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Multiple Objective Programming (MOP) problems have become
famous among many researchers due to more practical and realistic
implementations. There have been a lot of methods proposed
especially during the past four decades. In this paper, we develop a
new algorithm based on a new approach to solve MOP problems by
starting from a utopian point (which is usually infeasible) and moving
towards the feasible region via stepwise movements and a plain
continuous interaction with Decision Maker (DM). We consider the
case where all objective functions and constraints are linear. The
implementation of the proposed algorithm is demonstrated with two

numerical examples.
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1. Introduction

During the past four decades, many methods and
algorithms have been developed to solve Multiple
Objective Programming (MOP) problems, in which
some objectives are conflicting and the utility function
of the Decision Maker (DM) is imprecise or fuzzy in
nature. MOP is believed to be one of the fastest
growing areas in management science and operations
research, in that many decision making problems can
be formulated in this domain. Decision making
problems with several conflicting objectives are
common in practice. Hence, a single objective function
is not sufficient to guide the search for the optimum
solution for such problems. Because of this limitation,
a MOP method is needed to solve many real world
applications (J. Kim and K. Kim, 2006).
Although different solution procedures have been
introduced, the interactive approaches are generaly
believed to be the most promising ones, in which the
preferred information of the DM is progressively
articulated during the solution process and incorporated
into it. The purpose of MOP problems in the
mathematical programming framework is to optimize r
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different objective functions, subject to a set of
systematic constraints. A mathematical formulation of
a MOP problem is adso known as the vector
maximization (or minimization) problem. Generally,
MOP problems can be divided into four different
categories. The first group of MOP problems does not
need to get any information from DM during the
process of finding an efficient solution. These types of
algorithms rely solely on the pre-assumptions about
DM's preferences. In this category, L-P Metric
methods are noticeable, algorithms whose objectives
are the minimization of deviations of the objective
functions from the ideal solution. Since different
objectives are different in nature, they must be
normalized before the process of minimization of
deviations starts. Therefore, a new problem is
minimized which has no scale (Zeleny, 1982). The
second group of MOP problems includes gathering
cardina or ordinal preferred information before the
solving process initiates. In the method of Utility
Function (Kenney and Raiffa, 1976), for example, we
have to determine DM's utility as a function of
objective functions and then we maximize the overall
function under the initial constraints. The other method
in this group, which is extensively used by many
researchers, is Goal Programming (GP) (Romero,
1991; Gibbs, 1973) in which DM determines the least
(the most) acceptable level of Max (Min) functions.
Since attaining these values might lead to an infeasible
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point, the constraints are allowed to exceed, but we try
to minimize these weighted deviations.
The third group of MOP problems provides a set of
efficient solutions in which DM has an opportunity to
choose his preferred solution among the efficient ones
(Hwang and Masud, 1979). The set of al efficient
feasible solutions in a Multiple Objective Linear
Programming (MOLP) problem can be represented by
convex combination of efficient extreme points and
efficient extreme rays in the feasible region. Therefore,
the set of efficient extreme points and efficient extreme
rays can be regarded as the solution set for a MOLP
problem (Ida, 2005). Findly, the forth group of MOP
problems provides solutions based on a continuous
interaction with DM and tries to reach the preferred
solution at the end of the algorithm. Based on this
sound idea, there are many developed methods
categorized in this group. Homburg (1998), for
instance, proposed a hierarchical procedure which
consists of two levels, atop-level and a base-level. The
main idea is that the top-level only provides general
preference information from DM. Taking this
information into account, the base-level then
determines a compromise solution via interaction with
DM by using an interactive procedure.
As another instance, Tchebycheff metric based
approaches have become popular in this category for
sampling the set of efficient solutions in an continuous
interaction with DM to narrow his choices down to a
single most preferred efficient solution. These
approaches systematically reduce the set of efficient
solutions which remain available for identification and
selection from one iteration to the next. The only
requirement on the part of the DM is to select a single
most preferred solution from among a more and more
concentrated set of efficient solutions at each iteration
(Reeves and MacLeod, 1999). The interaction with
DM proceeds by generating smaller subsets of the
efficient set until afinal solution islocated.
To see another works in the group of interactive
methods, interested reader can refer to (Geoffrion,
1972; Reeves and Franz, 1985; Zionts and Wallenius,
1983; Benayoun et d., 1971; Hwang and Masud, 1979;
Tabucanon, 1988; Steuer and Choo, 1983; Steuer et d.,
1995; Sun et al., 2000; Gardiner and Steuer, 1994,
Malakooti and Alwani, 2002; Kaliszewski and
Michalowski, 1999; Sun et al., 2000; Chen and Lin,
2003). There are many advantages on using interactive
methods such as:
e there is no need to get any information from DM
before the solving process initiates,
e the solving process helps DM learn more about the
nature of the problem,
e only minor preferred information are needed
during the solving process,
e since DM continuously contributes via analyst to
the problem, he is more likely to accept the final
solution,

o there are fewer restricting assumptions involved in
these types of problems in comparison with other
groups of MOP methods.

