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KKEEYYWWOORRDDSS                                  ABSTRACT 
 

 

Multiple Objective Programming (MOP) problems have become 
famous among many researchers due to more practical and realistic 
implementations. There have been a lot of methods proposed 
especially during the past four decades. In this paper, we develop a 
new algorithm based on a new approach to solve MOP problems by 
starting from a utopian point (which is usually infeasible) and moving 
towards the feasible region via stepwise movements and a plain 
continuous interaction with Decision Maker (DM). We consider the 
case where all objective functions and constraints are linear. The 
implementation of the proposed algorithm is demonstrated with two 
numerical examples. 
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11..  IInnttrroodduuccttiioonn  
 During the past four decades, many methods and 
algorithms have been developed to solve Multiple 
Objective Programming (MOP) problems, in which 
some objectives are conflicting and the utility function 
of the Decision Maker (DM) is imprecise or fuzzy in 
nature. MOP is believed to be one of the fastest 
growing areas in management science and operations 
research, in that many decision making problems can 
be formulated in this domain. Decision making 
problems with several conflicting objectives are 
common in practice. Hence, a single objective function 
is not sufficient to guide the search for the optimum 
solution for such problems. Because of this limitation, 
a MOP method is needed to solve many real world 
applications (J. Kim and K. Kim, 2006).  
Although different solution procedures have been 
introduced, the interactive approaches are generally 
believed to be the most promising ones, in which the 
preferred information of the DM is progressively 
articulated during the solution process and incorporated 
into it. The purpose of MOP problems in the 
mathematical programming framework is to optimize r 
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different objective functions, subject to a set of 
systematic constraints. A mathematical formulation of 
a MOP problem is also known as the vector 
maximization (or minimization) problem. Generally, 
MOP problems can be divided into four different 
categories. The first group of MOP problems does not 
need to get any information from DM during the 
process of finding an efficient solution. These types of 
algorithms rely solely on the pre-assumptions about 
DM's preferences. In this category, L-P Metric 
methods are noticeable, algorithms whose objectives 
are the minimization of deviations of the objective 
functions from the ideal solution. Since different 
objectives are different in nature, they must be 
normalized before the process of minimization of 
deviations starts. Therefore, a new problem is 
minimized which has no scale (Zeleny, 1982). The 
second group of MOP problems includes gathering 
cardinal or ordinal preferred information before the 
solving process initiates. In the method of Utility 
Function (Kenney and Raiffa, 1976), for example, we 
have to determine DM's utility as a function of 
objective functions and then we maximize the overall 
function under the initial constraints. The other method 
in this group, which is extensively used by many 
researchers, is Goal Programming (GP) (Romero, 
1991; Gibbs, 1973) in which DM determines the least 
(the most) acceptable level of Max (Min) functions. 
Since attaining these values might lead to an infeasible 
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point, the constraints are allowed to exceed, but we try 
to minimize these weighted deviations. 
The third group of MOP problems provides a set of 
efficient solutions in which DM has an opportunity to 
choose his preferred solution among the efficient ones 
(Hwang and Masud, 1979). The set of all efficient 
feasible solutions in a Multiple Objective Linear 
Programming (MOLP) problem can be represented by 
convex combination of efficient extreme points and 
efficient extreme rays in the feasible region. Therefore, 
the set of efficient extreme points and efficient extreme 
rays can be regarded as the solution set for a MOLP 
problem (Ida, 2005). Finally, the forth group of MOP 
problems provides solutions based on a continuous 
interaction with DM and tries to reach the preferred 
solution at the end of the algorithm. Based on this 
sound idea, there are many developed methods 
categorized in this group. Homburg (1998), for 
instance, proposed a hierarchical procedure which 
consists of two levels, a top-level and a base-level. The 
main idea is that the top-level only provides general 
preference information from DM. Taking this 
information into account, the base-level then 
determines a compromise solution via interaction with 
DM by using an interactive procedure.  
As another instance, Tchebycheff metric based 
approaches have become popular in this category for 
sampling the set of efficient solutions in an continuous 
interaction with DM to narrow his choices down to a 
single most preferred efficient solution. These 
approaches systematically reduce the set of efficient 
solutions which remain available for identification and 
selection from one iteration to the next. The only 
requirement on the part of the DM is to select a single 
most preferred solution from among a more and more 
concentrated set of efficient solutions at each iteration 
(Reeves and MacLeod, 1999). The interaction with 
DM proceeds by generating smaller subsets of the 
efficient set until a final solution is located.  
To see another works in the group of interactive 
methods, interested reader can refer to (Geoffrion, 
1972; Reeves and Franz, 1985; Zionts and Wallenius, 
1983; Benayoun et al., 1971; Hwang and Masud, 1979; 
Tabucanon, 1988; Steuer and Choo, 1983; Steuer et al., 
1995; Sun et al., 2000; Gardiner and Steuer, 1994; 
Malakooti and Alwani, 2002; Kaliszewski and 
Michalowski, 1999; Sun et al., 2000; Chen and Lin, 
2003). There are many advantages on using interactive 
methods such as: 
 there is no need to get any information from DM 

