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KKEEYYWWOORRDDSS                                  ABSTRACT 
 

 

In this paper we focus on a continuously deteriorating two units series 
equipment which its failure can not be measured by cost criterion. 
For these types of systems avoiding failure during the actual 
operation of the system is extremely important. In this paper we 
determine inspection periods and maintenance policy in such a way 
that failure probability is limited to a pre-specified value and then 
optimum policy and inspection period are obtained to minimize long-
run cost per time unit. The inspection periods and maintenance policy 
are found in two phases. Failure probability is limited to a pre-
specified value In the first phase, and in the second phase optimum 
maintenance thresholds and inspection periods are obtained in such a 
way that minimize long-run expected. 
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11..  IInnttrroodduuccttiioonn∗∗  

 Reliability is one of the important issues in the 
assessment of industrial equipment or products. Good 
product design is of course essential for products with 
high reliability. However, no matter how good the 
product design is, products deteriorate over time since 
they are operating under certain stress or load in the 
real environment, often involving randomness. 
Maintenance has, thus, been introduced as an efficient 
way to assure a satisfactory level of reliability during 
the useful life of a physical asset.  
The main idea behind Condition Based Maintenance 
(CBM) is to provide decision support for maintenance 
actions. As such, it is natural to include maintenance 
policies in the consideration of the machine prognostic 
process. The aim of CBM is to optimize the 
maintenance policies according to certain criteria such 
as risk, cost, reliability and availability. In those CBM 
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models which cost is taken as optimization criterion, 
the optimum policy is obtained by minimizing the long 
run cost per time unit (see [2]).   
In general CBM models fall into two categories: 
completely observable systems and partially observable 
systems. The state of the system in a completely 
observable system can be completely observed or 
identified. First of all we discuss completely observable 
systems. [1] focus on the analytical modeling of a 
condition based inspection/replacement policy for a 
stochastically and continuously deteriorating single 
unit system. They consider both the replacement 
threshold and the inspection schedule as decision 
variables for the problem.  
They minimize the long run expected cost per unit time 
by the stationary law for the system state. [11] utilized 
a Markov chain to describe the CBM model for a 
deterioration system subject to periodic inspection the 
optimal inspection frequency and maintenance 
threshold were found to maximize the system 
availability. [3] consider a two unit system which can 
be maintained by good as new preventive or corrective 
replacements.  
They develop a stochastic model based on the semi-
regenerative properties of the maintained system state 
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and the associated cost model is used to optimize the 
performance of the maintained model. [8] uses Monte-
carlo simulation to model the continuously monitored 
deteriorating systems. They assume that after each 
maintenance action a random amount of improvement 
is made on the state of the system which is independent 
of current system state. Then the optimized thresholds 
of maintenance are such found that the total expected 
cost of system be minimized. [10] considers a 
continuously deteriorating system which is inspected in 
random times. In this model, they assume that 
deterioration follows a gamma distribution and system 
fails if its condition lies upper than a pre-specified 
threshold. In their model two types of replacement can 
be done depending on the fact that system is failed or 
the condition of system exceeds a critical threshold.  
Now we consider partially observable systems. [6], 
proposes a CBM model which assumes that failure rate 
of the system depend on the variables of the system 
state and fixed inspection periods. Then the 
maintenance action is optimized such that the long 
term costs of maintenance actions and failures are 
minimized. [5] suggest an approach based on reliability 
that inspection periods and maintenance thresholds are 
such estimated that the global cost per unit time is 
minimized. [4] build the semi-Markov decision process 
for the maintenance policy optimization of condition 
based preventive maintenance problems and present 
the approach for joint optimization of inspection rate 
and maintenance policy [7] applied a stochastic 
recursive control model for CBM optimization based 
on the assumptions that the item monitored follows a 
two-period failure process with the first period of a 
normal life and the second one of a potential failure. A 
stochastic recursive filtering model was used to predict 
the residual, and then a decision model was established 
to recommend the optimal maintenance actions. The 
optimal condition monitoring intervals were 
determined by a hybrid of simulation and analytical 
analysis. [9] determines the length of the next 
condition monitoring interval for a given risk level. 
As discussed earlier, in CBM the maintenance policies 
are optimized according to certain criteria such as risk, 
cost, reliability and availability. Risk is defined as the 
combination of probability and consequence. Usually, 
consequence can be measured by cost. In this case, risk 
criterion is equivalent to the cost criterion. However, 
there are some cases, e.g., critical equipments in a 
power plant, in which consequence cannot be estimated 
by cost. For some systems, such as aircrafts, 
submarines, military systems, and nuclear systems, it is 
extremely important to avoid failure during actual 
operation because it can be dangerous or disastrous 
(see [7]). Therefore, failure probability is more 
important than cost in such systems. In these scenarios, 
probability or reliability criterion would be more 
appropriate. The novelty of this work stems from the 
fact that failure probability of the series system is 
restricted to a pre-specified value. 