e However, there are some drawbacks associated
with these types of agorithms that the most
important ones are as follows:

¢ the accuracy of the final solution depends entirely
upon DM's precise answers. In other words, if DM
does not carefully interact with the analyst, the
outcome(s) of the fina solution may be
undesirable,

e there is no guarantee to reach a desirable solution
after afinite number of iterations,

e DM needs to make more effort during the process
of these algorithms in comparison with other
groups.

During the past decades, many researchers have tried
to review or to discuss the strengths, the weaknesses,
and the comparative studies on the existing methods.
The main goals of these papers are to introduce some
criteria to measure the efficiency of various algorithms
and to introduce the characteristics of a good method
(Aksoy, 1996; Buchanan and Deaellenbach, 1987,
Gibson et a., 1987; Lotfi et a., 1997; Mote et &,
1988; Reeves and Franz, 1985). In this domain Borges
and Antunes (2002) dealt with the sensitivity analysis
of the weights in MOLP problems. Sun (2005)
examined some issues in measuring and reporting
solution quality when value functions are used in
computational  experiments of interactive MOP
procedures. He discussed val ue functions used, weights
assigned to the objective functions in the value
functions, the size of the efficient set, the number of
objective functions, the feasibility of the ideal and
nadir points, and existence of the ideal and nadir
points.

Alves and Climaco (2007) made areview of interactive
methods devoted to solve Multiple Objective Integer
Programming (MOIP) and Multiple Objective Mixed-
Integer Programming (MOMIP) problems. Their focus
is on interactive MOIP and MOMIP methods,
including their characterization according to the type of
preference information required from the DM, the
computing process used to determine efficient
solutions and the interactive protocol used to
communicate with the DM. Reeves and Franz (1985),
introduced the characteristics of a proper interactive
algorithm as follows:

1. Minimum amount of information be required from
DM,

2. The nature of decision making be simple,

3. If DM provides his answers improperly in some
interactions, he has had an opportunity to compensate
it in the following interactions,

4. The number of iterations to reach the final solution
be reasonable,

5. DM be familiar with the nature of judgments he is
asked for,
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6. The algorithm be suitable for solving large scale
problems.

In this paper, we propose a new algorithm which is
mainly in the group of interactive methods. However,
we also need to get some information from DM before
problem solving initiates; therefore, this algorithm is
neither a pure interactive method nor a pure method in
the second category. In addition, the proposed
algorithm is based upon a novel approach to the
problem, starting from an infeasible utopian point and
moving towards the feasible region and then the final
efficient point. The remaining of this paper is
organized as follows. Section 2 provides some of the
necessary definitions we need to use in this paper. In
section 3, the problem statement and the proposed
algorithm are explained. Two numerical examples are
demonstrated in section 4 to illustrate the proposed
algorithm. Finally, the conclusion remarks appear in
section 5 to summarize the contribution of the paper.

2. Definitions
The best results will be obtained if your MS-Word
2003 application has several font sizes. The main font
used throughout the document is Times New Roman.
Try to follow the font sizes specified in Table 1, as best
asyou can.
Consider a MOLP problem defined as follows,

max{Z = f (X)=C, X;k=12,...,r}
st. )
M={XeR"|AX<b;X20i=12,..,m

where,

f, (X) : isthe kth objective function,

C, : is the vector of coefficients in the kth objective
function,

X: isan n-dimensional vector of decision variables,

A :istheith row of technological coefficients,

b : isthe RHS of theith constraint, and

M: isthe feasible region.

A solution X e M isefficient if and only if there does
not exist another X e M such that f, (X)> f (X) for
al k=12..r and f (X)> f (X) for a least one k.
Then, the vector,

Z ={f (X);k=12,...1} )

is called a non-dominated criterion vector. All efficient
solutions in M form the efficient set E. Although some
interactive algorithms search the entire feasible region
M, the majority of them are designed to search only the
efficient set E. The vector,

z :{fk(X*)l fk(X*):maX f (X)k=212...,r} (3

is called the ideal point or the ideal criterion vector. It
should be mentioned that the ideal criterion vector, and

so the ideal solution X', does not usually exist. The
vector,

2" ={f,(X")| f.(X")zmax f, (X);k=12,..,r} (4)

is called a utopian vector or a utopian point. Unlike the
ideal criterion vector, there exist many utopian vectors.

