
  

  
  

 

Phase II Logistic Profile Monitoring 

 

A. Saghaei
*
, M. Rezazadeh-Saghaei, R. Noorossana & M. Dorri 

 
Abbas. Saghaei, Industrial Engineering Department, Science and Research Branch, Islamic Azad University, Tehran, Iran  

Msryam Rezazadeh-Saghaei, Parsian Quality and Productivity Research Center, Tehran, Iran.  

Rasoul Noorossana, Industrial Engineering Department, Iran University of Science and Technology, Tehran,  
Mehdi Dorri, Industrial Engineering Department, Islamic Azad University-South Tehran Branch, Tehran, Iran. 

 
 

KKEEYYWWOORRDDSS                                  ABSTRACT 
 

In many industrial and non-industrial applications the quality of a 

process or product is characterized by a relationship between a 

response variable and one or more explanatory variables. This 

relationship is referred to as profile. In the past decade, profile 

monitoring has been extensively studied under the normal response 

variable, but it has paid a little attention to the profile with the non-

normal response variable. In this paper, the focus is especially on the 

binary response followed by the bernoulli distribution due to its 

application in many fields of science and engineering. Some methods 

have been suggested to monitor such profiles in phase I, the modeling 

phase; however, no method has been proposed for monitoring them in 

phase II, the detecting phase. In this paper, two methods are proposed 

for phase II logistic profile monitoring. The first method is a 

combination of two exponentially weighted moving average (EWMA) 

control charts for mean and variance monitoring of the residuals 

defined in logistic regression models and the second method is a 

multivariate T
2
 chart to monitor model parameters. The simulation 

study is done to investigate the performance of the methods. 

 
              © 2012 IUST Publication, IJIEPR, Vol. 23, No. 4, All Rights Reserved.  

 
 

 

 
 

 

 

11..  IInnttrroodduuccttiioonn

  

The vast number of research studies on statistical 

process control (SPC) and particularly charting 

techniques demonstrates their importance in quality 

improvement for today's competitive industries. The 

quality of a process or product is characterized by 

univariate or multivariate quality characteristics. 

However, sometimes, a relationship between a 

response variable and one or more explanatory 

variables, referred to as profile, characterizes the 

quality of a process or product in a better way. For 

profile monitoring, one can measure the value of the 

response variable along with the corresponding values 
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of one or more explanatory variables in order to 

evaluate the stability of profile relationship. The profile 

monitoring includes two phases. In phase I, the purpose 

is to evaluate the stability of a process and to estimate 

its parameters. In phase II, it is desirable to detect any 

change in the process parameters and variance of the 

profile as soon as possible. There are many studies on 

profile monitoring in which the response variable of 

interest follows the normal distribution in both phases I 

and II. Many authors including Mestek et al. [17], 

Stover and Brill [24], Lawless et al. [13], Kang and 

Albin [9], Mahmoud and Woodall [15], Woodall et al. 

[31], Wang and Tsung [27], Gupta et al. [6], Woodall 

[30], Zou et al. [33], and Jensen and Birch [7] have 

presented real-world example in which profile is 

applicable. 

Mestek et al. [17], Stover and Brill [24], Mahmoud and 

Woodall [15] and Mahmoud et al. [14] all have focused 
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on phase I profile monitoring. Kang and Albin [9] 

proposed two methods for monitoring the linear 

profiles in both phases I and II: one is a multivariate T
2
 

chart for monitoring the model parameters and the 

other is a combination of the exponentially weighted 

moving average (EWMA) control chart and the range 

(R) control chart for monitoring the mean and variance 

of errors, respectively.  

Kim et al. [12] coded the explanatory variable values in 

order to change the average to zero and make the 

model parameters independent. Then, they applied 

three EWMA charts to monitor a simple linear profile 

for detecting a shift in the intercept, slop and error 

variance.  

They showed that their proposed method is superior to 

the one recommended by Kang and Albin [9]. There 

are also other papers investigating the phase II simple 

linear profile monitoring. Noorossana et al. [22] 

recommended a method based on the combination of 

multivariate cumulative sum (MCUSUM) chart and R 

chart. They showed that their proposed method detects 

small shifts in the intercept and slop more quickly. 

However, the performance of this method is not better 

than the previous methods in detecting error variance 

shifts.  

In Gupta et al. [6] the performance of the method in 

Kim et al. [12] was compared with a method developed 

by Croakin and Varner [3]. In Zou et al. [34] a control 

chart based on change point model was proposed. 

Noorossana and Amiri [21] explained a method that 

applied MCUSUM chart and chi-square chart 

simultaneously. This method has the better 

performance in detecting shifts in error variance 

compared to the MCUSUM/R method. In Niaki et al. 

[20] a new method was recommended based on a 

generalized linear statistical model along with an R 

chart.  

