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KKEEYYWWOORRDDSS                                  ABSTRACT 
 

 Monitoring the reliability of products in both the manufacturing 

and service processes is of main concern in today’s competitive 

market. To this end, statistical process control has been widely 

used to control the reliability-related quality variables. The so-

far surveillance schemes have addressed processes with 

independent quality characteristics. In multistage processes, 

however, the cascade property must be effectively justified 

which entails establishing the relationship among quality 

variables with the purpose of optimal process monitoring. In 

some cases, measuring the values corresponding to specific 

covariates is not possible without great financial costs. 

Subsequently, the unmeasured covariates impose unobserved 

heterogeneity which decreases the detection power of a control 

scheme. The complicated picture arises when the presence of a 

censoring mechanism leads to inaccurate recording of the 

process response values. Hence, frailty and Cox proportional 

hazards models are employed and two regression-adjusted 

monitoring procedures are constructed to effectively account for 

both the observed and unobserved influential covariates in line 

with a censoring issue. The simulation-based study reveals that 

the proposed scheme based on the cumulative sum control chart 

outperforms its competing procedure with smaller out-of-control 

average run length values. 
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In some multistage manufacturing or service 

operations, quality characteristics of interest are highly 

dependent. This implies that a change in an incoming 

quality variable affects some or all outgoing quality 

variables. The mentioned attribute is referred to as the 
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cascade property which is the main feature of 

multistage processes [1]. Thus, the effective procedure 

is to model the dependency structure among quality 

characteristics and then monitor a specific quality 

variable only after it has been adjusted for the effect of 

all influential upstream variables. Cause selecting 

charts (CSCs) have been proposed for the sake of 

monitoring and diagnosing multistage processes with 

normally distributed quality variables [2]. The 

underlying models are the linear or multiple linear 

regression models depending on the number of quality 

Multistage processes,  

Frailty models,  

Cox proportional hazard  

(PH) models,  

Cumulative sum  

(CUSUM) control chart,  
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variables in the process. However, the normality 

assumption in the use of CSCs makes it a cumbersome 

monitoring procedure, in that quality characteristics do 

not always follow this assumption. To relax the 

normality assumption, some papers have addressed 

regression adjustment approach based on generalized 

linear models (GLMs) which include exponential 

family distributions [3-6]. 

The above-mentioned monitoring schemes are not 

fruitful in case the main intention of using a control 

procedure is to improve the reliability of products 

(services). Reliability (survival) data have some 

specific properties which make them quite different. 

First, they are commonly modeled by a distribution 

which is a member of Location-Scale or Log-Location-

Scale distributions. Second, it is a common practice for 

their values to be censored as they reach a pre-

determined limit selected beforehand to ensure the 

minimum desirable reliability [7]. There exist 

numerous quality characteristics which evaluate the 

product reliability. The tensile strength of adhesive 

bond between a vinyl fabric and polyvinyl chloride 

(PVC) foam backing in the interior of a car, the skein 

strength of spun cotton, the breaking strength of weld 

and the survival times of patients after performing the 

surgical operation are among the most commonly used 

quality variables in manufacturing and service 

processes. The problem of monitoring quality variables 

which follow the Location-Scale and Log-Location-

Scale distributions in the absence of a censoring 

mechanism has been addressed largely in the literature 

(see for example [8-12]).  

To account for the censoring issue, Steiner and Mackay 

[13-15] presented monitoring schemes for Weibull and 

normally distributed reliability data. Both the fixed and 

variable censoring levels have been considered 

respectively. Zhang and Chen [16] proposed 

exponentially weighted moving average (EWMA) 

control chart for a process characterized by Weibull 

distribution in the presence of a fixed censoring level. 

Furthermore, Olteanu [17] developed some CUSUM 

control charts for censored reliability data with Weibull 

distribution. Obviously, these papers have been 

devoted solely to the processes with no cascade 

property.  However, the optimal multistage process 

monitoring entails considering the impact of influential 

quality variables as well.  

For instance, in an industrial process, the tensile 

strength of adhesive bond between vinyl fabric and 

foam backing is affected by the amount of the 

dominant plasticizer called DOP (Dioctyl Phthalate). 

The more DOP dampens the adhesive bond strength 

between the two surfaces. But, it gives more flexibility 

and durability to the mentioned plastics. Moreover, the 

skein strength of the spun cotton is affected by the fiber 

length and the fiber strength which can be referred to 

as influential quality variables. Besides, in a service 

organization such as a hospital, the survival times of 

patients are definitely dependent on the unique risk 

factors arising from each patient’s health history. Sego 

et al. [18] elaborated on the case in which the survival 

times of cardiac patients are adjusted for the effect of 

Parsonnet score which is a weighted composite of 

factors associated with the risk of mortality for adults 

with heart disease.  