Nevertheless, their corresponding X °’s are most
likely infeasible.

3. Problem Statement
The majority of methods proposed in the domain
of interactive procedures search the feasible region M
or the efficient set E through interaction with DM in
order to attain the final solution. Here, we develop a
new algorithm to solve MOLP problems by starting

from a utopian point X (which is usualy infeasible)
and moving towards the feasible region M and then the
efficient set E via stepwise movements and a plain
continuous interaction with DM in order to be in line
with his preferences. Since there are many utopian

points outside the M, we choose the closest X~ to M
as the start point, by considering the least sum of
weighted deviations from the constraints.

3.1. The Proposed Algorithm
The proposed algorithm attains an efficient
solution of a MOLP through the following steps:

Begin:
Step 1. Ask DM to determine &, , the maximum
acceptable reduction in the amount of f, in any

interaction. Also, ask him to determine w , a penalty

for deviation of each unit from the ith constraint. In the
next step, we find a utopian point alowing some
deviations from the constraints x; >0, in that the

utopian point maybe a point with some negative X, ’s.

However, we also consider a big penalty, w', for each
unit of such deviations.

Step 2. Maximize each f, (X) with consideration of
the feasible set M asfollows,

max f, (X) =C; X

st. (5)

M={XeR"|AX<b;X>Gi=12,..,m

Step 3. Let f (X") be the optima solution for each

f, (X);k=122,..,r . Solve the following GP problem,

mind) wd +w> d/ | f (X) = f (X');AX<h +d ©
i=1 j=1

X >-d;d>0i=12..,mj=12..,nk=12..r}

where, d, represents the deviation from the ith
congtraint. In this step, we allow our solution to go
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outside the feasible region. Suppose X is the solution
for (6). Set X° = X and go to step 4.

Step 4. Let 6, be the angle between f, and f,.
Calculate sing, asfollows,

sing, = 1S ()
IC LIC, |

Now, we can determine a small step 6 by which we
move towards the feasible region in each iteration as,

a
S=mn{————;i,k=12,....r;i #K 8
n{|C.|sin0‘k ! ) ®

Step 5. Consider constraints f, (X°) > f, (X™) which

remain active. Now ask DM to see which active
objective has the least desirability. Let | be the index
for the f, which hasthe least desirability.

Step 6. Solve the following optimization problem in
which we take astep § from X° towards the feasible
region while we hold the amount of f,,

mind) wd +w> d’ | f,(X)= f,(X°);AX <h +d
i=1 j=1

IX=-XE&x 2-d;d>0i=12..mj=12..n}
where, |.| is the 2-norm. In this step there is no change
in the value of f, but we usually expect that the other

objective functions get worse, but not necessarily. In
other words, we might encounter a situation in which
the values of some active or inactive f, get better.

Step 7. If D wd, +w) d/ =0 then go to step 8,
i=1 j=1

otherwise set X° = X, calculate the new vaues of
f (X°), and go to step 5.

Step 8. > wd +w) d/ =0 implies that we are
i=1 j=1

inside the feasible region, but most likely not on the
boundary. Therefore, we take a smaller step to be
stopped on the boundary by solving,

min{| X = X° | | f,(X)> f,(X°);AX <h 0
X 200 =12,..,mj=12.,nk=12..,r} (10)

There is no guarantee that the solution of step 8 is a
non-dominated one. So, we move on the boundary to
reach a non-dominated solution. Set X°=X,
S={12,...,r},and goto step 9.

Step 9. Ask DM to see which objective in S has the
least desirability. Let | be the index for the f which

has the least desirability. Solve the following
optimization problem in which we take a step at most

with the amount of § from X° on the boundary of the
feasible region while we hold the amounts of
fok=212..r,

max(f, 0| () = LCRAX B X=X |8 |
X 20i=12..,mj=12..,nk=12..r}

Step 10. If f (X) > f, (X°) thenset S={12,...,r} and
goto step 9, otherwise set S=S—1 and go to step 11.

Step 11. If S=¢ then choose X as the final efficient

solution, otherwise set X° = X and go to step 9.
End.