In Zou et al. [33], a multivariate exponentially 

weighted moving average (MEWMA) control chart 

was proposed based on the likelihood ratio statistics for 

monitoring the general linear profiles in phase II. Zou 

et al. [35] proposed a self starting Phase II control chart 

for monitoring the linear profiles based on the 

recursive residuals when the process parameters are not 

known. Woodall [30] reviewed the research on the use 

of control charts for profile monitoring. Kazemzadeh et 

al. [10, 11] proposed methods for monitoring the 

polynomial profile in phases I and II, respectively. 

Saghaei et al. [23] proposed three cumulative sum 

(CUSUM) control charts in order to monitor a shift in 

the parameters of the simple linear profile.  

They compared the performance of their proposed 

method with the other existing methods and showed 

that their proposed method has remarkable 

performance in detecting a broad range of different 

kinds of model parameter shifts. Sometimes, the profile 

relationship can be represented by more complicated 

models than the linear one. Jin and Shi [8], Brill [2], 

Walker and Wright [26], Ding et al. [4], Williams et al. 

[28, 29], Moguerza et al. [18], Vaghefi et al. [25] and 

Jensen and Birch [7] have studied and investigated 

nonlinear profile monitoring. In many applications, the 

response variable can be a discrete variable. In 

particular, a binary response can be applied for 

classifying the products as defective or non-defective 

following the bernoulli or the binomial distribution. In 

these cases, a logistic regression model can be applied 

for characterizing the profile relationship which is 

called logistic profile in this paper. Yeh et al. [32] 

studied and extended profile monitoring under a 

logistic regression model in phase I and discussed the 

T
2
 chart based on five different estimates of variance 

matrix of the model parameter. So far, no method has 

been proposed for monitoring the logistic profile in 

phase II. In this paper, two methods are proposed for 

monitoring the phase II logistic profile. The rest of this 

paper is outlined as follows: 

The logistic profile is described in the next section. The 

proposed methods for monitoring the logistic profile 

are described in Section 3. Simulation studies and 

performance comparisons of proposed methods are 

presented in Section 4. Two practical examples are 

presented in Section 5. In the final section, simulation 

results are discussed and concluding remarks are 

presented. 
 

2 Logistic Profile 
Suppose that jth random sample is collected over 

time in phase II when the process is in statistical 

control. There are a set of observations 1

n

i ij iyx{ , }  , 

each set of which consists of p independent regressor 

variables denoted by 1 2
T

i i i ipx x x ( , , ..., )x , and one 

binary response variable denoted by ijy . It is assumed 

that each ijy  follows the bernoulli distribution with 

 ij i iE y    , where i i  ( )x
 

represents the 

probability of the bernoulli process as a function of ix . 

As mentioned above, it is assumed that i  is a function 

of ix  which can be represented by a logistic regression 

model as      0
T

ij i iE y f  x x , where 

0 01 02 0
T

p   ( , , , )  is the vector of the model 

parameters. Note that 01  is the intercept of the model, 

it means that 1 1ix  . There are various functions to 

represent the relationship between independent 

variables and response variables in a logistic model; a 

well-known of which is logit function. If this function 

is used, the logistic model would be written as: 

 

   01 1
T

i iexp   / ( )x x                                      (1) 
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where 0
T
i x  is called linear predictor. But sometimes, 

in real cases, repeated observations or trials are made at 

each level of the x  variable. Let ijy  represent the 

number of 1’s observed for the ith observation in jth 

sample, and im  represent the number of trials at each 

observation. Then, the logistic model becomes:  

 

     01
T

ij i i i iE y m m exp   / ( )x x              (2) 

 

The estimates of the linear predictor parameters from 

sample j can be obtained using the maximum 

likelihood method which is the theoretical basis for the 

parameter estimation in the logistic models. Since the 

observations are independent and follow the bernoulli 

distribution, the likelihood function will be formed in 

its usual manner. Because of the equality of the 

maximum likelihood estimations and weighted least 

squares estimation, Myers et al. [19] proposed using an 

iteratively reweighted least squares (IRWLS) method 

to solve the score equation in the estimation procedure 

of unknown logistic parameters. The log likelihood 

function of n  independent ijy s is expressed by: 

 

 
 

 
 

1 1
1

1

n n

i

j i

j j ij i j i
j i

i
ln L y ln m ln




  

 
   

  

( ) ( ): 
x

y x
x

    (3) 

 

From Eq. 1, the term 
 

 1

j i

j i

ln



( )

x

x
 is given by  

T
i jx . Accordingly, the log likelihood function in Eq. 

3 can be written as: 

 

   
1

1
T T

j j ij i

n

j j
i

ln L m ln exp 
  (: )  y X  y x  (4) 

 

where 1 2
T

n ( , , , )X x x x  is an n p*  matrix of 

regressors. 

To obtain the maximum likelihood estimates, the log 

likelihood in Eq. 4 must be maximized with respect 

to j . After differentiating Eq. 4 with respect to j , 

the score equation of: 

 

  0
T

j j X y                                                       (5) 

 

can be obtained, where 1 2
T

j j j nj   ( , , , ) and 

 ij i j im  x . Solving the score equation is 

nontrivial since j is a nonlinear function of
 j . The 

model parameters can be estimated by applying the 

Newton-Raphson procedure which is expressed as 

IRWLS method. This procedure can be initialized the 

arbitrary value of   denoted by 
0

̂ , and then it can be 

continued using the following Newton-Raphson 

updating rule: 

 

   
1

1t t T t T t



 ˆ ˆ  X W X X y                       (6) 

 

The estimate of model parameters updates until 
1t t t



 ˆ ˆ ˆ   , which .  calculates the 

Euclidean norm and   is chosen to be a sufficiently 

small constant (e.g. 
5

10α


 ). 