2. Notations and Problem Formulation  
• i

tX     State of the system i  at time t . 

• i
tY  The amount of deterioration occurred in period 

t  on system i . 

• 1ξ      Preventive maintenance threshold. 

• 2ξ      Preventive replacement threshold. 

• 
pmC  The cost incurred by preventive maintenance 

action. 
• 

prC   The cost incurred by preventive replacement 

action which is strictly bigger than 
pmC . 

• 100(1 )tα−   The percent of improvement made on 

the system due to preventive maintenance action. 
• C∞    The long-run average cost per time unit. 

• ( , )x yπ  Stationary law of the deterioration process. 

• (.)Eπ    Expected value function at steady state. 

• ( )f x  Probability density function of deterioration 

occurring during one period. 
• ( )tXλ  Failure rate of the system. 

• T       The time between two successive inspection 
periods. 

• p  Maximum allowed Failure probability 

determined by decision maker group. 
• mT  Time to preventive maintenance action 

completion. 

• rT      Time to preventive replacement completion. 

• 
InsT       Inspection time 

• dC        System down time cost per time unit. 

• 
pmsC  Set up cost of preventive maintenance 

action. 
• 

prsC   Set up cost of preventive replacement action. 

• (t)C   Cumulative cost per unit time till time t . 
 

Many manufacturing equipment suffer increasing wear 
with usage which are subject to random failures 
resulting from this deterioration. Examples of these 
systems are cutting tools, hydraulic structures, brake 
linings, airplane engine compressor blades, corroding 
pipelines and rotating equipment (see [1]). 
Also we assume that the system is inspected at 
equidistant times and time to failure follows an 
exponential distribution and failure rate is a linear 
increasing function of system condition. For 
simplification, failures are assumed to occur at the end 
of a period. This will not affect the policy much as long 
as intervals are not too long. 
At the end of each period a decision is made to initiate 
either a preventive maintenance or preventive replacement 
action according to system condition. The preventive 
maintenance action is initiated when the state of system 
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exceeds a threshold 1ξ  and the preventive replacement 

action is initiated when the state of system exceeds a 

threshold 2ξ  where
2 1ξ ξ> . Figure 1 shows the 

deterioration evolution of the system for 0 0iX = .  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For each change of time tΔ , the random deteriorations 

i i
t t tX X+Δ −  is assumed to be independent and have the 

same probability density function. Natural candidates 
for the associated probability density function can be 
obtained in the class of infinitely divisible distributions, 
e.g. gamma distributions. The exponential distribution is 
a special case of gamma distributions. This distribution 
is easier to further investigate developments for the 
evaluation of the maintenance policy. Therefore we 
assume time to failure follows a non-homogeneous 
Poisson process, and the failure rate is an increasing 

function, ( )i
tXλ , of the variable i

tX ( see [14] for more 

details). We assume a linear relationship. The 
reliability of the system is the probability that the 
system will not fail by the end of time period t . 
According to Eq.(1), the state of system at the end of 
period t  is

1
i i i
t t tX X Y+ = + , So the reliability of our 

system at the end of period t  is given by: 
 

- ( )Re
i i
t tX Y Te λ +=                                                   (1) 

 

where T  is the time between two successive 
inspection periods. Formula (1) is identical to the 
probability that time between failures is greater thanT . 
As discussed in section 1, we also assume that the 
failure of our critical equipment can not be measured 
by cost. So in order to avoid failure during operation of 
the system, the decision maker group constrains failure 
probability to a maximum allowed value p . Since 

failure rate depends on the system state, for a large 
threshold the failure probability would be large. 
Because in optimum policy the failure probability must 
not exceed p , first of all we obtain an interval for the 

thresholds. Then the optimum thresholds are 
determined by minimizing the cumulative cost per time 
unit. 

These two thresholds are determined such that the 
cumulative cost of maintenance and failure per time 
unit is minimized.  
If no failure occurs during period t  , the condition of 

system at the beginning of period 1t +  is: 
 

1
i i i
t t tX X Y+ = +                                                            (2) 

 

where i
tY  is the deterioration occurred in period t . 

