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KKEEYYWWOORRDDSS                                  ABSTRACT 
 

Identification of a real time of a change in a process, when an out-of-

control signal is present is significant. This may reduce costs of 

defective products as well as the time of exploring and fixing the 

cause of defects. Another popular topic in the Statistical Process 

Control (SPC) is profile monitoring, where knowing the distribution 

of one or more quality characteristics may not be appropriate for 

discussing the quality of processes or products.  

One, rather, uses a relationship between a response variable and one 

or more explanatory variable for this purpose. In this paper, the 

concept of Maximum Likelihood Estimator (MLE) applied to estimate 

of the change point in binary profiles, when the type of change is drift. 

Simulation studies are provided to evaluate the effectiveness of the 

change point estimator. 
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11..  IInnttrroodduuccttiioonn


  

Statistical Process Control (SPC) is used to monitor 

and reduce the variation of a process. Control charts 

are the most important tools in SPC which are used to 

monitor quality characteristics. These charts can detect 

any changes or shifts in a process; however, a shift 

usually occurs much earlier before it is detected. When 

a control chart signals a special cause, quality 

engineers should identify and remove the cause(s) of 

variation and return the process to in-control state. 

However, knowing when a process has changed would 

help quality engineers to limit the time window within 

which they should search for assignable causes. 

Consequently, the assignable causes can be identified 

sooner and corrective action can be implemented more 

quickly. Identifying the real time of the process change 

is known as change-point estimation problem. 
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Change point problems are mainly classified according 

to change types including step, drift and isotonic shifts. 

To find the real time of a change, many authors have 

suggested several methods such as Maximum 

Likelihood Estimator (MLE), Cumulative Sum 

(CUSUM), Exponentially Weighted Moving Average 

(EWMA) and intelligent method, (artificial network, 

clustering and decision tree). For example Pignatiello 

and Samuel [1- 4] proposed a Maximum Likelihood 

Estimator in different control charts to find the real 

time of change point under a step shift. Perry and 

Pignatiello [5, 6] used this method to estimate the 

change point in the mean of normal and poisson 

distribution with a linear trend disturbance, 

respectively. 

In the area of SPC, usually the quality of a process or a 

product was represented by the distribution of one (or 

more) quality characteristic and monitored by 

univariate (or multivariate) control chart. However, 

Kang and Albin [7] presented a popular topic with 

widespread application in SPC namely, profiles 

monitoring, in which a relationship between a response 
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variable and one or more independent variables, known 

as profiles is monitored over time.  

Scientists classify profiles based on the type of 

relationships into the linear (simple, multiple and 

polynomial), nonlinear and geometric profiles. Profiles 

are studied in Phases I and II. In Phase I, Mestek et al. 

[8] used a 
2T  based control charts to monitor the 

regression parameters of a simple linear profiles. 

Mahmoud and Woodall [9] used a global F-test for 

monitoring the regression coefficients in conjunction 

with a univariate control chart to monitor the variance. 

Mahmoud et al. [10] applied a likelihood ratio test to 

monitor simple linear profiles. In Phase II, Kang and 

Albin
 

[7] proposed two methods including a 

multivariate 
2T  chart and a combination of EWMA-R 

chart to monitor simple linear profiles.  

Kim et al. [11] recommended three independent 

univariate EWMA control charts to monitor shifts in 

parameters of a simple linear profile. 

Identifying the change point in profiles has been 

studied by some researchers. Mahmoud et al. [10] used 

a likelihood ratio based method to identify the real time 

of a step change in Phase I monitoring of a simple 

linear profiles. Zou et al. [12] proposed a method based 

on likelihood ratio statistics to find the change point in 

parameters of a simple linear profile in Phase II. 

Kazemzadeh et al. [13] used the same method to 

estimate the change point in polynomial profiles under 

a step shift in Phase I.  

Note that the change point problem in profile data is 

under a different sampling framework from that of the 

other models. In the profile applications, multiple data 

sets are collected over time in a functional data 

sampling framework and a possible change point is 

take place after any data set.  

Most researches in profile monitoring, assume the 

response variable is continuous (usually Normal) and 

characterize profiles with linear or nonlinear models. 