before the solving process initiates, 
 the solving process helps DM learn more about the 

nature of the problem, 
 only minor preferred information are needed 

during the solving process, 
 since DM continuously contributes via analyst to 

the problem, he is more likely to accept the final 
solution, 

 there are fewer restricting assumptions involved in 
these types of problems in comparison with other 
groups of MOP methods. 

 However, there are some drawbacks associated 
with these types of algorithms that the most 
important ones are as follows: 

 the accuracy of the final solution depends entirely 
upon DM's precise answers. In other words, if DM 
does not carefully interact with the analyst, the 
outcome(s) of the final solution may be 
undesirable, 

 there is no guarantee to reach a desirable solution 
after a finite number of iterations, 

 DM needs to make more effort during the process 
of these algorithms in comparison with other 
groups. 

During the past decades, many researchers have tried 
to review or to discuss the strengths, the weaknesses, 
and the comparative studies on the existing methods. 
The main goals of these papers are to introduce some 
criteria to measure the efficiency of various algorithms 
and to introduce the characteristics of a good method 
(Aksoy, 1996; Buchanan and Daellenbach, 1987; 
Gibson et al., 1987; Lotfi et al., 1997; Mote et al., 
1988; Reeves and Franz, 1985). In this domain Borges 
and Antunes (2002) dealt with the sensitivity analysis 
of the weights in MOLP problems. Sun (2005) 
examined some issues in measuring and reporting 
solution quality when value functions are used in 
computational experiments of interactive MOP 
procedures. He discussed value functions used, weights 
assigned to the objective functions in the value 
functions, the size of the efficient set, the number of 
objective functions, the feasibility of the ideal and 
nadir points, and existence of the ideal and nadir 
points.  
Alves and Climaco (2007) made a review of interactive 
methods devoted to solve Multiple Objective Integer 
Programming (MOIP) and Multiple Objective Mixed-
Integer Programming (MOMIP) problems. Their focus 
is on interactive MOIP and MOMIP methods, 
including their characterization according to the type of 
preference information required from the DM, the 
computing process used to determine efficient 
solutions and the interactive protocol used to 
communicate with the DM. Reeves and Franz (1985), 
introduced the characteristics of a proper interactive 
algorithm as follows: 
1. Minimum amount of information be required from 
DM, 
2. The nature of decision making be simple, 
3. If DM provides his answers improperly in some 
interactions, he has had an opportunity to compensate 
it in the following interactions, 
4. The number of iterations to reach the final solution 
be reasonable, 
5. DM be familiar with the nature of judgments he is 
asked for, 
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6. The algorithm be suitable for solving large scale 
problems. 
In this paper, we propose a new algorithm which is 
mainly in the group of interactive methods. However, 
we also need to get some information from DM before 
problem solving initiates; therefore, this algorithm is 
neither a pure interactive method nor a pure method in 
the second category. In addition, the proposed 
algorithm is based upon a novel approach to the 
problem, starting from an infeasible utopian point and 
moving towards the feasible region and then the final 
efficient point. The remaining of this paper is 
organized as follows. Section 2 provides some of the 
necessary definitions we need to use in this paper. In 
section 3, the problem statement and the proposed 
algorithm are explained. Two numerical examples are 
demonstrated in section 4 to illustrate the proposed 
algorithm. Finally, the conclusion remarks appear in 
section 5 to summarize the contribution of the paper. 
 

2. Definitions 
The best results will be obtained if your MS-Word 

2003 application has several font sizes. The main font 
used throughout the document is Times New Roman. 
Try to follow the font sizes specified in Table 1, as best 
as you can.  
Consider a MOLP problem defined as follows, 
 

},...,2,1;0;|{

..

},...,2,1;)(max{

miXbXARXM

ts

rkXCXfZ

ii

n

T

kk





            (1) 

 

where, 
)(Xf k : is the kth objective function, 

kC : is the vector of coefficients in the kth objective 

function, 
X: is an n-dimensional vector of decision variables, 

iA : is the ith row of technological coefficients, 

ib : is the RHS of the ith constraint, and 

M: is the feasible region. 
A solution MX   is efficient if and only if there does 
not exist another MX   such that )()( XfXf kk   for 

all rk ,...,2,1  and )()( XfXf kk   for at least one k. 