It should be noted that steps 1-8 helps us to reach to the
feasible region M by starting from the closest utopian
point in line with DM’s preferences, whereas steps 9-
11 guarantee that the final solution is an efficient one,
i.e., thefina solutionisin E.

3.2. Some Lemmasto Determine é

Here, we show how to choose & in Step 4 of the
proposed algorithm with the following three lemmas.
Lemma 1: Any step 6 aong gradient vector C, will

result adecrease (or increase) of 6 |C, | in f,.
Proof: Let «, be the angle between C, and axis X .
Therefore,

S C.X :(ckl,...,cki,...,ckn).(O,...,‘L...D): o}
“ICdx | |C [x1 IC |

(12)

where, x; is the jth unique vector in an n-dimensional
space. The angle between C, and X, helps us to
compute the projection of C, over the axis x, , i.e, if
we take a step ¢ aong vector C,, the amount of
change in each element of x, is Jcose, or
ocos(r —a,) depending on the direction we choose.

Fig.1 depicts the gradient vector C, and its projection
in a2-dimensiona space.

1

1

I

I
»
>

Fig. 1 Thegradient vector C, and itsprojection

\ 4
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Therefore,
A o
X, = cosa, =6—— (13)
ICy |
or
AX, =5 cos(z —a, ) = —5 cosa, = —5 i (14)
k

Therefore, we can compute the change in the amount
of f_asfollows,

n n C
|Af, D ey AX =) ¢ .0 ——
j=1 =1 |Ck |

0 < o
=|C |JZ;C:J=|C ||Ck|2=6|Ck|
K |i= k

(15)

We now present a generalized form of Lemma (1).

Lemma 2: Any step 6 aong C, which makes the
angle 6, with C, will result a decrease (increase) of
6|C, |cosg, in f, .

Proof: It is clear that taking astep 6 aong C, which
makes the angle 6, with C_ is the same as taking a
step scosf, aong C, . Using the results of Lemma
(1) yields,

| af, | Scos0, |C, | (16)

Lemma 3: Let H, be a hyperplane which is
orthogonal on C, and C, makes the angle 6, with
C.. Any step & on the hyperplane H, in any
direction will result a decrease (increase) of
ésng, |C, |in f_.

Proof: We prove this lemma in two steps. In the first
step, let 0< 6, <7/2,thentaking any step 5 on

H, in any direction is the same as taking a step 6 in
the direction whose angle with C, is #/2 and
therefore makesthe angle #/2+ 6, with C,_. Fig. 2(a)
demonstrates the situation in a 2-dimensional space.

@) (b)
Fig. 2. Demonstration of takingastep § on H, ina

2-dimensional space

According to lemma (2), taking any step 6 along the
direction which makes the angle =z/2+6, or
nl2-6, with C_ will result a change with the
amount of ocos(z/2+6,)|C, | or
ocos(z/2-6,)|C, | in f,.Since 0<6, <x/2, we
have,

scos(z12+6,)|C, F-5sind, |C, | (17)
or
scos(z/2-6,)|C, | 5sind, |C, | (18)

Finally, we have,
|Af FSsing, |C, | 19

Now, in the second step, suppose #/2<6, <rx.
Taking any step & on H, in any direction is the same
as taking a step 6 in the direction whose angle with
C, is6,—n/2or 3r/2-6,.Fig. 2(b) demonstrates
the situation in a 2-dimensional space. Using similar
argument used in the first step yields,

scos(d, -712)|C, | 5snd, |C, | (20)
or
scos(37/2-6,)|C, | -5sin6, |C, | (22)

Finaly, we have,

| Af, [=ésing, |C, | (22)

Now, we are ready to determine the amount of &
properly. Suppose DM determines that he wouldn't
expect any reduction more than a_ in the amount of

f, in any interaction. When we perform step (4) in the

algorithm, actually we keep f, unchanged. In order to
achieve this goal, we have to take step 6 on H,.
According to lemma (3), the step leads to an increase
(decrease) 6sing, |C, | in f,.
There is no problem in our approach in case f,
increases. However, we must ensure that the step &
would not worsen f, more than a,, which suggest to
keep the following condition,

ssing, |C, Ka k=1..rk=I (23)
or
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a
<—>* k=1..rk=l (24)
|C, |sing,

Holding (19) in al interactions throughout the
algorithm guarantees that there would be no reduction
inany f_;k=| morethan a_. Since DM is entitled to

keep the amount of any f,, the following condition
must be hold in order to obtain an appropriate ¢ ,

a
o<—* kl=1.,rk=l 25
IC.Jsing, " 29

Finally, we are about to determine the best amount of
6 with consideration of DM’s intentions and
concurrently reaching to the feasible solution by
implementing the agorithm as fewer interactions as
possible. Thus, we have,

S = min{—x

——kI=1...,r;k=1} (26)
|C, |sing,

4. Numerical Examples
In this section we demonstrate implementation of
the proposed method using two numerical examples.

4.1. Example 1
Consider the following MOLP problem with two
objective functions,

Maxz, = X, + 6X,

Maxz, = 5x, + 2x,

ST.