However, in many industrial applications the response 

variable is discrete such as binary (as in the case of a 

product can be classified as defective or non defective) 

or countable (as the number of defect products or 

number of patients in a hospital). Yeh et al. [14] 

studied binary profiles in Phase I. They proposed 

different 
2T  control charts for monitoring logistic 

regression profiles. Shang et al. [15] proposed a control 

scheme based on EWMA-GLM to monitor the 

relationship between the binary response and random 

explanatory variables in Phase II. Their approach 

assumes that explanatory variables are random variable 

and takes different values in each profile sample.  

To the best of our knowledge, Only Sharafi et al. [16] 

suggested a method to identify the real time of a step 

change in Phase II monitoring of binary profiles and 

there is no more researches in this area. In this paper 

we propose a Maximum Likelihood Estimator to find 

the real time of a change in Phase II monitoring of 

logistic regression profiles.  

Here, we assumed that the type of the disturbance is 

drift. The rest of the paper is organized as follows: 

Section 2 illustrates logistic regression model and 

explains the steps of estimating the model parameters. 

Section 3 presents the change point model and 

assumptions of the problem. The performance of the 

proposed model is investigated in Section 4. 

Conclusions and some future researches are provided 

in the final section.  

 
2. Logistic Regression Model 

Many categorical response variables have only two 

categories: for example, whether you take public 

transportation today (yes, no), or whether you have had 

a physical exam in the past year (yes, no). Denote a 

binary response variable by y  and ( )E y  . The 

value of   can vary as the value of x  changes, and 

we replace   by ( )x .  

For n  independent observations, the number of 

successes has the binomial distribution specified by the 

index n and parameter  . The relationships between 

( )x  and x  are usually nonlinear and the S -shaped 

curves are often realistic shapes for this relationship 

which are called the logistic regression models. 

In a logistic regression model, there are n independent 

experimental sets, with p predictor variables for each 

set, which is shown by 1 2( , ,, )i i i

T

ipx x xx as well as 

corresponding Bernoulli response variables namely iz  

for 1, 2,...,i n . The probability of success in each 

set is denoted by i  and each i  is a function of ix . 

In the logistic regression model this function is 

characterized by the link function  i
g  , defined as: 

 

 
 

 
1 1 2 2

log
...

1 log

i

i i i p ip

i

g x x x


   


    


 (1) 

 

where  1 2
, ,...,

T

p
   is the model parameters 

vector. It is usual to set 
1

1
i

x   in order that 
1
  be the 

intercept of the model. Equation (1) simplifies to: 

 
T

i

T

i

exp( )exp( )
.

1 exp( )1 exp( )

i

i

i





 



x

x




 (2) 

 

In this equation 
1

T
i

p

i k ik

k

x 


 x  . We also assume 

that data are grouped so that for the i th setting of the 

predictor variables, there are im  observations, 
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1,2,...,i n . 
1

n

i
i

M m


  is total number of 

observations. The response variable is 

1

im

i ik

k

y z


 , 

where ikz  is the k th observation (0 or 1) in i th 

predictor variable settings, iy  follows a binomial 

distribution with parameters im , i . Albert and 

Anderson [17] proposed MLE method to estimate the 

model parameters for this purpose. They used the 

following likelihood function:  

 

   
1

( , ) 1 , 




 
  

 
y

i i i

n
y m yi

i i

i i

m
L

y
  (3) 

 

Where  1 2
, ,...,  

T

n
 and  1 2, ,...,

T

ny y yy  

Taking the logarithm of the Equation (3) and using 

1

T
i log

1

p

i

i k ik

k i

x


 


  


x  , one can reexpress the 

log-likelihood as: 

 

1 11

1 1

log 1 exp

( ) l g

,

, o

pn
i

i k ik

i i k

pn

i k

k

n

ik

i

i

m
y x

x

l
y

m





 

 



 
 

 

  
    

 













y

 (4) 

 
Taking derivative of Equation (4) with respect to  , 

and using iterative weighted least square estimation 

method suggested by McCullagh and Nelder [18], the 

logistic regression parameters can be estimated as 

follows: 

 

 
1

ˆ ˆT T


 X WX X Wq  (5) 

 
In the Equation (5)  1 2

, ,...,
n

T
X x x x , 

      1 1 1 2 2 2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ1 , 1 ,..., 1 ,n n ndiag m m m        W

 1 ˆˆ 
  q yW   and  1 1 2 2

ˆ ˆ ˆ ˆ, ,...,
T

n nm m m    .  