McCullagh and Nelder [16] showed that when ̂  is the 

maximum likelihood estimate of the logistic model 

parameters and n  or for a fixed n  each im  is large 

enough, ̂  follows a multivariate normal distribution 

asymptotically with   0E ̂   and   1T
Var


 ( ) X WX , 

where W is a diagonal matrix with 

   1i i im  ( )x x  as the ith diagonal element. 

Like any other linear and non-linear models, the 

analysis of residuals is important in a logistic model. 

Residuals are ordinarily shown as the difference 

between the reference model and sample profile. This 

kind of residuals is only useful in the case of 

homogeneous variance. For example, in the linear and 

non-linear normal profiles, the mentioned residual 

variables are independent and follow the normal 

distribution with mean zero and constant variance 
2

 . 

But in the logistic model, because of its dependency on 

the mean value, the variance values of the observations 

(which are the same as the residual variance) change 

for the different levels of x  variable. Therefore, to 

avoid this problem, other kinds of residuals have been 

proposed. 

McCullagh and Nelder [16] mentioned the Pearson and 

Anscombe residuals that can be used as standard 

normal residuals for logistic models similar to the 

ordinary residuals employed in the standard regression. 

The Pearson residual is defined as follow: 
 

ij ip
ij

ij

y
R

Var y( )





,                                                       (7) 

 

where  i i im  x  is the predicted value of 

response variables in the ith level of c variable and  

     1ij i i iVar y m   ( )x x in the logistic models.  

The Anscombe residual is computed by the following 

expression: 
 

 ij ia
ij

i ij

A y A
R

A Var y

( )

( ) ( )









                                              (8) 
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where the function A (.)  is given by:  

 

1 3

d
A

Var
/

(.)
( )

 



                                                       (9) 

 

For the binomial distribution, the Anscombe residual 

takes the form of: 

 

1 6

2 2 2 2 2 2

3 3 3 3 3 3

1

ij i

i

y

ma
ij i

i i

B I I

R m
/

, ( , , )

( ( ))

     
     

     






 
,       (10) 

 

where B a b( , )  and  xI a b,  are calculated through: 

 

    1 1

0

1, ( ( ) ( )) / ( ), , ( ) 
   

x
a b

xB a b Γ a Γ b Γ a b I a b t t dt  .(11) 

 
3 Proposed Methods 

3.1  EWMA2 Method 

The difference between observed and predicted 

values for a given level of independent variables 

follows a normal distribution with the mean of zero 

and a constant variance,  jtj Ne ,0 , in a profile 

with the normal response variable.  

In the logistic profile, ordinary residuals have the mean 

of zero and a variable variance, 

  
ijijjtj me   10, ; therefore, using some 

residuals defined in the logistic regression model such 

as Pearson and Anscombe residuals is proposed. In the 

first method, two EWMA charts are proposed for the 

phase II monitoring of logistic profiles; one is to 

monitor the mean of residuals like the EWMA/R 

method in Kang and Albine [9] and another is to 

monitor the variance of residuals based on the inverse 

normal transformation proposed by Acosta-Mejia et al. 

[1]. If jMSE represents the variance of the jth sample 

and: 
 

  2

1 2
0/


j n

jP Φ F n MSE 
 ,                               (12) 

 

then 
2
0nMSEj /  and 

j
P  would follow a chi-square 

distribution with n degrees of freedom and a standard 

normal distribution, respectively. In Eq. 12, 
 

2
n

F (.)


 is 

the cumulative distribution function (cdf) for the chi-

square distribution with n degrees of freedom and 

Φ(.) is the cdf for the standard normal distribution. An 

increase (decrease) in the standard deviation of 

residuals results in an increase (decrease) in the mean 

of 
j

P .  

3.1.1 Pearson Residual-Based Method 

 EWMA2 method based on Pearson residuals, 

2
p

EWMA , uses the following 
p
M jEWMA ,  and 

p
E jEWMA , statistics for monitoring the mean and 

variance of Pearson residuals, respectively. 

 

11
p p p
M j j M jEWMA R EWMA, ,( )     ,                (13)  

 

  11
j

p p
E j E jEWMA P EWMA, ,     ,                (14)  

 

where 
1

np
i

i

p
j jR R n/


 , 0 0 0

p p
M EEWMA EWMA, ,  , and 

  is a smoothing constant, 0 1  . The upper and 

lower control limits for the charts are given by: 

 

  2/ ,p p p p
M M M MUCL L n LCL UCL     ,     (15) 

 

 2/ ,p p p p
E E E EUCL L LCL UCL     .              (16)  

 

The multipliers 0
p
ML ( ) and 0

p
EL ( ) are chosen in 

order to give a specified in-control ARL. 