However, it is not always straightforward to 

incorporate all covariates into the model to describe 

their influences since measuring their values is 

inevitable without great financial cost and time effort 

or possibly no prior information is available on their 

values. The neglect of such covariates leads to the 

unobserved heterogeneity which dampens the detection 

ability of control schemes. Consequently, the purpose 

of this paper is to present monitoring procedures in 

multistage processes with both the observed and 

unobserved covariates. The construction of the 

proposed control schemes is discussed in the presence 

and absence of a censoring mechanism. 

 
2. Process Modeling 

Consider a cascade process in which the outgoing 

quality characteristic is affected by the incoming 

quality variables. The output quality variable of 

interest, denoted by Y, is selected in a way to evaluate 

and reflect the reliability of products (services). 

Without loss of generality, it is assumed that the 

number of influential variables (X) is equal to 2 in this 

multistage process monitoring which introduce 

heterogeneity to the process output. However, 

including both of these covariates in the analysis is not 

possible due to the complexity of measurement or 

some other time effort and budget restrictions. 

Apparently, the application of the so-far monitoring 

methods, discussed in Introduction, is useless because 

they do not justify the cascade property, unobserved 

heterogeneity and a censoring issue simultaneously. 

Therefore, a novel control procedure is indeed needed 

to tackle the mentioned problems. 

Survival analysis regression models have been devised 

to explain the occurrence of reliability data taking 

various covariates into account. The two main 

approaches are the Cox proportional hazard (PH) and 

the accelerated failure time (AFT) models [7]. In this 

paper, the PH model is implemented to form the hazard 

and survival functions of output quality variable. Due 

to the fact that only one observable covariate has been 

assumed in this multistage process monitoring, the 

hazard and the survival functions are represented as: 

 

0

exp( )
0

( | ) ( ) exp( )

( | ) ( ) x

h y x h y x

S y x S y



 


                                           (1) 

 

where 0 ( )h y and 0 ( )S y are the baseline hazard and 

baseline survival functions respectively and   is the 

regression parameter. Without loss of generality, the 

underlying distribution for the baseline hazard and 
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survival functions is assumed to be the Weibull 

distribution which is the most commonly used one: 

 

1
0

0

( ) ( )

( ) exp

y
h y

y
S y



  
      







 



                                               (2) 

 
where 0 is a shape parameter and 0  is a scale 

parameter. 

In addition, the frailty models are used which offer a 

convenient way to introduce the heterogeneity imposed 

by unobserved covariate [19]. It specifies that: 

 

0( | ) ( )h y h y                                                          (3) 

 
To successfully account for both the observed and 

unobserved covariates, the hazard function takes the 

form of: 

 
0( | ) ( )exp( )h y x, h y x                                         (4) 

 
Referring to our industrial case, consider that the 

tensile strength of an adhesive bond between the vinyl 

fabric and PVC foam backing in the interior of a car 

were to be evaluated. The DOP is considered as an 

observable incoming quality variable. However, 

measuring such values is not always straightforward 

without great time effort and financial cost. Hence, this 

quality variable can be considered as an unobserved 

covariate as well which makes the use of frailty models 

indispensable.  

In addition, various suppliers from whom the vinyl 

fabric and PVC foam backing are provided may be 

contemplated as another example of unobserved 

covariate. The products provided by each supplier may 

have different levels of quality which affect the 

strength of the adhesive bond.  However, in a process, 

it may be indistinguishable which manufacturer a 

product has come from and measuring the quality of 

such products is complicated.  

Finally, the surface characteristic of the discussed 

products has severe effects on the bond strength. 