-X,+4x,<20 @7)
7X,+9%x, <63

22x,+15x, <165

X, <6.5

X, X, 20

We first ask DM to specify his sensitivity about the
constraints and the objectives.

As we aready defined, w’s are the penalties
associated with the constraints and a ’s are the

permitted amounts of reduction on the objective
functions in each iteration. For the sake of simplicity
suppose that al constraints have equal sensitivity, i.e.,
w =1i=1..4. Next, we have to determine the

acceptable amount of reduction on the objectives z
and z,.

For this example, suppose DM specifies 2 and 3 for a,
and a,, respectively. The optimal value for 6 can be
determined as the following,

C, = (16) =|C, E VI +6° =437
C,=(52 =|C, E5" +2° =29

coso. -G (1862 5,

201G LIC, | 437429

sind, =/1-(0.52)’ =0.85

S=min{—2 %
|C, |siné, |C,|sing,,

. 2 3
= , }=0.38
mm{\/37(0.85) J29(0.85)

Then, we must find z and z,. Solving two distinct LP
problems with consideration of z and z, yields
(x,%,)=(195549 with 7 =3486 and (x,X,) =(6.501.47)
with z =35.43, respectively.

In the next step, we obtain the utopian point in which
both objectives are satisfied at least with their optimal

values, while we reach to a common point. Hence, we
have,

MinD =d,+d,+d,+d, +1000(d, +dg)
ST.

-X,;+4x,<20+d,

7X,+9x,<63+d,

22x,+15x, <165+d,

x,<6.5+d, (28)
X, +6x, >34.86

5x, + 2x, > 35.43

X, >—d,

X, >—dg

X4, X, :free in sign

d, 20;i =1,...,6

The optimal solution for (28) is (X, ,x; ) = (5.10,4.96)
with (z',2')=(34.863543 and D" =39.02. In the

next step, the DM is asked to select the objective which
has the least desirability for him. Suppose in the first
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interaction the DM adopts z,. Therefore, we must
solve the following problem,

MinD =d, +d,+d,+d, +1000(d, +d)
ST.

-X,+4x,<20+d,

7X,+ 9%, <63+d,
22x,+15x,<165+d,

X, £6.5+d,

X, > —dg

X,>-dg

5x, +2x, >235.43

J(x, -5.10)2 + (x, — 4.96)* = 0.38

X, X, :free in sign

d, 20;i =1,...,6

(29)

The optimal solution for (29) is (x,,X,) = (5.24,4.61)
with (z,,z,) =(32.89,35.43) and D=3465. Table 1

summarizes the results of implementation of the
proposed algorithm during the next iterations.

Tab. 1. Thedetailed information for implementation
of the proposed method for example 1

Iter. | Objec. X1 X2 D z b2
0 max z; 1.95 5.49 0 34.86 20.73
0 max z, 6.5 147 0 15.32 35.43
0 Utopian | 5.1 4.96 39.02 34.86 35.43
1 Holdz | 524 4.61 34.65 32.89 35.43
2 Holdz | 5.38 425 30.27 30.88 35.43
3 Holdz | 5.01 432 20.9 30.88 33.69
4 Holdz | 517 391 15.87 28.63 33.69
5 Hold z, 4.8 3.97 6.5 28.63 31.94
6 Hold z, 442 4.04 4.28 28.63 30.18
7 Holdz | 4.04 41 214 28.63 28.38
8 Hold z 418 3.75 0 26.65 28.38
9 min & 417 3.75 0 26.69 28.38
10 maxz | 417 3.75 0 26.69 28.38
11 maxz | 417 3.75 0 26.69 28.38

As one can observe, we have reached to the feasible
region after 8 iterations.

The final step by which we reach to the feasible region
is from (x.,X,) = (4.04,4.10) to (x,X,) = (4.183.75)

with feasible amounts (z,z,) = (26.65,28.38) . So, in

order to reach to the feasible region by a smaller step
we solve,

MinD = \/(x, - 4.04)? + (x, — 4.10)?
ST.