Then, the vector,  
 

},...,2,1);({ rkXfZ k                                             (2) 
 

is called a non-dominated criterion vector. All efficient 
solutions in M form the efficient set E. Although some 
interactive algorithms search the entire feasible region 
M, the majority of them are designed to search only the 
efficient set E. The vector, 
 

},...,2,1);(max)(|)({ *** rkXfXfXfZ kkk      (3) 
 

is called the ideal point or the ideal criterion vector. It 
should be mentioned that the ideal criterion vector, and 

so the ideal solution *X , does not usually exist. The 
vector, 
 

},...,2,1);(max)(|)({ ****** rkXfXfXfZ kkk     (4) 
 

is called a utopian vector or a utopian point. Unlike the 
ideal criterion vector, there exist many utopian vectors. 
Nevertheless, their corresponding **X �s are most 
likely infeasible. 

 
3. Problem Statement 

The majority of methods proposed in the domain 
of interactive procedures search the feasible region M 
or the efficient set E through interaction with DM in 
order to attain the final solution. Here, we develop a 
new algorithm to solve MOLP problems by starting 
from a utopian point **X  (which is usually infeasible) 
and moving towards the feasible region M and then the 
efficient set E via stepwise movements and a plain 
continuous interaction with DM in order to be in line 
with his preferences. Since there are many utopian 
points outside the M, we choose the closest **X  to M 
as the start point, by considering the least sum of 
weighted deviations from the constraints.  
 
3.1. The Proposed Algorithm 

The proposed algorithm attains an efficient 
solution of a MOLP through the following steps: 
 

Begin: 
Step 1. Ask DM to determine ka , the maximum 

acceptable reduction in the amount of kf  in any 

interaction. Also, ask him to determine iw , a penalty 

for deviation of each unit from the ith constraint. In the 
next step, we find a utopian point allowing some 
deviations from the constraints 0jx , in that the 

utopian point maybe a point with some negative jx �s. 

However, we also consider a big penalty, w , for each 
unit of such deviations. 
 

Step 2. Maximize each )(Xf k  with consideration of 

the feasible set M as follows, 
 

},...,2,1;0;|{

..

)(max

miXbXARXM

ts

XCXf

ii

n

T

kk





            (5) 

Step 3. Let )( *Xf k  be the optimal solution for each 

rkXf k ,...,2,1);(  . Solve the following GP problem, 
 

},...,2,1;,...,2,1;,...,2,1;0;;

);()(|min{ *

11

rknjmiddx

dbXAXfXfdwdw

jj

iiikk

n

j
j

m

i
ii



 
     (6) 

 

where, id  represents the deviation from the ith 

constraint. In this step, we allow our solution to go 
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outside the feasible region. Suppose X is the solution 
for (6). Set XX 0  and go to step 4. 
 

Step 4. Let ik  be the angle between if  and kf . 

Calculate iksin  as follows, 
 

||.||

.
1sin

ki

ki
ik CC

CC
                                            (7) 

 
Now, we can determine a small step   by which we 
move towards the feasible region in each iteration as, 
 

};,...,2,1,;
sin||

min{ kirki
C

a

iki

i 


               (8) 

 

Step 5. Consider constraints )()( *0 XfXf kk   which 

remain active. Now ask DM to see which active 
objective has the least desirability. Let l be the index 
for the lf  which has the least desirability. 

 
Step 6. Solve the following optimization problem in 
which we take a step   from 0X  towards the feasible 
region while we hold the amount of lf , 

 

},...,2,1;,...,2,1;0;;||;

);()(|min{

0

0

11

njmiddxXX

dbXAXfXfdwdw

jj

iiill

n

j
j

m

i
ii



 




    (9) 

 
where, |.| is the 2-norm. In this step there is no change 
in the value of lf  but we usually expect that the other 

objective functions get worse, but not necessarily. In 
other words, we might encounter a situation in which 
the values of some active or inactive kf  get better. 
 

Step 7. If 0
11

 


n

j
j

m

i
ii dwdw  then go to step 8, 

otherwise set XX 0 , calculate the new values of 
)( 0Xf k , and go to step 5. 