 

3.1.2 Anscombe Residual-Based Method 

 EWMA2 method based on Anscombe residuals, 

2
a

EWMA , uses the following 
a
M jEWMA , and 

a
E jEWMA , statistics for monitoring the mean and 

variance of Anscombe residuals, respectively.  

 

  11
a a a
M j j M jEWMA R EWMA, ,                    (17)  

 

  11
j

a a
E j E jEWMA P EWMA, ,     ,                (18)  

 

where 
1

na
i

i

a
j jR R n/


 , 0 0 0

a a
M EEWMA EWMA, ,  , 

and   is a smoothing constant, 0 1  . The upper 

and lower control limits for the charts are given by: 

 

  2/ ,a a a a
M M M MUCL L n LCL UCL     ,     (19) 

 

 2 ,a a a a
E E E EUCL L LCL UCL     .                (20) 

 

The multipliers 0
a
ML ( )   and 0

a
EL ( ) are chosen in 

order to give a specified in-control ARL. 

3.2 T
2
 method 

The model parameters, j , follow a multivariate 

normal distribution asymptotically with 0jE ( )   
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and   1T
jVar


 ( ) X WX , (see Section 2). The 

following  T
2
 statistic is proposed for monitoring the 

logistic profile in phase II:  
 

2
0 0

T T
j j jT   ( ) ( )( )   X WX                          (21) 

 

2
jT follows a chi-square distribution with p  degrees of 

freedom. The UCL for the given False Alarm Rate   

is 2

2

T
UCL p( )  .  

 
4. Simulation Studies 

In this section, a simple logistic model is 

considered for comparing the performance of the 

proposed methods used by Yeh et al. [32] in their 

simulation study. In this model, the probability 

parameter equals the following equation: 

 

   1 21 1 1 1 3 2i i iexp exp         / ( ( / ( ))) ( )x x x  (22) 

 

The performance of the proposed control charts was 

investigated based on the values of out-of-control ARL 

under positive and negative shifts from 1  to 

11 *    and 2  to 
22 *    . The values of 

response variable were measured along with the 

corresponding values of one explanatory variable, 

1 2 3 9i  (. , . , . , ..., . )x . The values of ix  can be replaced by 

the transformed logarithmic values. This transforming 

is often done and is effective when the range of values 

is quite large (see Finney (1950)). Therefore, the 

matrix X was obtained: 
  

1 1

1 9log log

 
   
 

(. ) (. )
X  

 
It was also assumed that each independent variable 

level had m  replications and the performance of 

proposed control charts was investigated for different 

values of m  for 30 60 100m , , . Ten thousand vectors 

of  were drawn from the binomial distribution in 

order to compute the ARL values.  

The smoothing constants in EWMA2 method were set 

to 0.2. The combination of two EWMA control charts 

had an overall in-control ARL of roughly 200 and each 

of the two charts had the in-control ARL of 

approximately 390. The 2
T

UCL was also set in order to 

give an in-control ARL of roughly 200.  

The values of 
p
MUCL , 

p
EUCL , 

a
MUCL , 

a
EUCL  and 

2
T

UCL  are summarized in Table 1. The simulation 

results under positive and negative shifts are illustrated 

in Tables 2-5. 

 
Tab. 1. Values of upper control limits 

Replication 

Number 

Control Limit 

     

m=100 0.3513 0.9787 0.3395 0.9633 11.3700 

m=60 0.3613 1.0133 0.3396 0.9667 11.9600 

m=30 0.3903 1.1083 0.3398 0.9700 13.4532 

91, pp. 68-83 

 

Tab. 2. ARL comparisons under positive shifts from 1  to 
11    *  

Replication 

Number 

Proposed 

method 
          

0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 

m=100 

 0.0541 0.1082 0.1624 0.2165 0.2706 0.3247 0.3789 0.433 0.4871 0.5412 

 88.2419 27.8901 9.8345 4.2019 2.3291 1.5234 1.2069 1.0715 1.02 1.0046 

 26.8163 7.8607 4.3971 3.131 2.4893 2.1201 1.9003 1.7017 1.4879 1.2807 

 22.0075 7.303 4.2523 3.0516 2.4543 2.0931 1.862 1.6716 1.4529 1.2668 

m=60 

 0.0699 0.1397 0.2096 0.2795 0.3494 0.4192 0.4891 0.559 0.6289 0.6987 

 93.1249 30.4103 10.592 4.5811 2.4979 1.6071 1.2429 1.0886 1.0269 1.0068 

 27.0174 7.858 4.4449 3.1726 2.5211 2.139 1.9303 1.7443 1.5477 1.3476 

 21.9159 7.2989 4.3506 3.1155 2.4889 2.1224 1.9055 1.719 1.5239 1.3294 

m=30 

 0.0988 0.1976 0.2964 0.3953 0.4941 0.5929 0.6917 0.7905 0.8893 0.9882 

 98.7887 34.3091 13.0109 5.418 2.8838 1.8216 1.3514 1.1475 1.0462 1.0135 

 27.5923 8.1341 4.5924 3.2369 2.5824 2.2129 1.9893 1.8296 1.657 1.4544 

 22.0881 7.6445 4.5084 3.268 2.6203 2.243 2.0081 1.8566 1.6886 1.5094 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ie
pr