X, +6Xx, = 26.65

5x,+2x, > 28.38

-X,;+4x,<20

7x,+9x, <63

22x,+15x, <165

X, <6.5

X >0;j =12

(30)

Problem (30) leads to(x,,X,)=(4.17,3.75), with
(z,,2,) =(26.69,28.38) and s =0.37, whichisthefirst

feasible point on the boundary of the feasible region.
Then, the DM is asked to determine the objective
function which has the least desirability. Suppose he
adopts z,, so we solve,

Maxz, = x, + 6X,

ST.

J(x,—4.17)? + (x, - 3.75)% < 0.38

5x, +2X, > 28.38 (31)
-X;+4x,<20

7x,+9x, <63

22x,+15x, <165

X, <65

X;20;] =12

Problem (31) leads to (x,,X,)=(4.17,3.75) with

(z,,2,) =(26.69,28.38) . As one can see, 4 cannot be
improved by moving from (x,X,) =(4.17,3.75). So,
we have S={2} and z, is chosen to get improved.
We solve,

Maxz, = 5x, + 2X,

ST.

J(x,—4.17)? + (x, - 3.75)% < 0.38

X, +6X, > 26.69 (32)
-X,+4x,<20

7x,+9%x, <63

22x,+15x, <165

X;<£6.5

X >0;j =12

Problem (32) leads to (x,x,)=(417375 with
(z,2)=(26692839 . As one can see, z, cannot be
improved by moving from (x,X,) =(4.17,3.75). So,
S=¢ and (x,X)=(417379 with (z,2)=(26692838
isthe final efficient feasible solution.
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4.2. Example 2
Consider the following MOLP problem with three
objective functions,
Maxz, =10x, +80x, + 25X, + 16X,
Maxz, = 6x, + 7X, + 25X, + 8%,
Maxz, = 8x, —5x, +12x, +4x,
ST.
—6X, 4+ 7X, + 5%, +3x, <142
2X 4+ 7X, + 25X, +9x, <320
20x, +13x, +40x , +16x, <800
3x, —10x, + X, —24x, <15
16x, +5x, —2x, +80x, > 228
Xis0 X, 20
Suppose that the values 12, 5, 45, 2, and 6 are specified
by the DM for w,,w,,w,,w,, and w,, respectively and

21 V¥

we consider w=100L(.

Also, 300, 50, and 30 are determined as the acceptable
amount of reduction for z,z,, and z,. The optimal

valuefor & isdetermined asfollows,

(33)

C, =(10,80,2515) =| C, |z V7350
C,=(6,7,258)=|C, |- J774
C3 = (8!_5112;4) :>| CZ |= A/ 249

C,.C, _ (1080,2515).(6,7,258)

cosd,, = = =0.57
CoIGlIc, | J7350/774

=sing, =41- (0.57)* =0.82

cos, = CrCs_ (10802519).(8-5124) _ 1o
R 7350249

= Sinels =41- (003)2 =1

cosg. - C:C_ (67.258).8-5124) _ o
PG LICT (7744249 '

= sin6,, = /1-(0.79)° =0.62

6 =min{ ai , a1 , az_
IC, |sin6,, '|C,|sind, '|C, |sind,,
a2 as as 1
'IC, |sng,,"'|C, |sing, '|C, |sing,,’
=min{4.27,3.50,2.19,2.90,1.90,3.07} =1.90

Now, z,z,, and z, must be found. Solving three LP
problems with consideration of z,z,, and z
separately yields

(%, %5, %5, X,) = (17.22,35.050,0) with z =2975.87,

(X, %, X%, X,) = (16.664.5210.200) with z, = 386.64, and

(%,X,,%;,X,)=(36.82,0,0398 with z =31045,
respectively.

Then, we obtain the utopian point in which three
objectives are sdatisfied at least with their optimal
values while we reach to a common point. Therefore,
we have,

MinD =12d,+5d, + 45d, + 2d, + 6d
+1000(ds +d, +dg +dy)

ST.