The procedure iterations is described in the figure I. 

McCullagh and Nelder [18] proved that as n  becomes 

large or im  is constant,   is distributed 

asymptotically as a p-dimensional normal distribution 

  1

,
T

p
N



X WX . This procedure will be used in 

MLE change point estimator described in Section 3. 

 
Fig. I. The procedure of estimation of logistic  

regression parameters 

 
3. MLE Change Point Estimator 

Here, it is assumed that the underlying process 

initially operates in a state of statistical control, with 

observations coming from a poisson distribution with 

the known parameters 0   ( 
 
is a p-dimensional 

vector); so, the mass probability function is 

   1 i ijij m yi y

ij i i
ij

m
f y

y
 

 
  
 

where ijy
 

is the 

value taken by the response variable for the i th value 

of the predictor variable in the j th profile. 

The change type is also assumed to be drift or linear 

trend change in the parameter i . Consider an in-

control process with independent observations coming 

from a binomial distribution with parameters im  and 

i . After elapsing an unknown amount of time, the 

parameter i  changes from its in control state of 0i  

to an unknown out-of-control state of 1i , 1 0i i  , 

and the function of 1i  is given as: 

 
 1 0     1, 2,...,  ,i i b j j T           (6) 

 
where b is the slope (or magnitude) of the linear trend 

disturbance in i . 

During the formulation of profiles 1,2,...,j   the 

process parameter i  is equal to its known in-control 

Initialize the estimate of (0)ˆ  . Set 0i   

 

Calculate ( ) ( ) ( )ˆ ˆ ˆ, ,i i i   and ( )ˆ i
W  

 

   
1

( ) ( ) ( ) ( )ˆˆ ˆ ˆ
i i i i



  q W y   

Update the estimation of   

   
1

( 1) ( ) ( ) ( )ˆ ˆ ˆi T i T i i



 X W X X W q  

 

( ) ( 1)

( 1)

ˆ ˆ

ˆ

i i

i









 



 

( )ˆ ˆ i

   

1i i   

No 

Yes 
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value. For profiles 1, 2,...,j T     the parameter 

i  become larger with linear trend b and equal to 

some unknown value  1 0i i b j     , where 

T is the last profile sampled in which the control chart 

signaled an out-of-control state. Two unknown 

parameters in model are  and b , representing the last 

profile taken from an in-control process and the rate of 

the linear trend, respectively. To estimate these 

unknown parameters, this paper used a MLE approach, 

similar to Perry and Pignatiello [6]. We denote the 

MLE estimator of the change point as ̂ . The 

likelihood function is as follows: 

 

 

 

 
 

0
0

1 1 1 1 0

1
1

1 1 1

( , ) 1
1

1
1

i

i

i

j

m
n n

i
i

j i j i i

y
T n

i
i

j i i

i

ij

m

L b
m

y

b j
b j

b j

 



















   

  


 

 
 

 
     

 
  


  








 

 

y

 

(7) 

 

The MLE of   is the value of   that maximizes the 

likelihood function in Equation (7). Taking the 

logarithm of Equation (7). 

 

 
 

 

 

0

01 1 1 1

1
0

1 1 1 1 1

1
1 1

)
1

 ( ,

1
1

1 ,

i

iij

n n

ij
j i j i

n T n
i

i ij
j i j i i

T n

i
j i

i

i

i

m

y
Ln L b

b j
m

Ln y Ln

Ln y L
b j

m b j

n

Ln

 





















 

   

    

  




 
 

 

 
   

   

   

 
 

 





 

 
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 

y

 

(8) 

 

To determine the unknown parameters in Equation (8), 

( and b ), an expression is required for b in terms of 

  which maximize the log-likelihood function in 

Equation (8), defined as b . Obtaining this expression 

is not a  trivial task. The partial derivative of Equation 

(8) with respect to b is given by: 

 

 

   

 

 

1 1 1 1

1 1 1

 ( , )

1

1

T n

i

ij

j i i i

T n

j i i

Ln L b

b

j

b j b j

j
m

b j

y
 

 




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






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  








 



 


 





 
 
 
 

  
   

 
 

 
 
 
 





y

 
(9) 

 

In Equation (9) there is no closed-form solution for b . 