.iu
st

.a
c.

ir
 o

n 
20

25
-0

7-
18

 ]
 

                             5 / 10

https://ijiepr.iust.ac.ir/article-1-461-en.html


A. Saghaei, M. Rezazadeh-Saghaei, R. Noorossana & M. Dorri        Phase  Logistic Profile Monitoring          296  

IInntteerrnnaattiioonnaall  JJoouurrnnaall  ooff  IInndduussttrriiaall  EEnnggiinneeeerriinngg  &&  PPrroodduuccttiioonn  RReesseeaarrcchh,,  DDeecceemmbbeerr  22001122,,  VVooll..  2233,,  NNoo..  44  

Tab. 3. ARL comparisons under negative shifts from  1  to 
11    *  

Replication 

Number 
Proposed 

method 
          
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 

m=100 

 0.0541 0.1082 0.1624 0.2165 0.2706 0.3247 0.3789 0.433 0.4871 0.5412 

 121.2224 36.7556 11.7589 4.6285 2.3806 1.5139 1.1845 1.0521 1.0111 1.0023 

 25.0241 7.373 4.1079 2.8983 2.2724 1.9179 1.6603 1.4026 1.1967 1.0586 

 36.4613 8.768 4.5503 3.118 2.4082 2.034 1.7854 1.5396 1.2926 1.116 

m=60 

 0.0699 0.1397 0.2096 0.2795 0.3494 0.4192 0.4891 0.559 0.6289 0.6987 

 134.8965 44.9237 14.1218 5.3678 2.5762 1.609 1.2119 1.0661 1.0149 1.0017 

 24.7476 7.219 4.0371 2.8544 2.2497 1.8916 1.625 1.3729 1.1677 1.051 

 44.615 9.3759 4.7786 3.2174 2.4826 2.0674 1.8099 1.5658 1.307 1.1305 

m=30 

 0.0988 0.1976 0.2964 0.3953 0.4941 0.5929 0.6917 0.7905 0.8893 0.9882 

 159.8154 61.272 20.1896 7.2575 3.3014 1.8482 1.319 1.094 1.0239 1.0044 

 24.1641 7.2091 3.9689 2.78 2.1847 1.8431 1.5596 1.306 1.1259 1.0384 

 72.7151 11.7829 5.4231 3.5265 2.6517 2.179 1.9064 1.6688 1.3891 1.1851 

 

Tab. 4. ARL comparisons under positive shifts from  2  to 
22    *  

Replication 

Number 
Proposed 

method 
          
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 

m=100 

 0.043 0.0861 0.1291 0.1722 0.2152 0.2583 0.3013 0.3444 0.3874 0.4304 

 87.0811 27.2385 9.6438 4.2257 2.2901 1.5342 1.2048 1.0746 1.0208 1.006 

 39.4069 11.4047 6.0744 4.0689 3.1437 2.6027 2.246 2.0157 1.8254 1.6731 

 61.4691 14.4216 6.8278 4.4383 3.3381 2.7026 2.3443 2.0745 1.8881 1.7349 

m=60 

 0.0556 0.1111 0.1667 0.2223 0.2779 0.3334 0.389 0.4446 0.5001 0.5557 

 89.8738 29.1247 10.2943 4.5671 2.4491 1.609 1.2456 1.096 1.0301 1.0063 

 40.1046 11.6227 6.0596 4.1451 3.1717 2.6063 2.2757 2.0249 1.856 1.7056 

 76.6358 16.3345 7.443 4.7469 3.534 2.8561 2.4319 2.1517 1.9606 1.8024 

m=30 

 0.0786 0.1572 0.2358 0.3144 0.3929 0.4715 0.5501 0.6287 0.7073 0.7859 

 98.1847 33.048 12.416 5.2574 2.9014 1.8133 1.3655 1.1515 1.0568 1.0177 

 39.8003 11.8934 6.1737 4.1841 3.2403 2.6726 2.3143 2.0763 1.901 1.7504 

 138.6959 23.9356 9.3711 5.6084 4.0373 3.2106 2.6902 2.3483 2.1249 1.9748 

 

