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KKEEYYWWOORRDDSS                                  ABSTRACT 
 

Flexible flow shop scheduling problem (FFS) with unrelated parallel 

machines contains sequencing in flow shop where, at any stage, there 

exists one or more processors. The objective consists of minimizing 

the maximum completion time. Because of NP-completeness of FFS 

problem, it is necessary to use heuristics method to address problems 

of moderate to large scale problem. Therefore, for assessment the 

quality of this heuristic, this paper develop a global lower bound on 

FFS makespan problems with unrelated parallel machines. 
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11..  IInnttrroodduuccttiioonn


  

The scheduling of n jobs through m stages where, 

at any stage, there exist one or more unrelated 

processors, is termed as flexible flow shop (FFS) 

scheduling problem with unrelated parallel machines.  

In the classical flow shop problem, a set of jobs flow 

through multiple stages in the same machine order, 

where each stage consists of only one machine [1]. 

But, many production companies need to enhance or 

balance the capacity, and then it has lead to append 

some machines to some stages.  

This new problem is known as flexible flow shop 

(FFS), flexible flow line (FFL), hybrid flow shop 

(HFS), or a flow shop with multiple processors 

(FSMP). The FFS exists in many real world 

manufacturing problems, such as semiconductor 

assembly facilities [2], packaging industries [3], steal 

manufacturing [4], electronics manufacturing [5], glass 

container fabrication [6], automobile assembly [7], 

printed circuit board assembly [8,9], printed circuit 

board fabrication [10], ceramic tile manufacturing [11], 

and lead frame manufacturing [12].  
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Some authors considered this classical problem such 

as, Santos et al. [13], Sawik [14], Guinet and Solomon 

[15], Leon and Ramamoorthy [6], Kadipasaoglu et al. 

[16] , Alisantoso et al. [10], Lee et al. [12], Botta-

Genoulaz [17], Cheng et al. [18], Quadt and Kuhn [19], 

Torabi et al. [20]. 

In FFS with unrelated machines, the processing times 

of a job in a stage are different and depend on each 

specific machine. This may be due to the differences 

between the machines, to the fact that certain types of 

machines are better suited for a particular job, whereas 

others are not, or because the jobs have some special 

characteristics and can only be assigned to machines 

that are physically near to them [1]. Some authors 

consider this characteristic in their research such as 

Kadipasaoglu et al. [16,21], suresh [22], Hayrinen et al. 

[9], Low [23], Sawik [14], Jenabi et al. [25], Low et al. 

[26], and He et al. [27]. 

One of the effective tools for estimating the optimal 

makespan for evaluating the quality of heuristics 

methods is the determination of a strong lower bound. 

Santos and Deal [28] proposed a global lower bound 

for Flow shop with multiple processors. The selective 

objective function was makespan. The procedure for 

developing a global bound involves determining a 

lower bound for each stage. This stage-based lower 

bound calculates for each stage and the greatest stage-
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based bound is the bound which can be used for the 

entire problem.  

Haouari and M'Hallah [29] developed a new lower 

bound for makespan in two-stage Hybrid Flowshop 

environment. They also compared the lower bound 

with two phased method based on Simulated 

Annealing and Tabu Search. These comparisons show 

the superiority of the derived lower bound. 

Soewandy and Elmaghrby [30] developed some lower 

bound for three-stage FFS problem. Firstly, they 

compute an auxiliary problem from the original 

problem.  

Based on the processing time of auxiliary problem, 

they compute some lower bounds for makespan of 

auxiliary problem and any lower bound to the optimum 

of auxiliary problem is necessarily a makespan lower 

bound for original problem.  

In this paper, we consider FFS scheduling problem. 

Despite of many lower bounds for identical FFS 

scheduling problem, there isn’t any lower bound for 

makespan in flexible flow shop scheduling problem 

with unrelated parallel processors. In this research a 

new stage-based lower bound for FFS problem. 

The remainder of this paper is organized as follows. 

Section 2 describes mathematical model for FFS 

scheduling problem with unrelated parallel processors. 

Section 3 is dedicated to lower bound for FFS 

scheduling problem with unrelated processors. In 

section 4, an experimental study is presented to 

evaluate the lower bound according to some 

experimental factors. Finally, section 5 is devoted to 

the main finding of this paper and suggestions for 

conducting some future researches. 

 
2. Mathematical Model 

This section presents a mathematical model for 

FFS scheduling problem that considers relation 

between jobs processed in two consecutive stages and 

machines in each stages. The selected objective 

function is makespan. The model is based on the 

following hypothesis: 

 
 All the n jobs are independent and available at 

the initial time. 

 All the m stages are independent. 

 There is infinite buffer capacity between 

stages in the production line. 

 One job can be processed only by one 

machine at any time and one machine can 

process only one job at a time. 

 The processing time of all jobs on all stages is 

known and deterministic. 

 Jobs processing sequence are known. 

 The set up time of all jobs is included in the 

processing time. 

 The travel time between stages is negligible.  