Measuring such values as an incoming covariate is 

impossible without using technical equipment and 

spending a lot of cost.  These bring about the situations 

in which the effect of both the observed and 

unobserved covariate must be justified. Assuming two 

different suppliers or two types of surface 

characteristic, a binary frailty model is used. Let the 

proportion of products from the first supplier with 

frailty value 1  is  . To fulfill the standardization 

condition ( ( ) 1E  ) the following relation yields the 

frailty value corresponding to the second supplier 

1
2

1

1

 


 


                                                                (5) 

 

Denote ( | )S y x, to be the survival function of the 

output response given the observed covariate x and 

frailty  , the unconditional survival function is 

obtained as follows: 

 

00 0

0

( | ) ( )exp( )

( )exp( )
0

( ) ( ( | )) ( ) ( )

( ) ( ( )exp( ))

E E E

E L

y y

h y x, dy h y x dy

H y x

S y S y x, e e

e H y x

 



   

 

  

 





  (6) 

 

where 0H is the cumulative baseline hazard function 

and L is the Laplace transform of the frailty  . The 

density and hazard functions are then characterized by 

the above Laplace transform and its derivatives: 

 
0 0

0
0

0

( ) ( ) exp( ) ( ( ) exp( ))

( ( ) exp( ))
( ) ( ) exp( )

( ( ) exp( ))

L

L

L

f y h y x H y x

H y x
h y h y x

H y x

 


 

 






              (7)  

 
Hence, the unconditional functions for the output 

quality variable of the discussed process are given by 

the following equations: 

 

1 0 2 0

1 0 2 0

1 0 2 0

1 0 2 0

( )exp( ) ( )exp( )

( )exp( ) ( )exp( )

1 2 0

( )exp( ) ( )exp( )

1 2
0( )exp( ) ( )exp( )

( ) (1 )

( ) ( (1 ) ) ( )exp( )

(1 )
( ) ( )ex

(1 )

H y x H y x

H y x H y x

H y x H y x

H y x H y x

S y e e

f y e e h y x

e e
h y h y

e e

 

 

 

 

    

    

   


   

   

   

   

   

  

 
p( )x

     (8) 

 
Next section elaborates on the control strategies based 

on the PH and frailty models. 

 
3. Monitoring Procedures 

In this section, two control procedures are 

developed for the sake of detecting out-of-control 

situations. The proposed control charts are one-sided 

since detecting deterioration in the product reliability is 

of main interest.  

To this end, a coefficient   is used to shift the 

nominal in-control value corresponding to the scale 

parameter of the Weibull distribution since changing 

the scale parameter has the similar interpretation as 

changing the Weibull mean. Note that two different 
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scenarios including the presence and the absence of a 

censoring mechanism are considered respectively. 

Control charts based on probability limits are the most 

straightforward monitoring procedure. The lower 

control limit (LCL) of this monitoring scheme is 

obtained as follows: 

 

1 0 2 0

1 0 2 0

( )exp( ) ( )exp( )
1 20

0

( )exp( ) ( )exp( )

(( (1 ) )

( ) exp( )) ( )

(1 ( (1 ) ))

( )

LCL H y x H y x

x

H LCL x H LCL x

x

e e

h y x f x dydx

e e

f x dx

 

 

     

      

 



   

   

 


(9) 

 

The constructed control procedure generates a signal as 

soon as the control chart statistic falls below the LCL. 

It should be noted that in case of having a censoring 

mechanism with a fixed censoring level, denoted by c, 

all censored observations can be replaced with their 

conditional expected values (CEVs). Doing so, the 

control chart statistic takes the form ofl: 

1 0 2 0

1 0 2 0

( )exp( ) ( )exp( )
1 2 0

( )exp( ) ( )exp( )

if

( ( (1 ) ) ( )exp( ) )

(1 ) otherwise

/i i

i i

i

i i

H y x H y x
ic

H c x H c x

CEV

y y c

e e h y x y dy

e e

  

 







 

  


   

   

   

 

                (10) 

 
The next surveillance procedure is based on the 

cumulative sum (CUSUM) control chart. The CUSUM 

statistic is given by: 

 

1

0

min(0, ) 1,2,...

0

i i is s w i

s

  


                       (11) 

 

where iw
 
is the CUSUM score computed as follows 

conditional that the observations are recorded 

genuinely: 

 

1 2

2 1 2

2

( ) exp( ) ( ) exp( )

1 2

( ) exp( ) ( ) exp( ) ( ) exp( )

2 1 2

( ) exp( )

2

log log ( )

log ( )

i i

i i

i i i

i i i

i

i

y y
x x

i

y y y
x x x

y
x

w e e

e e e

e

 
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


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


 
   
  
 






 

  



   
 

     
  

 


    

   



(12) 

in which   is a pre-specified shift that the CUSUM 

chart is designed for optimal detection. Thus, the 

CUSUM chart triggers a signal when the value statistic 

is less than its LCL. 