Tab. 5. ARL comparisons under negative shifts from  2  to 
22    *  

Replication 

Number 
Proposed 

method 
          
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 

m=100 

 0.043 0.0861 0.1291 0.1722 0.2152 0.2583 0.3013 0.3444 0.3874 0.4304 

 126.7785 38.4535 12.1394 4.7103 2.3901 1.5209 1.1696 1.0516 1.0113 1.0011 

 39.5337 11.0306 5.7803 3.85 2.9479 2.4313 2.0983 1.8784 1.6754 1.4854 

 32.8488 10.1375 5.5674 3.826 2.9699 2.4486 2.1234 1.912 1.7265 1.5421 

m=60 

 0.0556 0.1111 0.1667 0.2223 0.2779 0.3334 0.389 0.4446 0.5001 0.5557 

 137.8975 46.076 14.2224 5.3506 2.5755 1.5858 1.2109 1.0534 1.0116 1.0017 

 39.6764 10.885 5.6571 3.8333 2.9064 2.4209 2.09 1.8717 1.6829 1.4664 

 31.7437 10.0206 5.5568 3.846 2.9951 2.4681 2.1471 1.9401 1.7645 1.5793 

m=30 

 0.0786 0.1572 0.2358 0.3144 0.3929 0.4715 0.5501 0.6287 0.7073 0.7859 

 166.2769 64.3396 20.7275 7.2055 3.2574 1.8121 1.2885 1.088 1.021 1.0036 

 39.8223 10.8734 5.6287 3.8009 2.899 2.3889 2.0821 1.8654 1.6733 1.4779 

 31.3275 10.3276 5.7776 4.0025 3.0995 2.5578 2.2211 2.0065 1.8454 1.6971 
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5. An Example 
This section gives an example taken from a study of 

the press machine monitoring. The relationship 

between the percentage of defective products and the 

speed of a press machine can be modeled by a logistic 

profile.  

One percent of products are defective when a special 

press machine works in normal speed. The speed 

increase (decrease) led to increase (decrease) the 

percentage of the defective products. For example, the 

percentage of defective products decreases by 0.5% 

when the speed of the press machine decreases by 1/4-

fold. The following table gives more information on 

this relationship. The probability of defective product 

is the long-term average probability observed at the 

certain level of the speed for the samples of 100 

products which is shown in Table 6. 

 
Tab. 6. The probability of defective productive at 

the certain level of the machine speed 

Speed of the press 

machine 

probability of 

defective products 

0.25 0.005 

0.50 0.006 

0.75 0.008 

1.00 0.010 

1.30 0.015 

1.50 0.019 

1.80 0.026 

2.00 0.035 

 

Based on the logistic model, the first-order model was 

fitted to data and the model parameters were estimated 

by the Newton-Raphson procedure. As a result, the 

probability of the bernoulli process (being defect or 

non-defect product) and the variance matrix were 

obtained: 

 

   1 1 1 1 5 702 1 174
T

i i iexp exp x     / ( ( /) ( .) . )x x  

  T 1
0621 1658

Var
1658 6226


 

   
 


. .

( )
. .

 X WX  

 
Notice that the matrix X  was considered without 

logarithmic transformation of the x values. EWMA2 

method based on Pearson residual selected for 

monitoring the model parameters over time in order to 

detect a shift in phase II control. The upper control 

limits for the 
p
MEWMA , 

p
EEWMA  charts were set to 

equal 2.87, 3.14, respectively, for obtaining an overall 

in-control ARL of roughly 200. When the sample j is 

collected, one can calculate the residual values and 

compute 
jσ

P  by Eq. 12. The jth plotting statistics are 

computed by Eqs. 14 and 15. Figure 1 shows the 127 

plotted statistics on the 2
p

EWMA  control charts. The 

point 89 is out of control limits plotted on both the 
p
EEWMA  and the 

p
MEWMA  control charts. Analytical 

results showed that an assignable cause occurred on the 

84th day and the process was out-of-control. 

0 20 40 60 80 100 120

-1

-0.5

0

0.5

1

 

0 20 40 60 80 100 120
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Fig. 1. The plots show the 2

p
EWMA charts over a 127 days period time. The first point that signaled an out-of-

control state is point 89 on both the 
p
MEWMA chart (upper) and the 

p
EEWMA chart (lower). 

 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ie
pr

.iu
st

.a
c.

ir
 o

n 
20

25
-0

7-
18

 ]
 

                             7 / 10

https://ijiepr.iust.ac.ir/article-1-461-en.html


A. Saghaei, M. Rezazadeh-Saghaei, R. Noorossana & M. Dorri        Phase  Logistic Profile Monitoring          298  

IInntteerrnnaattiioonnaall  JJoouurrnnaall  ooff  IInndduussttrriiaall  EEnnggiinneeeerriinngg  &&  PPrroodduuccttiioonn  RReesseeaarrcchh,,  DDeecceemmbbeerr  22001122,,  VVooll..  2233,,  NNoo..  44  

 

6 Conclusions 
In this paper, two methods were proposed for phase 

II monitoring of profiles under the assumption that the 

response variable is binary. One is a combination of 

two EWMA control charts for the mean and variance 

monitoring of the residuals defined in logistic 

regression models. The details were represented for 

two different kinds of these residuals. The other 

method is a multivariate T
2
 control chart for 

monitoring the logistic regression model parameters. 

The performance of the methods was compared in 

terms of ARL criterion.  

The simulation studies showed that the performance of 

EWMA2 method is superior to T
2
 method when the 

step shift is small. The T
2
 method performs better than 

the EWMA2 method in the case of the large step shift; 

however, the performance of the methods is close to 

each other.  