Perry and Pignatiello [6] proposed the Newton’s 

method (also known as the Newton–Raphson method) 

to find the MLE of the rate parameter, b . Newton’s 

method is one of the Numerical analysis which is used 

to find successively better approximations to the roots 

of a function. We use Newton’s method to find the 

MLE of the rate parameter, b , and denote it as b̂ . 

Substituting b  for b in Equation (8) and computing 

Equation (8) over all possible change points  in 

search of the maximum log-likelihood function yields. 
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
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
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 

 
(10) 

 
where ̂ is the MLE for the last profile taken from the 

in-control process. Whenever this chart signals an out-

of-control state, the real time of a change can be 

estimated via Equation (10). 

Yeh et al. [14] introducted five Hotelling 
2T control 

charts to monitor binary profiles in Phase I. The 

plotting statistic for profile j is defined as: 

 

   2 1
T

j jj
T


     S  , (11) 

 

where ˆ
j

 is estimator of the logistic regression 

parameters in j th profile and S  is the variance 

covariance matrix of ˆ
j

 . Any of these 
2T charts uses a 

different method to estimate the mean vector and 

covariance matrix. They showed 
2

IT control chart 

which estimate the covariance matrix by averaging the 

covariance estimates of each given sample, provides 

more effective way to detect step shifts and drift. These 

control charts also can be used in Phase II. So we used 
2

IT control chart to detect the out-of-control state in 

Phase II. Covariance matrix in Phase II is computed 

using the following equation: 

 
1)(  WXX

T
 , (12) 

 

where W is equal to 

)}1(,),1(),1({ 2211 nnmmmdiag    . The 

upper control limit for the proposed control chart is 
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also equal to
2

2,  ,the  percentile points on the chi-

square distribution with 2 degrees of freedom.  

 

4. Performance of the MLE Estimator 
To estimate the performance of the MLE estimator, 

an example is given. In this example, number of 

explanatory variables is equal to 2, (p=2). Thus the link 

function is simplified as   1 2i i
g x    , where 

1
 and 

2
 are the intercept and the slope of the 

regression function respectively and is shown by the 

vector  1 2,
T

  We set the matrix X as: 

 

     

1 1 ... 1

log 0.1 log 0.2 ... log 0.9
,

T
 
 
 

X =  

 

It is assumed that the number of experiments in each 

predictor variable is constant and equal to 50 , 

( 50im   for 1,2,...,9i  ) and the in-control 0i  is 

 0.04,0.06,0.13,0.27,0.48,0.68,0.82,0.89,0.91
T

. The 

initial 
 
is estimated as  2.5,3.46

T
 from historical 

dataset in Phase I. The upper control limit for the 
2

IT  

control chart is equal to 
2

2,0.005 10.59  . The 

covariance matrix of the logistic regression parameters 

( ) in Phase II is computed by Equation (12) as 

follows: 

 









 

1179.007693.0

07693.006627.0
)WXX( 1T

    

 
Now, suppose an out-of-control process whose 

parameter vector i  shifts from 0i  to 

 1 0i i b j     . A Monte Carlo simulation 

study is accomplished to examine the performance of 

the estimator. The change point is simulated at profile 

50 ( 50  ). For profiles 1,2,...,50j   the 

independent observations is produced by binomial 

distribution with parameters 50  and 0i . Starting at 

profile 51, observations are simulated from the out-of-

control process with  1 0 50i i b j    until the 

2

IT chart signals an out-of-control.  

At this time, the change point estimator is used and the 

real time of the process change is determined. This 

procedure is repeated 10,000 times for each magnitude 

of the change under study, which is described in the 

figure 2. 