 

Step 8. 0
11

 


n

j
j

m

i
ii dwdw  implies that we are 

inside the feasible region, but most likely not on the 
boundary. Therefore, we take a smaller step to be 
stopped on the boundary by solving, 
 

},...,2,1;,...,2,1;,...,2,1;0;

);()(|   |min{| 00

rknjmix

bXAXfXfXX

j

iikk




         (10) 

 
There is no guarantee that the solution of step 8 is a 
non-dominated one. So, we move on the boundary to 
reach a non-dominated solution. Set XX 0 , 

},...,2,1{ rS  , and go to step 9. 

Step 9. Ask DM to see which objective in S has the 
least desirability. Let l be the index for the lf  which 

has the least desirability. Solve the following 
optimization problem in which we take a step at most 
with the amount of   from 0X  on the boundary of the 
feasible region while we hold the amounts of 

rkf k ,...,2,1;  , 
 

},...,2,1;,...,2,1;,...,2,1;0;

||;);()(|)(max{ 00

rknjmix

XXbXAXfXfXf

j

iikkl



 
 (11) 

 

Step 10. If )()( 0XfXf ll   then set },...,2,1{ rS   and 

go to step 9, otherwise set lSS   and go to step 11. 
 
Step 11. If S  then choose X as the final efficient 

solution, otherwise set XX 0  and go to step 9. 
End. 
 
It should be noted that steps 1-8 helps us to reach to the 
feasible region M by starting from the closest utopian 
point in line with DM�s preferences, whereas steps 9-
11 guarantee that the final solution is an efficient one, 
i.e., the final solution is in E. 
 
3.2. Some Lemmas to Determine ä 

Here, we show how to choose   in Step 4 of the 
proposed algorithm with the following three lemmas. 
Lemma 1: Any step   along gradient vector kC  will 

result a decrease (or increase) of || kC  in kf . 

Proof: Let kj  be the angle between kC  and axis jx . 

Therefore, 
 

||1||

)0,...,1,...,0).(,...,,...,(

||||

.
cos 1

k

kj

k

knkjk

jk

jk

kj C

c

C

ccc

xC

xC



 (12) 

 
where, jx  is the jth unique vector in an n-dimensional 

space. The angle between  kC  and jx  helps us to 

compute the projection of  kC  over the axis jx , i.e., if 

we take a step   along vector kC , the amount of 

change in each element of jx  is kj cos  or 

)cos( kj   depending on the direction we choose. 

Fig.1 depicts the gradient vector kC  and its projection 

in a 2-dimensional space. 
 
 
 
 
 
 

 
Fig. 1 The gradient vector kC  and its projection 
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Therefore, 
 

||
cos

k

kj

kjj C

c
x                                            (13) 

or 
 

||
cos)cos(

k

kj

kjkjj C

c
x             (14) 

 

Therefore, we can compute the change in the amount 
of kf  as follows, 
 

||.||.
||||

||
..||

2

1

2

11

kk

k

n

j
kj

k

n

j k

kj

kj

n

j
jkjk

CC
C

c
C

C

c
cxcf


















                    (15) 

 

We now present a generalized form of Lemma (1). 
 
Lemma 2: Any step   along lC  which makes the 

angle lk  with kC  will result a decrease (increase) of 

lkkC  cos||  in kf . 

Proof: It is clear that taking a step   along lC  which 

makes the angle lk  with kC  is the same as taking a 

step lk cos  along kC . Using the results of Lemma 

(1) yields, 
 

||cos|| klkk Cf                                                 (16) 
 

Lemma 3: Let lH  be a hyperplane which is 

orthogonal on lC  and lC  makes the angle lk  with 

kC . Any step   on the hyperplane lH  in any 

direction will result a decrease (increase) of 
||sin klk C  in kf . 

Proof: We prove this lemma in two steps. In the first 
step, let 2/0   lk , then taking any step   on 

lH  in any direction is the same as taking a step   in 

the direction whose angle with lC  is 2/  and 

therefore makes the angle lk 2/  with kC . Fig. 2(a) 

demonstrates the situation in a 2-dimensional space. 
 
 
 
 
 
 
 

 
                    (a)                                             (b) 
Fig. 2. Demonstration of taking a step   on lH  in a 

2-dimensional space 

According to lemma (2), taking any step   along the 
direction which makes the angle lk 2/  or 

lk 2/  with kC  will result a change with the 

amount of ||)2/cos( klk C   or 

||)2/cos( klk C   in kf . Since 2/0   lk , we 

have, 

 
||sin||)2/cos( klkklk CC                      (17) 

 
or 

||sin||)2/cos( klkklk CC                         (18) 

 
Finally, we have, 

 
||sin|| klkk Cf                                                  (19) 

 
Now, in the second step, suppose   lk2/ . 