To present the mathematical model, the following 

notations are used: 

,j l : Jobs index, 

,i h : Stages index,  

k : Machines in each stage index, 

n : Number of jobs, 

m : Number of stages, 

is : Number of machines in stage i, 

ijkp : The processing time of job j on stage i on 

machine k, 

M : Large number, 

ijC : The completion time of job j in stage i, 

 
1

0
ijk

if job j is assigned to machine k at stagei
X

otherwise


 


 

 
1

0
ilj

if jobl is processed earlier than job j at stagei
Y

otherwise


 


 

 
1

0
ijl

if jobl and jobl are processed on same machine at stagei
W

otherwise


 


 

 
Therefore the mathematical model of FFS scheduling 

problem can be formulated as follow: 

 

 
Subject to: 

 

(1) njj  1:  }max{ mjCZMin 
 

(2) 
mii

njj





1:

1:  1
1




i
s

k

ijkX

 

(3) njj  1:  



1

1

111 .
s

k

jkjkj XpC

 

(4) 
mii

njj





2:

1:  


 
is

k

ijkijkjiij XpCC
1

,1 .

 

(5) 

.1:

1:

,,1:,

mii

skk

nljlj

i







 
(1 )

.

ij ilj

il ijk ijk

C M Y

C p X

  

 
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The objective function (1) minimizes makespan and 

constraint (2) indicates that each job can be assigned to 

one machine at each stage. Constraint (3) ensures that 

completion time of job j in the first stage is greater than 

or equal to its processing time in this stage. Relation 

between completion times in two consecutive stages 

for job j can be seen in constraint (4). Constraint sets 

(5) and (6) preclude the interference between the 

processing operations of any two jobs on a machine. At 

most, one of these two constraint sets is active for each 

pair of jobs.  

If job l is processed before job l on the same machine 

in stage i, constraint set (5) is activated to prevent 

interference between the processing operations of these 

two jobs and constraint (6) is satisfied for all values of 

j and l which have the stated condition. In the opposite 

situation, the roles of these two constraint sets are 

changed. Constraint (7) determines the jobs which are 

processed on the same machine in stage i. Finally both 

constraints (8), (9) and (10) force variables ijkX , iljY  

and ijlW  to assume binary values 0 or 1. 

 
3. Lower Bound 

As mentioned above, because of NP-completeness 

of FFS problem with unrelated parallel machines in 

each stage, we can't attain optimum solution for large 

instances. On the other hand, we need a datum to 

evaluate the proposed heuristic in large scale instances.  

A new stage-based lower bound for FFS scheduling 

problem with unrelated parallel machines is explained 

in this section.  

It consists of three sections: the first section compute a 

lower bound for machine waiting time in each stage, 

the second section calculate a lower bound for each 

machine workload and the third section compute an 

estimated time for last job at sequence on each 

machine to pass from each stage to last stage. 

Preposition 1: a stage-based lower bound for FFS 

scheduling problem with  objective function is 

equals: 

 

 
( ) ( )1 1

1

1

1 1 1 1 1 1 1

1
min min min ( ) min min

i i iSPT S S SPT Si i n m

i ojk ojk i i ijk ojk
k j k k k

j o o j k j o ii

LB P P S S P P
S

 




       

 
     

 
       

(11) 

 
Proof: Minimum time to receiving job j to stage i 

equals . If there is  machines at stage i, 

total idle time at stage i equals 

.
2
 Therefore minimum waiting 

time of stage i tasks equals  in 

addition 
3
. So there is a 

machine at stage i so that its idle time is greater than or 

equal to 

 
( ) 1 1

1

1 1 1

1
min min min ( )

iSPT S i i

ojk ojk i i
k j k

j o oi

P P S S
S

 




  

 
  

 
  

 

                                                 
2
  

( )

1

iSPT S

j

j

h


  is sum of 
jh  of 

jS  orders whose 
jh are shortest. 

3
  1 1( ) max 0,i i i iS S S S

     

The third term of equation presents a lower bound for 

workload at stage i. The total workload for entire jobs 

at stage i equal to 

1 1

min
iSn

ijk
k

j k

P
 

 . Therefore there is 

a machine at stage i so that its workload is greater than 

or equal to 

1 1

1
min

iSn

ijk
k

j ki

P
S  

 . The last term shows 

necessary time to finish processing the last order on 

sequence on the remaining stages. If there is iS  

machines at stage i, the total processing time for iS  

orders equal to 
( )

1 1

min
iSPT S m

ojk
k

j o i

P
  

  . So there is a 

machine at stage i so that the minimum necessary time 

to finish processing the last order on this machine on 

 (6) 

.1:

1:

,,1:,

mii

skk

nljlj

i







 
(1 )

.

il ijl ilj

ij ilk ilk

C M W Y

C p X

   

 

 

(7) 

.1:

1:

,,1:,

mii

skk

nljlj

i







 1 ilkijkijl XXW  

(8) 

.1:

1:

,,1:,

mii

skk

nljlj

i







 }1,0{ijkX
 

(9) nljlj  ,1:,

 
}1,0{iljY  

(10) 
.1:

,,1:,

mii

nljlj



  }1,0{ijlW  

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ie
pr

.iu
st

.a
c.