—6X,+ 7X,+5x,+3x,<142+d,

2X,+ 7X,+25x,+9x,<320+d,
20x,+13x, + 40x, +16x , <800+d,
3x,-10x, +x,—24x,<15+d,

16x, +5x,-2x,+80x,>228-d,

10x, +80x, + 25x , +16x , = 2975.87

6X,+ 7X, + 25x,+8x, > 386.64

8x, —5x,+12x,+ 4x, > 310.45

\Y

1 6

v

2 7

\2

3

©

N
[\

9
1., X, i free in sign
d, 20;i =1,...,9

—d
—-d
—d
—d
N (34

X X X X X

The optimal solution is (x',x;,x,",X,") = (57.56,30,0,0)
with (Z',Z,Z)=(297%50555363104§ and D" =3338@¢. In
the next step, the DM is asked to select the objective
which has the least desirability for him. Since the
constraint associated with z, is not active, the DM is
alowed to select one of the objectives z, or z, to keep
its value. Suppose in the first iteration the DM adopts
z,. Therefore, the following problem should be solved,

MinD =12d, +5d, +45d,+2d, + 6d,
+1000(d4 +d, +dg +dg)

ST.

—6X, +7X, +5X,+3x, <142 +d,

2%, + 7X, + 25X, + 9%, < 320+d,

20x, +13x, +40x ; +16x , <800+d,

3x, -10x, +x, —24x,<15+d,

16x, +5x, —2x, +80x, > 228—d;

X, >—dg

X, 2-d,

X5 2—dg

X, 2>—d,g

8x, —5x, +12x, +4x, > 310.48
J(x,~57.56)% + (x, —30)° + (X, ~0)* + (x, —0)? =1.9
Xp,. X, free in sign (35)
d, >0 =1...,9
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The optimal solution for (35) is (x,X,x,x,)=(6674289-0170
with (z,z,,2)=(2826355342231043 and D =31484.82.

Table 2 summarizes the results of implementation of
the proposed algorithm for example 2. Note that the
constraint associated with z, is not active till iteration
8. Therefore, he is allowed to choose z, as the
objective whose desirability is the least amount from

iteration 8.

According to Table 2, we reach to the feasible region
in iteration 22. So, solving the following problem helps

us to attain the boundary of the feasible region,

MinD = /(x, —32.26)? +(x, ~12.53)% + (X, + 0.2)> + (x, —0)?

ST.

10x, +80x,, + 25x , +16x,, >1320.02

6X, + 7X, +25% ; +8x , > 274.99
8x, —5x, +12x, +4x, >182.73
—6X, +7X, +5X, +3x, <142
22X, +7x,+ 25X, +9x,, <320
20x, +13x, +40x , +16x, <800

3X, —10x, + X, —24x, <15

16x, +5x, —2x; +80x,, > 228

X, >0;j =1,...,4
Tab. 2. The detailed infor mation for implementation of the proposed method for example 2
Iter. Objec. X1 X2 X3 X4 D Z Z Z3
0 max z; 17.22 | 35.05 0 0 0 2976.2 | 348.67 | -37.49
0 max 2z, 16.66 | 4.52 10.2 0 0 783.2 386.6 | 233.08
0 max zz | 36.82 0 0 3.98 0 431.88 | 252.76 | 310.48
0 Utopian | 57.56 30 0 0 33380.43 2975.6 | 55536 | 310.48
1 hold z; 56.74 | 28.29 | -0.17 0 31484.82 | 2826.35 | 534.22 | 310.48
2 hold z; 5592 | 2658 | -0.33 0 29613.44 | 2677.35 | 513.33 | 310.48
3 hold z, 544 | 27.09 | -1.35 0 27726.82 | 2677.35 | 482.28 | 283.55
4 hold z; 5358 | 25.38 | -1.52 0 25860.25 2528.2 461.14 | 283.55
5 holdz; | 52.76 | 23.67 | -1.68 0 23988.88 2379.2 | 440.25 | 28355
6 hold z; 5194 | 21.96 | -1.85 0 22118.36 | 2229.95 | 419.11 | 28355
7 holdzs | 51.12 | 20.25 | -2.02 0 20244.01 2080.7 | 397.97 | 28355
8 hold z; 496 | 20.76 | -3.04 0 18351.77 2080.7 | 366.92 | 256.52
9 holdz, | 48.08 | 21.27 | -4.06 0 16465.06 2080.7 | 335.87 | 229.57
10 holdz, | 47.26 | 1956 | -4.23 0 1459955 | 1931.65 | 314.73 | 229.57
11 holdz | 46.44 | 17.85 | -4.39 0 12728.18 | 1782.65 | 293.84 | 229.57
12 holdz; | 45.62 | 16.14 | -4.56 0 10857.66 1633.4 2727 229.57
13 hold z; 441 | 16.65 | -5.58 0 8965.42 1633.4 241.65 | 202.59
14 holdz, | 4258 | 17.16 | -6.6 0 7078.71 16334 | 210.6 | 175.64
15 holdz; | 41.12 | 16.21 | -5.83 0 5830.92 1562.25 | 21444 | 177.95
16 holdzs | 39.75 | 1532 | -4.86 0 4855.56 1501.6 | 224.24 | 183.08
17 holdz; | 38.38 | 1443 | -3.88 0 3882.43 1441.2 234.29 | 188.33
18 hold z, 3701 | 1354 | -291 0 2906.67 1380.55 | 244.09 | 193.46
19 hold z, 3564 | 1265 | -1.93 0 1933.53 1320.15 | 254.14 | 198.71
20 holdz | 33.95 | 1259 | -1.07 0 1066.54 1320.15 | 265.08 | 195.81
21 hold z, 32.26 | 1253 -0.2 0 203.27 1320.15 | 276.27 | 193.03
22 holdz, | 30.45 | 12.59 0 0.52 0 1320.15 | 274.99 | 182.73
23 min & 31.86 | 12.52 0 0 0 1320.2 278.8 192.28
24 max z; 3186 | 12.52 0 0 0 1320.2 278.8 192.28
25 maxz | 31.85 | 1252 0 0 0 1320.2 278.8 | 192.28
26 max zz | 31.86 | 12.52 0 0 0 1320.2 278.8 | 192.28