Taking any step   on lH  in any direction is the same 

as taking a step   in the direction whose angle with 

kC  is 2/ lk  or lk 2/3 . Fig. 2(b) demonstrates 

the situation in a 2-dimensional space. Using similar 
argument used in the first step yields, 

 
||sin||)2/cos( klkklk CC                         (20) 

 
or 
 

||sin||)2/3cos( klkklk CC                    (21) 

 
Finally, we have, 
 

||sin|| klkk Cf                                                  (22) 

 
Now, we are ready to determine the amount of   
properly. Suppose DM determines that he wouldn't 
expect any reduction more than ka  in the amount of 

kf  in any interaction. When we perform step (4) in the 

algorithm, actually we keep lf  unchanged. In order to 

achieve this goal, we have to take step   on lH . 

According to lemma (3), the step leads to an increase 
(decrease) ||sin klk C  in kf .  

There is no problem in our approach in case kf  

increases. However, we must ensure that the step   
would not worsen kf  more than ka , which suggest to 

keep the following condition, 

 
lkrkaC kklk  ;,...,1;||sin                            (23) 

or 

 

 
 

 

 
 

 

 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ie
pr

.iu
st

.a
c.

ir
 o

n 
20

26
-0

2-
01

 ]
 

                             5 / 11

https://ijiepr.iust.ac.ir/article-1-53-en.html


46            Mahmood Rezaei Sadrabadi & Seyed Jafar Sadjadi          A New Approach to Solve Multiple Objective Programming � 

  
lkrk

C

a

lkk

k  ;,...,1;
sin|| 

                              (24) 

 

Holding (19) in all interactions throughout the 
algorithm guarantees that there would be no reduction 
in any lkf k ;  more than ka . Since DM is entitled to 

keep the amount of any kf , the following condition 

must be hold in order to obtain an appropriate  ,  
 

lkrlk
C

a

lkk

k  ;,...,1,;
sin|| 

                            (25) 

 
Finally, we are about to determine the best amount of 
  with consideration of DM�s intentions and 
concurrently reaching to the feasible solution by 
implementing the algorithm as fewer interactions as 
possible. Thus, we have, 
 

};,...,1,;
sin||

min{ lkrlk
C

a

lkk

k 


                (26) 

  
4. Numerical Examples 

In this section we demonstrate implementation of 
the proposed method using two numerical examples. 

 
4.1. Example 1 

Consider the following MOLP problem with two 
objective functions, 

 
1 1 2

2 1 2

1 2

1 2

1 2

1

1 2

6

5 2

.

4 20

7 9 63

22 15 165

6 .5

, 0

M ax z x x

M ax z x x

S T

x x

x x

x x

x

x x

 

 

  

 

 





                                       (27) 

 
We first ask DM to specify his sensitivity about the 
constraints and the objectives.  
As we already defined, iw �s are the penalties 

associated with the constraints and ka �s are the 

permitted amounts of reduction on the objective 
functions in each iteration. For the sake of simplicity 
suppose that all constraints have equal sensitivity, i.e., 

4,...,1;1  iwi . Next, we have to determine the 

acceptable amount of reduction on the objectives 1z  

and 2z .  

For this example, suppose DM specifies 2 and 3 for 1a  

and 2a , respectively. The optimal value for   can be 

determined as the following, 

 
3761||)6,1( 22

11  CC  
 

2925||)2,5( 22

22  CC  
 

52.0
29.37

)2,5).(6,1(

||.||

.
cos

21

21
12 

CC

CC
  

 
85.0)52.0(1sin 2

12   
 

38.0}
)85.0(29

3
,

)85.0(37

2
min{

}
sin||

,
sin||

min{
212

2

121

1







C

a

C

a

 

 
Then, we must find *

1z  and *

2z . Solving two distinct LP 

problems with consideration of 1z  and 2z  yields 

)49.5,95.1(),( 21 xx  with 86.34*

1 z  and )47.1,50.6(),( 21 xx  

with 43.35*

2 z , respectively.  

In the next step, we obtain the utopian point in which 
both objectives are satisfied at least with their optimal 
values, while we reach to a common point. Hence, we 
have, 

 
1 2 3 4 5 6

1 2 1

1 2 2

1 2 3

1 4

1 2

1 2

1 5

2 6

1 2

1000( )

.

