the Jeffreys prior for the 

parameters R and W is given by: 

.
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(8) 

Reference prior is another one that could be applied for 

the reliability analysis. It was introduced by [13] and 

further developed by [14].  

An important feature in the Berger–Bernardo approach 

to construct a no informative prior is the different 

treatment for interest and nuisance parameters. When 

there are nuisance parameters (typical case in this 

article), one must establish an ordered parameterization 

with the parameter of interest singled out and then 

follow the procedure below. 

Suppose that the joint posterior distribution of (   ) 
is asymptotically normal with covariance matrix 

).ˆ,ˆ()ˆ,ˆ( 1   IS  Thus, under appropriate 

regularity conditions, the joint reference prior can be 

written as the product of two independent functions of 

parameters as follows. 

Theorem: If the nuisance parameter space 
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)()( 1  g       .   ,)()|( 2  h  (10) 

and the reference prior related to the parametric value 

ordered (   ) is given by:  

)()(),( 21  hg      
(11) 

In this case, there is no need for compact 

approximation, even if the conditional reference prior 

is not proper. 

Now, consider the construction of reference prior for 

the reliability function  ( ) given in (2).  

Our parameter of interest is      { (
 

 
)
 

} and 

the nuisance parameter is chosen to be, for 

computational convenience,    , but the answer is 

invariant w.r.t. the choice of     
The information matrix I(R, W) is given by (6) and its 

inverse matrix S(R, W) is: 
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Therefore, the reference prior for (R, W)  is derived as follows: 

)()(
1

lnln)2(2
1

lnln
1

ln

1
),( 11

2

2

1

11 WhRg

d
RRR

R

WRS 
























, 

(13) 

with 

d
RRR

R

Rg




















1
lnln)2(2

1
lnln

1
ln

1
)(

2

1



 ,  such that 

d
RRR

R

R




















1
lnln)2(2

1
lnln

1
ln

1
)(

2 


 .      

(14) 

Similarly,  

)()(
1

lnln)2(2
1

lnln
1

),( 22

2
2

1

22 WhRgd
RRW

WRI 
















       

(15) 

with 
W

Wh
1

)(2   , and thus  

.
1

)|(
W

RW       
 
(16) 

Hence, using the theorem before, the joint reference prior with parameter of interest R is:  
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In Bayesian inference, all the uncertain quantities are 

modeled in terms of their joint prior distribution and 

then they are updated, given the data sample, in terms 

of the joint posterior distribution. Therefore, the joint 

posterior for the parameters (R , W) is given by:  
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where  (   ) is a appropriate joint prior with 10  R  and 0W . 

Although the priors (8) and (17) on R and W are 

improper the corresponding posteriors are proper’s. 

Now, integrating (18) with respect to W yields the 

marginal posterior of R as 
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(20) 

is the normalizing constant. 

Clearly, it is so difficult to find an analytic solution 

for integrals (19) and (20) and it is necessary to 

employ software to perform a numerical integration. 

In this case, we need to appeal to the MCMC 

(Markov Chain Monte Carlo) algorithm to obtain the 

marginal posterior density for  and summaries of 

interest. 

 

3. Estimation of the Reliability for Censored 

Data Type II 

In a censored scheme type II, we placed the 

units on test and terminated the experiment after the 

occurrence of  -th failure (  fixo,      ). This 

means that the observed data consist of the smallest   

observations. The number of failures   is fixed before 
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the experiment is run. The likelihood function based 

on   the failures time  ( )    ( ) is given by  
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For lifetimes of the components following the 

Weibull distribution given in (1), the likelihood 

function corresponding to the above sampling scheme 

is given by 
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For a Bayesian analysis of this censored scheme, we 

could consider different prior distributions for 

reliability  ( ). 
An alternative approach to obtain the posterior 

distribution for the reliability function could be 

considered. Instead to use a prior distribution for the 

parameters  and  of Weibull model we could use a 

distribution under range in the interval [0, 1] to 

represent the prior distribution for the reliability  ( ), 
at time t fixed. 

A prior distribution for   that could be used is the Beta 

distribution, with density given by  
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function with 
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 , respectively.  

The family of Beta distributions is frequently used as 

prior model for reliability of a component in binomial 

and Pascal sampling [25]. 

The Beta(0, 0) distribution is an improper prior and 

sometime also is used to represent ignorance of 

parameter values. 

Now, since    is a nonnegative variable in (11), it is 

assumed that the prior distribution for   is Beta(   ) 
and for   is Gamma(   ), resulting in the joint prior 

density given by 
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with hyper parameters             and 

   . 