A stochastic regeneration process is characterized by 
accumulation of a stochastic input process and an 
output mechanism that removes all the present quantity 
whenever it exceeds a critical level. As discussed in 
section 2, after replacement of the system, it is in the 
good as new initial state and its future evolution does 
not depend any more on the past. These replacement 
times are regeneration points for the system. [12] 
Shows that for a regeneration process, as time 

increases the distribution of i
tX  converges to the steady 

state distribution. The assumption of restoring the 

system state to 0
iX  when system state reaches 2ξ  tells 

us that after each preventive replacement action the 
system state is independent of what has happened 
before. 
The long-run average cost per time unit is defined as 
follows:  
 

( ( ))
lim
t

E C t
C

t∞ →∞
=

                                                      (3) 
 

From the regenerative properties of the deterioration 
process ( )i

t tX ∈�  the limit of Eq. (3) at infinity can be 

changed into a ratio of expectations with respect to the 
stationary law π  over one regeneration cycle at steady 
state: 

7t 6t 4t 3t 2t 

2
0.3 tX 6

0.35 tX

1ξ 

1t 

2ξ 

Fig. 1. Simulated behavior of the deteriorating system 
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( ( ))

( )

E C S
C

E S
π

π
∞ =

                                                          (4) 
 

where S  is the time between two successive 
regenerative points of the deterioration process at 
steady state. ( )E Sπ  is the expected length of one 

regenerative cycle at steady state with respect to π . 

( ( ))E C Sπ  is the expected cumulative cost incurred 

by inspections on the first regenerative cycle. 
Let 1 2( , )x x  and 1 2( , )y y  be the system deterioration 

levels observed at the end of two successive 
maintenance operations. The possible scenarios are the 
followings: 
 

Scenario 1: 1 1 2 1,x xξ ξ< < . The two components 

are left as they are and the probability density function 
of amount of occurring deterioration for each unit is 

( ) ( )T
i if y x− . 

 

Scenario 2: 
1 1 1 2 2,x xξ ξ ξ< < <  or 2 1 1 1 2,x xξ ξ ξ< < < . 

The unit for which 1 2ixξ ξ< < is preventively 

maintained to 0
iX  and the other one is left as it is. The 

probability density function of amount of occurring 
deterioration will be ( ) ( )T

if y . 

Scenario 3: 1 1 2 2,x xξ ξ< < <∞ or 
2 1 2 1,x xξ ξ< < < ∞ . 

The unit for which 2 ixξ < < ∞ is replaced and the 

new system state is 0
iX . the probability density 

function of amount of occurring deterioration for this 
unit is ( ) ( )T

if y  and for the other unit is as in scenario 

1. 
 

Scenario 4: 
1 1 2 2 2,x xξ ξ ξ< < < <∞ or 

1 2 2 2 1,x xξ ξ ξ< < < <∞. 

The unit for which 1 2ixξ ξ< < is preventively 

maintained to 
0
iX  and the probability density function 

of amount of occurring deterioration is as scenario 2. 
The other unit is replaced and the new system state is 

0
iX . the probability density function of amount of 

occurring deterioration for this unit is ( ) ( )T
if y . 

 

Scenario 5: 
1 1 2 1 2 2,x xξ ξ ξ ξ< < < < . The two components 

are is preventively maintained to 
0
iX  and the 

probability density function of amount of occurring 
deterioration for each unit is ( ) ( )T

if y . 

Scenario 6: 
2 1 2 2,x xξ ξ< < . The two components are 

replaced and the probability density function of amount 
of occurring deterioration for each unit is ( ) ( )T

if y . 
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By integration on the whole state space, the description 
of the different maintenance actions as is shown in 
Figure 1 can lead to the following expression of the 

stationary probability density for the deterioration 
process at inspection times. where ( ) ( )Tf x  is T th 

convolution of probability density function of amount 
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of deterioration occuring during two successive 
periods.  
The evaluation of π is tricky and requires to solve a 
one sided integral equation. Hence due to complexity 
of Eq.(5) we do not use stationary distribution of the 

deterioration process to minimize cumulative cost per 
time unit. 
These implications seem enough to use simulation in 
minimizing total cumulative cost per time unit. 

 

 
Fig. 2-1. Failure probability of different maintenance policies 

 

 
Fig. 2-2. Optimum results for the constrained failure probability 

 
3. Optimization Procedure 

In order to simulate continuous deterioration 
process we discretize the state space. We assume that 
between exponentially distributed times there exists a 
small amount of deterioration Δ . Therefore we 
have

1t tX X N+ = + Δ .  