4 20

7 9 63

22 15 165

6.5

6 34.86

5 2 35.43

, :   

0; 1, ..., 6i

M inD d d d d d d

S T

x x d

x x d

x x d

x d

x x

x x

x d

x d

x x free in sign

d i

     

   

  

  

 

 

 

 

 

 

   (28) 

 

 
The optimal solution for (28) is )96.4,10.5(),( **

2

**

1 xx  

with )43.35,86.34(),( **

2

**

1 zz  and 02.39**
D . In the 

next step, the DM is asked to select the objective which 
has the least desirability for him. Suppose in the first 
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interaction the DM adopts 2z . Therefore, we must 

solve the following problem, 
 

1 2 3 4 5 6

1 2 1

1 2 2

1 2 3

1 4

1 5

2 6

1 2

2 2
1 2

1 2

1000( )

.

4 20

7 9 63

22 15 165

6.5

5 2 35.43

( 5.10) ( 4.96) 0.38

, :   

0; 1, ..., 6i

M inD d d d d d d

S T

x x d

x x d

x x d

x d

x d

x d

x x

x x

x x free in sign

d i

     

   

  

  

 

 

 

 

   

 

      (29) 

 
The optimal solution for (29) is )61.4,24.5(),( 21 xx  

with )43.35,89.32(),( 22 zz  and 65.34D . Table 1 

summarizes the results of implementation of the 
proposed algorithm during the next iterations. 

 
Tab. 1. The detailed information for implementation 

of the proposed method for example 1 

Iter. Objec. x1 x2 D z1 z2 

0 max z1 1.95 5.49 0 34.86 20.73 

0 max z2 6.5 1.47 0 15.32 35.43 

0 Utopian 5.1 4.96 39.02 34.86 35.43 

1 Hold z2 5.24 4.61 34.65 32.89 35.43 

2 Hold z2 5.38 4.25 30.27 30.88 35.43 

3 Hold z1 5.01 4.32 20.9 30.88 33.69 

4 Hold z2 5.17 3.91 15.87 28.63 33.69 

5 Hold z1 4.8 3.97 6.5 28.63 31.94 

6 Hold z1 4.42 4.04 4.28 28.63 30.18 

7 Hold z1 4.04 4.1 2.14 28.63 28.38 

8 Hold z2 4.18 3.75 0 26.65 28.38 

9 min ä 4.17 3.75 0 26.69 28.38 

10 max z1 4.17 3.75 0 26.69 28.38 

11 max z2 4.17 3.75 0 26.69 28.38 

 
As one can observe, we have reached to the feasible 
region after 8 iterations.  
The final step by which we reach to the feasible region 
is from )10.4,04.4(),( 21 xx  to )75.3,18.4(),( 21 xx  

with feasible amounts )38.28,65.26(),( 21 zz . So, in 

order to reach to the feasible region by a smaller step 
we solve, 

2 2
1 2

1 2

1 2

1 2

1 2

1 2

1

( 4 .04 ) ( 4 .10 )

.

6 26 .65

5 2 28 .38

4 20

7 9 63

22 15 165

6 .5

0; 1, 2j

M inD x x

S T

x x

x x

x x

x x

x x

x

x j

   

 

 

  

 

 



 

                (30) 

 

Problem (30) leads to )75.3,17.4(),( 21 xx , with 

)38.28,69.26(),( 21 zz  and 37.0 , which is the first 

feasible point on the boundary of the feasible region. 
Then, the DM is asked to determine the objective 
function which has the least desirability. Suppose he 
adopts 1z , so we solve,  

 

1 1 2

2 2
1 2

1 2

1 2

1 2

1 2

1

6

.

( 4.17) ( 3.75) 0.38

5 2 28.38

4 20

7 9 63

22 15 165

6.5

0; 1, 2j

M axz x x

ST

x x

x x

x x

x x

x x

x

x j

 

   

 

  

 

 



 

                       (31) 

 

Problem (31) leads to )75.3,17.4(),( 21 xx  with 

)38.28,69.26(),( 21 zz . As one can see, 1z  cannot be 

improved by moving from )75.3,17.4(),( 21 xx . So, 

we have }2{S  and 2z  is chosen to get improved. 

We solve,  
 

2 1 2

2 2
1 2

1 2

1 2

1 2

1 2

1

5 2

.