For the censored scheme type II, the likelihood 

function for   and   can be found by substituting 

the Weibull parameters  and  in (22) by   
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} and    . Thus, the likelihood 

function may be rewritten as:  
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Other prior specification for the reliability function 

consists of assigning a  Negative Log-Gamma 
distribution for  . In this case, the density with   and 

 hyper parameters  is given by: 
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denoted by ),( kNLG . It can be shown that the 

mean and variance are given by 
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It is not difficult to show that the cumulative function 

for R  corresponding to the above equation is given 

by: 
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  (27)  

where  (   ) is the incomplete gamma function. 

[26] provides a discussion of the negative log-gamma 

distribution. 

According to [25], the Negative-Log Gamma 

distribution represents an alternative procedure in 

selecting prior distributions when the practitioner is: 

more knowledgeable about reliability properties than 

just the failure rate characteristics of the item under 

study. Again a gamma distribution would be assigned 

to the parameter   and joint prior density will be 

given by: 
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(28) 

with hyper parameters             and 

   . 

Now, assuming dependence between the parameters 

  and  , we also could consider a bivariate prior 

distribution derived from copula functions (see for 

example, [15], [16] and [27]). 

A special case is given by the Farlie-Gumbel-

Morgenstern Copula [18] with corresponding bivariate 

prior distribution for   and   given  , is given by 

  ,)(21)(21)()()()()|,( 112121 WFRFWfRfWfRfWR        (29) 

 

where )(1 Rf  and )(2 Wf are the marginal densities 

for the random quantities R and  ; )(1 RF  and 

)(2 WF are the corresponding marginal distribution 

functions. 

Observe that if    , we have independence between 

R and    
In this article, we will assume Gamma marginal 

distribution for   and both joint Beta and Negative 

Log-Gamma marginal distributions for the reliability 

,R resulting in two different prior distributions for 

(   ). They are respectively given by: 
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and  
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(31) 

with 10  R  and .0W  ),( zuI x  is the 

cumulative function of the Beta variable and it is called 

Incomplete Beta function. 

The posterior distributions for the parameter 

),,( WR  are obtained multiplying the likelihood 

function (25) and each prior distribution in (30) and 

(31), that is, 

,2,1),()|,()|,()|,(  iWRxWRLxWRp ii 

 where )(  is a prior distribution for .  

In general, many different priors can be used for  ; 

one possibility is to consider 
c)1()( 2  ,     (32) 

with a specified value for the constant   ; other 

possibility is to consider a uniform prior distribution 

for  over the interval ]1,1[ . 

 
4. Estimation of the Reliability for Censored 

Data Type I 

In a censored scheme Type I, the test is 

terminated when a pre-specified time point,  , on test 

has been reached. One more complicated form of type I 

censored data is to consider an experiment where each 

tested component has its specific censored time, 

because not all units start the test on the same date. A 

Type-I censoring sampling scheme can be described as 

follows.  

Suppose   electronic components are placed on a life 

testing experiment. The lifetimes of the sample units 

are independent and identically distributed (i.i.d.) 

random variables. It is assumed that the failed items are 

not replaced. 

We consider         the censored times are fixed 

for each unit in the experiment. The lifetime    of the 

ith unit will be observed if                
Therefore, the observed data is (ti ,i ), where 

ti = min(Xi , Li ),     (33) 

and 
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(34) 

 

is the indicator random variable    which implies if    
is censored or not. 

If the pairs (ti ,i ) are independent, then the likelihood 

function is given by: 
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(35) 

where  ( ) is the survival function. 

In this censored scheme, the likelihood function on the 

parameters ),( WR  is given by 
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(36
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For a Bayesian analysis of the reliability under type I 

censored data we consider the same prior distributions 

discussed in the previous section, but the likelihood 

will be given by equation (36). 

 

5. Numerical Illustration  
In this section we introduce three practical 

examples with real lifetime data set to illustrate the 

proposed approaches and for comparing the 

performance of the prior distributions presented in 

this article.  

The maximum likelihood and Bayesian estimators are 

also compared.  

As the joint posteriors seem quite intractable and 

therefore we cannot obtain marginal posteriors 

analytically we need to employ Markov chain Monte 

Carlo (MCMC) techniques to determine them.  