As discussed earlier the probability of failure during 
period t is given by: 
 

( )1 t tX Y Te λ− +−                                                           (6) 
 

Let triple 
1 2( , , )Tξ ξ  denote a combination of 

thresholds and inspection period for our critical 
deteriorating system. First of all we split feasible space 
into different thresholds and inspection periods and 
select several points 

1 2( , , )Tξ ξ  from the feasible space 

for simulation.  
Then failure probability (see Equation (1)) of the 
system at infinity is calculated as discussed earlier. 
Those triples for which failure probability does not 
exceeds p are selected for the optimization in the next 
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period. In order to obtain more precise solutions, this 
search can be performed finer. 
First of all 

1ξ , 
2ξ  and T are determined in such a way 

that the mean of failure probabilities defined by (6) at 
the end of each period does not exceed p . Taking 

mean smoothes the influence of outlier failure 
probability.  
In the next stage the optimum value of 

1ξ , 
2ξ  and 

T are obtained by minimizing cumulative cost per unit 
time. Then in the second phase of the algorithm, 
optimum value of these variables are determined from 
these intervals. 
At the end of inspection period t  if the amount of 
deterioration is bigger than 

2ξ  the preventive 

replacement action is initiated which takes rT  units of 

time to complete. At the beginning of the next 
inspection period the system state is i

tX . In this case 

the cumulative cost per unit time is 

 
r dpr prs(t)

( 1) (t-1) T C
C

t

t C C C+ +
=

− +

              (7) 
 
here 

rT  is assumed to follows a lognormal distribution. 

The preventive replacement and preventive 
maintenance times can be estimated from the 
replacement and maintenance time data.  

If the amount of deterioration is less than 2ξ  and bigger 

than 1ξ  the maintenance action is initiated which takes 

mT  units of time to complete and at the beginning of 

the next inspection period the system state is 
0X . In 

this case the cumulative cost per unit time is 

 
( 1) ( -1)

(t) pms m dpmt C t C T C
C

t

C− + + +
=                 (8) 

 
if the system state is less than 1ξ  the cumulative cost 

per inspection period is 

 
Ins( 1) (t-1)+

(t) dt C T C
C

t

−=
                                     (9) 

 
4. Numerical Results 

We simulated this deterioration process for 

pm pr d

pms prs

0.2, 10, 0.3, 1, 4, 16,

0.2, 0.5, 0.2

C C C

C C p

μ λΔ = = = = = =

= = =
Figure 2 shows the obtained results for the objective 
failure probability for 1T = . There are four plots 

corresponding to 
2 2 2 22, 4, 6, 8ξ ξ ξ ξ= = = = . It is 

obvious from Figure 2 that if we intend to limit failure 
probability to 20%, then the optimum results for 

1 2( , , )Tξ ξ  are as follows: 
 

(1, 1, 1), (1, 2, 1), (1, 2, 2), (1, 4, 1),

(2, 4, 1), (2, 4, 1), (1, 4, 2), (2, 4, 2),

(1, 6, 1), (2, 6, 1), (3, 6, 1), (4, 6, 1),

(1, 6, 2), (2, 6, 2), (1, 8, 1), (2, 8, 1),

(3, 8, 1), (1, 8, 2),                    (10) 
 
We simulated the deterioration process for 1000 
periods in each of these different triples in (10) and 
choose the optimum policy. The obtained results are 
shown in figure 3. As is obvious from figure 3 the 
optimum result is (2, 4, 1) . According to figure 2, the 

failure probability for this policy is nearly 0.12. 

 
5. Conclusions 

In this paper we considered a two units series 
critical system suffering from continuous deterioration. 
Since failure of this system can be disastrous it had 
better to find a policy which constrains failure chance 
to a pre-specified value. The failure probability was 
obtained for different policies, and then optimum 
policy based on long-run cost per time unit was found. 
Adopting this policy guarantees a chance of failure less 
than 0.2 with the most possible low cost. The 
complexity of the system motivated us to use 
simulation to optimize maintenance policy. In order to 
obtain an optimum result with a high degree of 
confidence, probability density function of the 
deterioration process at infinity can be computed and 
expected cost of maintenance according to this 
probability density function must be calculated to 
minimize maintenance costs. This stationary 
distribution of deterioration process can be obtained 
from numerical analysis methods as discussed in the 
paper.  
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