( 4.17) ( 3.75) 0.38

6 26.69

4 20

7 9 63

22 15 165

6.5

0; 1, 2j

M axz x x

ST

x x

x x

x x

x x

x x

x

x j

 

   

 

  

 

 



 

                       (32) 

 

Problem (32) leads to )75.3,17.4(),( 21 xx  with 

)38.28,69.26(),( 21 zz . As one can see, 2z  cannot be 

improved by moving from )75.3,17.4(),( 21 xx . So, 

S  and )75.3,17.4(),( 21 xx  with )38.28,69.26(),( 21 zz  

is the final efficient feasible solution. 
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4.2. Example 2 

Consider the following MOLP problem with three 
objective functions, 

 

1 1 2 3 4

2 1 2 3 4

3 1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 4

10 80 25 16

6 7 25 8

8 5 12 4

.

6 7 5 3 142

2 7 25 9 320

20 13 40 16 800

3 10 24 15

16 5 2 80 228

,..., 0

Maxz x x x x

Maxz x x x x

Maxz x x x x

ST

x x x x

x x x x

x x x x

x x x x

x x x x

x x

   

   

   

    

   

   

   

   



                        (33) 

 

Suppose that the values 12, 5, 45, 2, and 6 are specified 
by the DM for 4321 ,,, wwww , and 5w , respectively and 

we consider 1000w .  
Also, 300, 50, and 30 are determined as the acceptable 
amount of reduction for 21 , zz , and 3z . The optimal 

value for   is determined as follows, 
 

7350||)15,25,80,10( 11  CC  
 

774||)8,25,7,6( 22  CC  
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,
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,

sin||
,

sin||
,

sin||
min{
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3
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3
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212

2
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1

121
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
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C

a

C

a

C
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Now, *

2

*

1 , zz , and *

3z  must be found. Solving three LP 

problems with consideration of 21 , zz , and 3z  

separately yields 
)0,0,05.35,22.17(),,,( 4321 xxxx  with 87.2975*

1 z , 

)0,20.10,52.4,66.16(),,,( 4321 xxxx  with 64.386*

2 z , and 

)98.3,0,0,82.36(),,,( 4321 xxxx  with 45.310*

3 z , 

respectively.  
Then, we obtain the utopian point in which three 
objectives are satisfied at least with their optimal 
values while we reach to a common point. Therefore, 
we have, 
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x d

x d

x d

x d

x x free in sign

d i

 
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 

 

 

 
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         (34) 

 

The optimal solution is )0,0,30,56.57(),,,( **

4

**

3

**

2

**

1 xxxx  

with )48.310,36.555,60.2975(),,( **

3

**

2

**

1 zzz  and 43.33380**
D . In 

the next step, the DM is asked to select the objective 
which has the least desirability for him. Since the 
constraint associated with 2z  is not active, the DM is 

allowed to select one of the objectives 1z  or 3z  to keep 

its value. Suppose in the first iteration the DM adopts 

3z . Therefore, the following problem should be solved, 
 

1 2 3 4 5

6 7 8 9

1 2 3 4 1

1 2 3 4 2

1 2 3 4 3

1 2 3 4 4

1 2 3 4 5
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The optimal solution for (35) is )0,17.0,29.28,74.56(),,,( 4321 xxxx  

with )43.310,22.534,35.2826(),,( 321 zzz  and 82.31484D .  

Table 2 summarizes the results of implementation of 
the proposed algorithm for example 2. Note that the 
constraint associated with 2z  is not active till iteration 

8. Therefore, he is allowed to choose 2z  as the 

objective whose desirability is the least amount from 
iteration 8. 
According to Table 2, we reach to the feasible region 
in iteration 22. So, solving the following problem helps 
us to attain the boundary of the feasible region, 
 
 

2 2 2 2
1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2

( 32.26) ( 12.53) ( 0.2) ( 0)

.

10 80 25 16 1320.02

6 7 25 8 274.99

8 5 12 4 182.73                                             (36)
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2 7 2

MinD x x x x

ST
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   

    

  3 4

1 2 3 4

1 2 3 4
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5 9 320

20 13 40 16 800

3 10 24 15

16 5 2 80 228

0; 1,...,4j

x x

x x x x

x x x x

x x x x

x j

 

   

   

   

 
 

Tab. 2. The detailed information for implementation of the proposed method for example 2 
Iter. Objec. x1 x2 x3 x4 D z1 z2 z3 