Specifically, we run an algorithm for simulating a long 

chain of draws from the posterior distribution, and base 

inferences on posterior summaries of the parameters or 

functional of the parameters calculated from the 

samples. Details of the implementation of the MCMC 

algorithm used in this paper are given below: 

i) choose starting values    and     with      
 ; 

ii) At step i+1, we draw a new value      conditional 

on the current    from the Beta distribution  (    
(      ); 
iii) the candidate       will be accepted with a 

probability given by the Metropolis ratio 

 

 (       )     {  
 (

   
    

  )  (        | )

 (
     
      

  )  (      | )
}   

 

(37) 

 
iv) sample the new value      from the Gamma 

distribution  (       )  
v) the candidate      will be accepted with a 

probability given by the Metropolis ratio 

 (       )

    {  
 (       ) (          | )

 (         ) (        | )
} 

 

(38) 

The proposal distribution parameters  and  were 

chosen to obtain good mixing of the chains and the 

chain is run for 25000 iterations with a burn-in period 

of 5000. The convergence of the MCMC samples of 

parameters is assessed using the criteria of Raftery 

and Lewis [28] diagnostic.  

 

5-1. Fist Example (Uncensored Data) 

This example was proposed by [29] on the fatigue life 

of ball bearings. The following observations denote 

the number of cycles to failure: 

17.88, 28.92, 33, 41.52,42.12,45.6,48.48, 51.84, 

51.96, 54.12, 55.56, 67.80, 

68.64, 68.88, 84.12,93.12, 98.64, 105.12, 105.84, 

127.92, 128.04, 173.40.  

[29] argued that the Weibull is a suitable model for 

describing these data.  

The maximum likelihood estimator of reliability for 

      is approximately 0.22.  

For a Bayesian analysis of the data let us assume the 

prior distribution (8) and (17) for the vector (   )  
Using the software R we first simulated 5,000 MCMC 

samples ("burn-in-samples") for the joint posterior 

distribution for   and   that were discarded to 

eliminate the effect of the initial values used in the 

iterative simulation method. 

After this "burn-in-period", we simulated other 20,000 

samples. The convergence of the Gibbs sampling 

algorithm was monitored from trace plots of the 

simulated samples.  

The posterior summaries of interest and credible 

intervals considering the Jeffreys and Reference prior 

distributions are given in Table 1. 
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Tab.1. Posterior summaries and interval for R(100)from Prior  

Estimators Jeffrey’s Reference 

Mean 0.239 0.244 

Variance 0.005 0.005 

Credible interval (0.116; 0.389) (0.119; 0.404) 

 

According to the results shown in Table 1, the 

probability of the lifetime of ball bearings is greater 

than 100 cycles is 0.24. It is also observed that the 

Jeffreys and reference priors adopted for solving this 

problem have produced similar results. 

For comparison of the both priors proposed in this 

example, the marginal posteriors resulting for   are 

plotted in Figure 1. 

 

Fig.1. Plots of marginal posterior distributions of reliability at       

5-2. Second Example (Presence of Censored Data 

Type I) 

[30] considers a situation in which pieces of equipment 

are installed at different times. At a later date some of 

the pieces will have failed and the rest will still be in 

use. The data is arranged in Table 2, showing results 

for 10 pieces of equipment. The life test in question 

was terminated on August 31. 

 

Tab.2. Operating Times for 10 Pieces of Equipment 

Item Number 1 2 3 4 5 

Date of installation 11 June 21 June 22 June 2 July 21 July 

Date of failure 13 June     --- 12 August ---- 23 August 

Lifetime (days) 2     51     33 

Item Number 6 7 8 9 10 

Date of installation 31 July 31 July 1 August 2 August 10 August 

Date of failure 27 August 14 August 25 August 6 August --- 

Lifetime (days) 27 14 4 4     
 

At that time three items (numbers 2, 4, and 10) had still 

not failed, and their failure times are therefore 

censored; we know for these items only that their 

failure times exceed 72, 60, and 21 days, respectively. 

 

Item  1  2  3  4  5 6  7  8 9 10 

   2 -- 51 -- 33 27 14 24 4 -- 

   81 72 70 60 41 31 31 30 29 21

The lifetime of items 2, 4 and 10 are censored. It will 

be noted that the effective censoring times are known 

for all items. The data give      

Now we compute the Bayes estimators of   for 

    . Assuming there is no prior information we 

consider the following prior distributions  
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i)       (   ) and     (         )   
i)      (        ) and     (         )   
In this example we also consider the copula prior (29) 

with log-gamma negative and gamma marginal 

distributions for   and  , respectively. We will 

assume known the hyper parameters with       
           to have noni formative prior. 

We also need to appeal to numerical procedures to 

extract characteristics of marginal posterior 

distributions such as Bayes estimator and credible 

intervals.  

We can then use MCMC algorithm. 

The resulting Bayesian estimators for the reliability is 

given in Table 3 and the marginal posterior densities 

under the three priors are displayed in Figure 2. 
 