The simulations were run for different values of 

replication number of the bernoulli trials. The results 

showed that increasing the bernoulli trials number led 

to increasing the performance of two methods. 

Comparing the performance of two residuals showed 

that the EWMA2 method based on Pearson residual is 

robust; therefore, applying the Pearson residual is 

preferred in the cases which the replication number is 

small. 

 
References 

[1] Acosta-Mejia, C.A.,  Pignatiello, J.J., Rao, B.V., “A 

Comparison of Control Charting Procedures for 

Monitoring Process Dispersion,” IIE Transactions, Vol. 

31, 1999, pp. 569-579. 

 
[2] Brill, R.V., “A Case Study for Control Charting a 

Product Quality Measure that is a Continuous Function 

Over Time,” In Proceedings of the 45th Annual Fall 

Technical Conference, Toronto, Ontario, 2001. 

 
[3] Croarkin, C., Varner, R., “Measurement Assurance for 

Dimensional Measurements on Integrated-Circuit 

Photomasks,” NBS Technical Note 1164, US 

Department of Commerce, Washington, DC. USA, 

1982. 

 
[4] Ding, Y., Zeng, L., Zhou, S., “Phase I Analysis for 

Monitoring Nonlinear Profiles in Manufacturing 

Processes,” J. Qual. Technol., Vol. 38, 2006, pp. 199–

216.  

 
[5] Finney, D.J., Probit Analysis, Cambridge University 

Press, Cambridge, 1950. 

 
[6] Gupta, S., Montgomery, D.C., Woodall, W.H., 

“Performance Evaluation of Two Methods for Online 

Monitoring of Linear Calibration Profiles,” 

International Journal of Production Research, Vol. 44, 

2006, pp. 1927-1942. 

[7] Jensen, W.A., Birch, J.B., “Profile Monitoring Via 

Nonlinear Mixed Models J. Qual. Technol., Vol. 41, 

2009, pp. 18–34. 

 

[8] Jin, J., Shi, J., “Feature Preserving data Compression of 

Stamping Tonnage Information using Wavelets,” 

Technometrics, Vol. 41, 1999, pp. 327–339. 

 

[9] Kang, L., Albin, S.L., “On-Line Monitoring When the 

Process Yields a Linear Profile,” J. Qual. Technol., Vol. 

32, 2000, pp. 418-426. 

 

[10] Kazemzadeh, R.B., Noorossana, R., Amiri, A., “Phase I 

Monitoring of Polynomial profiles,” Communications in 

Statistics Theory and Methods, Vol. 37, 2008, pp. 1671–

1686. 

 

[11] Kazemzadeh, R.B., Noorossana, R., Amiri, A., 

“Monitoring Polynomial Profiles in Quality Control 

Applications,” The International Journal of Advanced 

Manufacturing Technology, Vol. 42, 2009, pp. 703–712. 

 

[12] Kim, K., Mahmoud, M.A., Woodall, W.H., “On the 

Monitoring of Linear Profiles,” J. Qual. Technol., vol. 

35, 2003, pp. 317-328. 

 

[13] Lawless, J.F., MacKay, R.J., Robinson, J.A., “Analysis 

of Variation Transmission in Manufacturing Processes-

Part I,” J. Qual. Technol., Vol.  31, 1999, pp. 131-142. 

 

[14] Mahmoud, M.A., Parker, P.A., Woodall, W.H., 

Hawkins, D.M., “A Change Point Method for Linear 

Profile Data,” Quality and Reliability Engineering 

International, Vol. 23, 2007, pp. 247-268. 

 

[15] Mahmoud, M.A., Woodall, W.H., “Phase I Analysis of 

Linear Profiles with Calibration Applications,” 

Technometrics, Vol. 46, 2004, pp. 380-391. 

 

[16] McCullagh, P., Nelder, J.A., Generalized Linear 

Models, Chapman and Hall, London, 1989. 

 

[17] Mestek, O., Pavlik, J., Suchanek, M., “Multivariate 

Control Charts: Control Charts for Calibration 

Curves,” Fresenius Journal of Analytical Chemistry, 

Vol. 350, 1994, pp. 344-351. 

 

[18] Moguerza, J.M., Munoz, A., Psarakis, S., “Monitoring 

Nonlinear Profiles using Support Vector Machines,” In 

Proceedings of the 12th Iberoamerican Congress on 

Pattern Recognition, Valparaiso, Chile, 2007. 

 

[19] Myers, R.H., Montgomery, D.C., Vining, G.G., 

“Generalized Linear Models with Application in 

Engineering and the Sciences,” John Wiley and Sons, 

New York, 2001. 

 

[20] Niaki, STA., Abbasi, B., Arkat, J., “A Generalized 

Linear Statistical Model Approach to Monitor Profiles,” 

Int. J. Eng. Trans. A Basics, Vol. 20, 2007, pp. 233–242. 

 

[21] Noorossana, R., Amiri, A., “Enhancement of Linear 

Profiles Monitoring in Phase II,” AmirKabir J. Sci. 