ir
 o

n 
20

26
-0

2-
15

 ]
 

                               3 / 6

https://ijiepr.iust.ac.ir/article-1-478-en.html


N. Nahavandi & E. Asadi Gangraj                  A New Lower Bound for Flexible Flow Shop Problem …                                     68  

IInntteerrnnaattiioonnaall  JJoouurrnnaall  ooff  IInndduussttrriiaall  EEnnggiinneeeerriinngg  &&  PPrroodduuccttiioonn  RReesseeaarrcchh,,  MMaarrcchh  22001144,,  VVooll..  2255,,  NNoo..  11  

the remaining stages is greater than or equal to 
( )

1 1

1
min

iSPT S m

ojk
k

j o ii

P
S   

  . Notice that if 1i  the first 

term equal to 0 and if i m the last term equal to 0. 

Preposition 2: a stage-based lower bound for FFS 

scheduling problem with  objective function is 

equals: 

 

 
( ) ( ) 1

2

1

1 1 1 1 1 1 1

1
min min min ( ) min min

i i iSPT S S SPT Sm m n i

i ojk ojk i i ijk ojk
k j k k k

j o i o i j k j oi

LB P P S S P P
S






        

 
     

 
      (12) 

 
Proof: obviously, by looking at problem backward and 

last proof, we can simply conclude this lower bound. 

Preposition 3: a stage-based lower bound for FFS 

scheduling problem with  objective function is 

equals: 

 
1 2max{ { , }}, 1,2,...,i iLB roundup LB LB i m   (13) 

 

Based on the integer processing time in each stage, the 

lower bound must be integer; therefore the resulted 

lower bound must be roundup. 

 
4. Computational Study 

In this section, performance of lower bound is 

evaluated. For evaluation purpose, some test problems 

is produced. These instances are dedicated to small size 

problems. As mentioned above, because of NP-

completeness of FFS scheduling problem, it is very 

expensive to receive the optimal solution for the 

medium and large problem. Then test problems in this 

section are limited to the small size problem. For this 

purpose, 20 test problems with following features are 

generated: 

 
Tab. 1. Experimental factor for small size problem 

Experimental factor Feature 

Number of jobs U[3,5] 

Number of stages U[2,4] 

Number of machines each 

stage 
U[1,3] 

Processing time U[5,10] 

 
The results of comparison between lower bound and 

optimal solution presents in table 2. The optimal gap 

between the lower bound and the optimal solution is 

calculated as follows: 

 

optimal solution lower bound
Optimal Gap

optimal solution


  (14) 

 

Tab. 2. Lower bound performance evaluation  

Optimal Gap Optimal 

solution 
Lower bound 

No. of machines 

each stages 

No. of 

stages 

No. of 

jobs 

Test 

problem 

--- 29* 26 2 2 3 3 4 1 

8.11% 40 37 2 1 3 3 4 2 

0.00% 53 53 2 2 1 2 4 5 3 

2.70% 38 37 2 2 2 1 4 3 4 

--- 29* 26 3 2 2 3 4 5 

--- 26* 22 2 2 2 5 6 

4.17% 25 24 2 2 3 3 3 7 

0.00% 27 27 1 3 2 4 8 

0.00% 55 55 1 2 2 3 5 9 

2.17% 47 46 2 1 3 3 4 10 

0.00% 25 25 2 2 2 3 4 11 

13.04% 26 23 3 3 2 3 3 12 

0.00% 42 42 2 2 1 3 4 13 

4.00% 52 50 3 1 2 2 4 4 14 

0.00% 53 53 3 1 2 5 15 

8.70% 25 23 3 2 2 3 3 16 

4.76% 22 21 2 2 2 4 17 

0.00% 29 29 1 2 2 4 18 

4.00% 26 25 2 3 3 3 3 19 

0.00% 50 50 1 1 2 2 4 4 20 
*After 600 seconds, solver is interrupted. 

 
According to table 2, lower bound can achieve optimal 

solution in 53% of test problems and solver
4
 can't 

attain optimal solution after 10 minutes in three 

                                                 
4
 All the optimal solutions are obtained by Lingo 9.0 software. 

problems. Differences between lower bound and 

optimal solution (optimal gap) equal 3%. Therefore we 

can conclude lower bound have good quality to achieve 

optimal solution. 
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5. Conclusion 
In this research, a new mathematical model is 

presented for flexible flow shop scheduling problem 

with unrelated parallel machines in each stage. The 

selective objective function is makespan. Because of 

NP-completeness, it is expensive to achieve the 

optimal solution in large scale problems. Therefore, we 

proposed a new global lower bound as a datum for 

large scale problem. The results show that, the lower 

bound has 3% difference from optimal solution in 

small instances. Therefore it can be used to evaluate 

other heuristic.  

Future works can consider other characteristics of FFS 

environments, such as availability constraints, 

sequence dependent set up time (cost), and identical 

machines. Metaheuristics algorithms (SA, TS, GA …) 

can also be applied for this problem, and we can 

compare them with the proposed lower bound. 

Afterwards, lower bound can be changed for other 

environments such as job shop and open shop. 
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