The results are summarized in Tables 1 and 2 and 

Figure III. Table I shows the expected length of each 

simulation run  E T which is the expected value of 

the number of samples taken until the first alarm is 

given by the control chart, i.e.   50E T ARL  . 

Table I also shows the average change point estimate 

and the standard deviation of the change point 

estimator under different magnitude of the shifts 

considered. Because the actual change is at time 50, the 

average change point estimate,  , should be close to 

50. 

 

 
Fig. 2. The flowchart of the simulation procedure 

 

Tab. 1. Expected number of samples until the signal 

and standard deviations of the change point estimators 

with 10,000 simulations runs when 50   

ˆ( )se 
    E T

 
b  

2.39 51.82 56.13 0.003 

1.73 51.21 55.01 0.005 

1.32 50.86 53.86 0.007 

1.01 50.58 53.02 0.01 

0.74 50.44 52.43 0.015 

0.51 50.29 52.04 0.02 

0.41 50.21 51.72 0.025 

 

As shown in Table I, for drift rate parameter equal to 

0.003 the expected number of samples taken until the 

signal is 56.13, the average change point estimate is 

51.82 and the standard deviation of the change point 

estimator is 2.39. Moreover, the performance of the 

estimator improves significantly with increases in 

magnitude of the drift rate parameter  b . Figure III 

also indicates this issue. As perceived from this figure, 

with increasing b , the expected number of samples 

taken until the signal and average change point 

estimator are becoming near to 51 and 50, respectively. 

Furthermore, the standard deviation of the change point 

estimator, that is shown shady, is becoming smaller. 

   Produce 50 independent in-control profiles 

with the vector of
0i

  

 

Make a change in the vector of i   

 

Estimate the logistic parameters and depict control 

chart until issuing an out-of control signal 

 

Calculate for all profiles 

 

Determine the largest as the change point 

10,000 

times 

repeat 

 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ie
pr

.iu
st

.a
c.

ir
 o

n 
20

25
-0

7-
18

 ]
 

                               5 / 8

https://ijiepr.iust.ac.ir/article-1-500-en.html


A. Sharafi, M. Aminnayeri, A. Amiri & M. Rasouli         Estimating the Change Point of Binary Profiles ……              128  

IInntteerrnnaattiioonnaall  JJoouurrnnaall  ooff  IInndduussttrriiaall  EEnnggiinneeeerriinngg  &&  PPrroodduuccttiioonn  RReesseeaarrcchh,,  JJuunnee  22001133,,  VVooll..  2244,,  NNoo..  22  

 
Fig. 3. The performance of the MLE estimator 

 

 

 

Table 2 shows the results of proportion of 10,000 

simulation runs that the estimator lies within a 

specified tolerance of the real change point value. For 

example if 0.01b  , the estimated probability that ̂  

lies within 1 or less from the real change point is 0.81. 

Also in this case, in 46% of the simulation runs the 

estimator correctly identifies the real time of the 

change. 

Table 2 shows that the performance of the MLE 

estimator improves significantly with increases in 

magnitude of the shift in the slope, b . 

Tab. 2.  Estimated precision performances over a range of i with 10,000 simulations runs when 50    

0.025 0.02 0.015 0.01 0.007 0.005 0.003 b  

0.83 0.72 0.57 0.46 0.36 0.30 0.21  ˆ 0p̂     

0.99 0.97 0.85 0.81 0.70 0.59 0.47  ˆ 1p̂     

1.00 1.00 0.99 0.94 0.89 0.81 0.64  ˆ 2p̂     

  1.00 1.00 0.98 0.92 0.79  ˆ 3p̂     

    1.00 0.98 0.90  ˆ 4p̂     

     1.00 0.97  ˆ 5p̂     

      1.00  ˆ 6p̂     

 
5. Conclusions 

 In this paper, we provided the MLE method to 

estimate the change point in phase II monitoring of 

logistic regression profiles, when the type of change is 

drift. The results of this study showed that the 

performance of the proposed estimator is fine to 

identify the real time of change point under different 

magnitude of drift rate. 

Developing this method to the other distributions of the 

exponential family such as Poisson and Gama would 

be future researches in this area. Furthermore the other 

types of the change, including step changes and 

isotonic changes could be investigated by researchers. 
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