Tab.3. Posterior summaries and interval for R(30) from each Prior  

Estimators Beta LGN Copula 

Mean 0.491 0.499 0.494 

Variance 0.016 0.016 0.015 

Credible interval (0.246; 0.740) (0.261; 0.742) (0.249; 0.739) 

 

 

Fig.2. Marginal posterior densities for the parameter   with      

 

Comparison of the point estimators provided by the 

priors shows there is no difference among them and 

similar result is observed among the three credible 

intervals. Examining the Figure 2 we observe that the 

three classes of priors provides quite similar posterior 

densities.  

[1] also discusses this example but with  an exponential 

distribution fitted to this dataset. The maximum 

likelihood estimator for the reliability parameter is 

0.506 and the 95% confidence interval is [0.07; 0.676]. 

Note that the Bayesian intervals are smaller than this 

one. 

 

5-3.Third Example (Presence of Censored Data 

Type II) 

[31] provide data on the failure times of aircraft 

components subject to a life test. The data are obtained 

from      randomly selected test items and the life 

test terminate at the observed failure of the 10th item. 

The      observed lifetimes were (in hours): 

0.22, 0.50, 0.88, 1.00, 1.32, 1.33, 1.34. 1.76. 2.50, 3.00. 

These data have been discussed by [1], who fitted a 

Weibull model to these data. The maximum likelihood 

estimator for the reliability at     (for example) is 

given by  ̂       . Thus, the estimated probability 

of the lifetime of components of an aircraft is greater 

than two hours is approximately 0.22. 

For a Bayesian analysis of the data let us assume the 

same prior distributions proposed in the second 

example. The Bayesian summaries, obtained 

numerically by the MCMC algorithm, are displayed in 

Table 4. 

Tab.4. Posterior summaries and credible interval for  ( ) from each prior  
Estimators Beta LGN Copula 

Mean 0.212 0.224 0.222 

Variance 0.010 0.011 0.011 

Credible interval (0.056; 0.444) (0.066; 0.465) (0.064; 0.457) 
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From the results of Table 4, we observe similar results 

assuming the priors studied in this article. However, 

the maximum likelihood estimator for reliability differs 

considerably from the Bayesian estimator. 

We also plot in Figure 3 the posterior densities from 

each prior distribution studied. Observe that we have in 

this example a small size (n = 13 observations). 

 

 

 Fig.3. Densidades marginais a posteriori para o parâmetro  . 
 

6. Concluding Remarks
In this article, we analyze different non-

informative prior distributions for the estimation of 

reliability applied to the Weibull model under censored 

and uncensored data. The performance of the priors is 

examined by comparing their posterior summaries and 

intervals. The motivation for this work is particularly 

due to the importance of using non-informative priors 

when relatively little prior information is available and 

mainly due to the informative priors, based on 

subjective methods, are usually more difficult to apply 

in practice situations. 

We have explored two important classes of non-

informative prior distributions to estimate  ( ) for 

uncensored data. The focus is on the comparison of 

Jeffreys and reference priors and both priors seem to 

perform equally for the Example 1. However, if we had 

to choose one of them, the Jeffreys prior would be 

recommended since it is easier to use and due to having 

the property of being invariant under transformations 

while the reference prior is typically difficult to use in 

practice. Moreover, it has undesirable properties 

including lack of invariance to parameterization and no 

uniqueness of prior due to the choice of the parameter 

of interest. 

In the case of censored data it is not always possible to 

obtain the expected information matrix and 

consequently the Jeffreys and Reference priors can not 

be obtained. 

In the presence of censored data we firstly consider the 

Bayesian analysis by assuming independence of 

parameters   and   with Beta and Negative log-

gamma distributions as priors for the reliability  ( ), 
which has not often been considered in the literature as 

priors for this parameter. 

Assuming dependence between the parameters we also 

propose a bivariate prior distribution derived from the 

Farlie-Gumbel-Morgenstern copula. The copula 

approach could be a good alternative to provide a noni 

formative prior for the parameters. Its flexibility and 

analytical tractability suggest that it is a promising way 

to represent dependence. Furthermore, side conditions 

reflecting initial information about the marginal 

distributions for parameters that may be available can 

readily be utilized in deriving copula prior.  

Although the results show that priors had the same 

performance for the Examples 2 and 3, we recommend 

the copula prior distribution for routine applied use. 

Our study has focused on the Weibull distribution 

under type I and II censored data however, it would be 

of interest to conduct similar studies for the 

progressive censoring scheme. Another important 

research we are also interested consist on propose a 

subjective prior distribution based on the expert 

information in order to improve the accuracy of the 

parameter estimation. 

.
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