0 max z1 17.22 35.05 0 0 0 2976.2 348.67 -37.49 

0 max z2 16.66 4.52 10.2 0 0 783.2 386.6 233.08 

0 max z3 36.82 0 0 3.98 0 431.88 252.76 310.48 

0 Utopian 57.56 30 0 0 33380.43 2975.6 555.36 310.48 

1 hold z3 56.74 28.29 -0.17 0 31484.82 2826.35 534.22 310.48 

2 hold z3 55.92 26.58 -0.33 0 29613.44 2677.35 513.33 310.48 

3 hold z1 54.4 27.09 -1.35 0 27726.82 2677.35 482.28 283.55 

4 hold z3 53.58 25.38 -1.52 0 25860.25 2528.2 461.14 283.55 

5 hold z3 52.76 23.67 -1.68 0 23988.88 2379.2 440.25 283.55 

6 hold z3 51.94 21.96 -1.85 0 22118.36 2229.95 419.11 283.55 

7 hold z3 51.12 20.25 -2.02 0 20244.01 2080.7 397.97 283.55 

8 hold z1 49.6 20.76 -3.04 0 18351.77 2080.7 366.92 256.52 

9 hold z1 48.08 21.27 -4.06 0 16465.06 2080.7 335.87 229.57 

10 hold z3 47.26 19.56 -4.23 0 14599.55 1931.65 314.73 229.57 

11 hold z3 46.44 17.85 -4.39 0 12728.18 1782.65 293.84 229.57 

12 hold z3 45.62 16.14 -4.56 0 10857.66 1633.4 272.7 229.57 

13 hold z1 44.1 16.65 -5.58 0 8965.42 1633.4 241.65 202.59 

14 hold z1 42.58 17.16 -6.6 0 7078.71 1633.4 210.6 175.64 

15 hold z3 41.12 16.21 -5.83 0 5830.92 1562.25 214.44 177.95 

16 hold z3 39.75 15.32 -4.86 0 4855.56 1501.6 224.24 183.08 

17 hold z3 38.38 14.43 -3.88 0 3882.43 1441.2 234.29 188.33 

18 hold z2 37.01 13.54 -2.91 0 2906.67 1380.55 244.09 193.46 

19 hold z2 35.64 12.65 -1.93 0 1933.53 1320.15 254.14 198.71 

20 hold z1 33.95 12.59 -1.07 0 1066.54 1320.15 265.08 195.81 

21 hold z1 32.26 12.53 -0.2 0 203.27 1320.15 276.27 193.03 

22 hold z1 30.45 12.59 0 0.52 0 1320.15 274.99 182.73 

23 min ä 31.86 12.52 0 0 0 1320.2 278.8 192.28 

24 max z1 31.86 12.52 0 0 0 1320.2 278.8 192.28 

25 max z2 31.85 12.52 0 0 0 1320.2 278.8 192.28 

26 max z3 31.86 12.52 0 0 0 1320.2 278.8 192.28 
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The optimal solution for (36) is )0,0,52.12,86.31(),,,( 4321 xxxx  

with )28.192,8.278,2.1320(),,( 321 zzz  and 44.0 . Suppose 

the DM adopts 1z  as the objective to get improved. Hence, 
 

4,...,1;0

228802516
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xxxx

xxxx

xxxx
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xxxx
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ts

xxxxMaxz

j

      (37) 

 

The optimal solution for (37) is )0,0,52.12,86.31(),,,( 4321 xxxx  

with )28.192,8.278,2.1320(),,( 321 zzz . Since 1z  does not 

change, we have }3,2{S . Then, 2z  is adopted by the 

DM to get improved, which leads to, 
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   (38) 

The optimal solution for (38) is  )0,0,52.12,86.31(),,,( 4321 xxxx  

with )28.192,8.278,2.1320(),,( 321 zzz . Obviously, 2z  

remains unchanged; so, }3{S . The only remaining 

objective is 3z  and we have, 
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  (39) 

The optimal solution for (39) is )0,0,52.12,86.31(),,,( 4321 xxxx  

with )28.192,8.278,2.1320(),,( 321 zzz . Since similar to 

1z  and 2z , the amount of 3z  remains unchanged, we 

have S .  

Therefore, the final efficient feasible solution is 
)0,0,52.12,86.31(),,,( 4321 xxxx  with )28.192,8.278,2.1320(),,( 321 zzz .  

 
5. Conclusion 

We have proposed a new interactive algorithm to 
solve MOLP problems in which we need some initial 
information about DM's preferences. Unlike the 
majority of interactive methods, we have started from 
the utopian point, where it's usually infeasible, and 
have moved towards the feasible region and the 
efficient set. Based on the results of some proved 
lemmas, we have been able to specify the amount of 
steps towards the feasible region. Our method satisfies 
most of the characteristics that a good interactive 
method needs, such as simplicity of the nature of 
judgments for DM, having opportunity to compensate 
improper decisions in previous interactions, and 
handling his nonlinear utility. The implementation of 
the proposed method has been demonstrated by using 
two numerical examples. 
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