The development of the CUSUM chart undergoes a 

thorough modification as the presence of a censoring 

mechanism leads to inaccurate recording of a fraction 

of data. For the sake of simplicity, the following 

variable is defined as: 

 

min( , )

1 if

0 otherwise

i i

i
i

z y c

y c




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


                                                (13) 

 
Subsequently, the CUSUM score is obtained via the 

below equation: 

1 2

1 2 2

1

( ) exp( )
2

( ) exp( ) ( ) exp( )

1 2 2

( ) exp( ) ( ) exp( ) ( ) exp( )

( ) exp( )

1

log log ( )

log ( )

log (

i i i

i i i

i i i

i i i

i

i

z z z
x x x

i i

z z z
x x x
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w e e e

e e e

e
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 
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 
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 
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


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 
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

 
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Obtaining the CUSUM score, the plotted statistic is 

calculated as shown by equation (11). 

 

4. ARL Study 
Simulation-based studies are conducted in this 

section to investigate and compare the performance of 

the proposed control charts. To this end, the average 

run length (ARL) criterion is used as the performance 

measure. Note that the ARLs are calculated accurately 

for the first monitoring scheme as follows: 

 

1 2( ) exp( ) ( ) exp( )

1/ (1 ( (1 ) )) ( )

LCL
x x

x

e e f x dx

ARL

  
 

    




   

 

LCL

υ η
 (15) 

 
while simulation studies with 10000 replications are 

used to obtain the ARLs of the CUSUM chart. The 

LCLs of the both monitoring procedures are set in way 

to reach the in-control ARL of approximately 200.  

Concentrating on the no-censoring scenario, the two 

competing control charts are compared to detect 

decreasing mean shifts of size 2.5%, 5%, 10%, 20% 

and 30%.  

The results are provided in Table I. It is remarkable 

that the CUSUM control chart far outweighs its 

competing counterpart because the out-of-control ARL 

values are much smaller. To exemplify, we may refer 

to the out-of-control ARLs when there exists a 10 

percent reduction in the mean. It is noticeable that the 

proposed CUSUM control chart generates a signal 93 

points sooner than the other control chart, in that the 

corresponding ARL values are 77 and:  

 
Tab. 1. The performance of the monitoring 

procedures in the absence of censoring 

  

CUSUM control chart 
Control chart with 

probability limit 

ARL 
Standard 

Error 
ARL 

1 200.1058 1.6526 200 

0.975 155.7662 1.2117 192.5674 

0.95 122.6633 0.9040 185.2308 

0.9 77.0165 0.5386 170.8466 

0.8 41.5014 0.2624 143.2725 

0.7 25.0265 0.1484 117.3724 

170 respectively. This indicates that the detection 

power of the CUSUM control chart is much greater. 

Provided that the CUSUM chart is superior, its 

performance is studied in the presence of censoring. As 

a result, low, moderate and high censoring rates of 

20%, 50% and 80% are considered. For easier 

comparison, the ARL curves of censoring and no-

censoring scenarios are illustrated in Figure 1. The 

outcomes show a considerable increase in the values of 

out-of-control ARLs as the censoring rate becomes 

higher. This implies that the presence of the  

 

 
Fig. 1. ARL curves of the CUSUM control chart 

 
censoring mechanism imposes detrimental effect on the 

performance of the monitoring procedure. This 

problem arises due to the great loss of information 

associated with the quality characteristic of interest. 

Thus, it is advisable to set the censoring level in a way 

not to have a large censoring proportion in the 

population. 

 

5. Conclusion 
In this paper, two control schemes have been 

proposed to effectively monitor the reliability-related 

quality characteristic. The monitoring procedures were 

adjusted for the effect of both the observed and 

unobserved heterogeneities caused by the incoming 

quality variables. The proportional hazards and the 

frailty models were employed and a one-sided control 

chart based on a probability limit along with a one-

sided CUSUM control chart has been constructed. Two 
different scenarios including the presence and the 
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absence of a censoring mechanism were considered 

and discussed respectively. Subsequently, simulation-

based studies were conducted to investigate and 

compare the detection power of the monitoring 

procedures.  
The results revealed that the proposed CUSUM control 

chart far outweighs the competing control chart with 

smaller out-of-control ARL values. Moreover, the 

careful investigation of having low, moderate and high 

censoring rate indicated that the performance of the 

control chart deteriorates as the censoring proportion 

increases. Finally, it should be noted that the proposed 

surveillance procedures can also be applied to 

healthcare systems such as a hospital where patients 

are heterogeneous due to their measured and 

unmeasured unique risk factors prior to the surgery 

operation. 
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