(36)
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The optimal solution for (36) is (X,X,,X,,X,) =(3186125200)
with (z,z,,2)=(132®R,278319228 and §-044. Suppose
the DM adopts z, asthe objective to get improved. Hence,
Maxz =10, +80x, + 25, +16x,

st.

J(x —32267 +(x, —1253° +(x, +02)° +(x, —0) <19
6X, +7X, +25¢, +8x, > 27499

8% —5x, +12x, +4x, >18273

—6x, +7x, +5x, +3x, <142

2% +7TX, +25¢, +9x, <320

20x, +13, +40x, +16x, <800

3x —10x, +x, — 24, <15

16x, +5x, — 2%, +80x, > 228

%20j=1..4

(37)

The optimal solution for (37) is (x,x,x,x)=(3186125200)
with (z,z,z)=(132@278192§. Since z does not
change, we have S={2,3 . Then, z, isadopted by the
DM to get improved, which leads to,

Maxz = 6x, +7x, +25x, +8x,

st.

J(x —32267 +(x, ~12537 + (%, + 02 +(x, —0)* <19
10x +80x, + 25, +16x, >13202

8x —5x, +12x, +4x, >18273

—6X +7x, +5x,+3x, <142

2% + 7%, +25%, +9x, <320

20x, +13%, +40x, +16x, <800

3x —10x, + X, —24x, <15

16x, +5x, —2x, +80x, > 228

X 20j=1..4

The optimal solution for (38) is (x,x,,x,x)=(3186125200)
with (z,z,z)=(13202278819228 . Obviously, z,
remains unchanged; so, S={3. The only remaining
objectiveis z, and we have,

(39)

Maxz=8x —5x, +12«, +4x,

st

(6 ~32267 +(x, ~1253° +(x, +02° +(x, —0’ <19
10x +80x, +25¢, +16x, >132Q@

06X +7X, +25¢, +8x, > 2788

—BX +7X, +5%, +3%, <142 (39
2X 47X, +25¢, +9x, <320

20¢ +13«, +40, +16x, <800

3x —10%, +x, —24, <15

16x +5x, —2x, +80, >228

X >0j=1..4

The optimal solution for (39) is (x,x,x,x,)=(3186125200)
with (z,z,,z)=(13202278819228 . Since similar to
z, and z,, the amount of z, remains unchanged, we
have S=¢ .

Therefore, the final efficient feasible solution is
(%, %,%,X,) =(3186125200) With (z,2,2)=(132@22781929 .

5. Conclusion

We have proposed a new interactive agorithm to
solve MOLP problems in which we need some initial
information about DM's preferences. Unlike the
majority of interactive methods, we have started from
the utopian point, where it's usualy infeasible, and
have moved towards the feasible region and the
efficient set. Based on the results of some proved
lemmas, we have been able to specify the amount of
steps towards the feasible region. Our method satisfies
most of the characteristics that a good interactive
method needs, such as simplicity of the nature of
judgments for DM, having opportunity to compensate
improper decisions in previous interactions, and
handling his nonlinear utility. The implementation of
the proposed method has been demonstrated by using
two numerical examples.
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