Technol., Vol. 18, pp. 19–27, 2007, in Farsi. 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ie
pr

.iu
st

.a
c.

ir
 o

n 
20

25
-0

7-
18

 ]
 

                             8 / 10

https://ijiepr.iust.ac.ir/article-1-461-en.html


299                                                    A. Saghaei, M. Rezazadeh-Saghaei, R. Noorossana & M. Dorri        Phase  Logistic Profile Monitoring  

 

IInntteerrnnaattiioonnaall  JJoouurrnnaall  ooff  IInndduussttrriiaall  EEnnggiinneeeerriinngg  &&  PPrroodduuccttiioonn  RReesseeaarrcchh,,  DDeecceemmbbeerr  22001122,,  VVooll..  2233,,  NNoo..  44  

[22] Noorossana, R., Amiri, A., Vaghefi, S.A., Roghanian, 

E., “Monitoring Quality Characteristics Using Linear 

Profile,” In Proceedings of the 3rd International 

Industrial Engineering Conference, Tehran, Iran, 2004. 

 

[23] Saghaei, A., Mehrjoo, M., Amiri, A., “A CUSUM-Based 

Method for Monitoring Simple Linear Profiles,” The 

International Journal of Advanced Manufacturing 

Technology, Vol. 45, 2009, pp. 1252–1260. 

 

[24] Stover, F.S., Brill, R.V., “Statistical Quality Control 

Applied to Ion Chromatography Calibrations,” Journal 

of Chromatography A, Vol. 804, 1998, pp. 37–43. 

 

[25] Vaghefi, A., Tajbakhsh,V., Noorossana, R., “Phase II 

Monitoring of Nonlinear Profiles,” Communications in 

Statistics–Theory and Methods, Vol. 38, 2009, pp. 

1834–1851. 

 

[26] Walker, E., Wright, S.P., “Comparing Curves using 

Additive Models,” J. Qual. Technol., Vol. 34, 2002, pp. 

118–129. 

 

[27] Wang, K., Tsung, F., “Using Profile Monitoring 

Techniques for a Data-Rich Environment with Huge 

Sample Size,” Quality and Reliability Engineering 

International, Vol. 21, 2005, pp. 677-688. 

 

[28] Williams, J.D., Birch, J.B., Woodall, W.H., Ferry, N.M., 

“Statistical Monitoring of Heteroscedastic Dose-

Response Profiles from High-Throughput Screening,” 

Journal of Agricultural, Biological and Environmental 

Statistics, Vol. 12, 2007, pp. 216-235. 

 

[29] Williams, J.D., Woodall, W.H., Birch, J.B., “Statistical 

Monitoring of Nonlinear Product and Process Quality 

Profiles,” Quality and Reliability Engineering 

International, Vol. 23, 2007, pp. 925–941. 

 

[30] Woodall, W.H., “Current Research on Profile 

Monitoring,” Rev. Producao, Vol. 17, 2007, pp. 420–

425. 

 

[31] Woodall, W.H., Spitzner, D.J., Montgomery, D.C., 

Gupta, S., “Using Control Charts to Monitor Process 

and Product Quality Profiles,” J. Qual. Technol., Vol. 

36, 2004, pp. 309–320. 

 

[32] Yeh, A.B., Huwang, L., Li, Y.M., “Profile Monitoring 

for a Binary Response,” IIE Transactions, Vol. 41, 2009, 

pp. 931– 941. 

 

[33] Zou, C., Tsung, F., Wang, Z., “Monitoring General 

Linear Profiles using Multivariate Exponentially 

Weighted Moving Average Schemes,” Technometrics, 

Vol. 49, 2007, pp. 395–408. 

 

[34] Zou, C., Zhang, Y., Wang, Z.,  “Control Chart Based on 

Change Point Model for Monitoring Linear Profiles,” 

IIE Transactions, Vol. 38, 2006, pp. 1093–1103. 

 

[35]  Zou, C, Zhou, C., Wang, Z., Tsung, F., “A Self-Starting 

Control Chart for Linear Profiles,” J. Qual. Technol., 

Vol. 39, 2007, pp. 364-375. 

 
 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ie
pr

.iu
st

.a
c.

ir
 o

n 
20

25
-0

7-
18

 ]
 

                             9 / 10

https://ijiepr.iust.ac.ir/article-1-461-en.html


A. Saghaei, M. Rezazadeh-Saghaei, R. Noorossana & M. Dorri        Phase  Logistic Profile Monitoring          300  

IInntteerrnnaattiioonnaall  JJoouurrnnaall  ooff  IInndduussttrriiaall  EEnnggiinneeeerriinngg  &&  PPrroodduuccttiioonn  RReesseeaarrcchh,,  DDeecceemmbbeerr  22001122,,  VVooll..  2233,,  NNoo..  44  

 

 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ie
pr

.iu
st

.a
c.

ir
 o

n 
20

25
-0

7-
18

 ]
 

Powered by TCPDF (www.tcpdf.org)

                            10 / 10

https://ijiepr.iust.ac.ir/article-1-461-en.html
http://www.tcpdf.org

