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KKEEYYWWOORRDDSS                                  ABSTRACT 
 

This paper presents a new formulation for warehouse inventory 

management in a stochastic situation. The primary source of this 

formulation is derived from FP model, which has been proposed by 

Fletcher and Ponnambalam for reservoir management. The new 

proposed mathematical model is based on the first and the second 

moments of storage as a stochastic variable. Using this model, the 

expected value of storage, the variance of storage, and the optimal 

ordering policies are determined. Moreover, the probability of within 

containment, surplus, and shortage are computable without adding 

any new variables. To validate the optimization model, a Monte Carlo 

simulation is used. Furthermore, to evaluate the performance of the 

optimal FP policy, It is compared to (s*,S*) policy, as a very popular 

policy used in the literature, in terms of the expected total annual cost 

and the service level. It is also demonstrated that the FP policy has a 

superior performances than (s*,S*) policy. 
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11..  IInnttrroodduuccttiioonn

  

Inventories are inactive stocks of goods stored for 

future need. For a manufacturing company, there must 

be some inventory of raw materials, work-in-process, 

and finished products stored to confront with stochastic 

demand, breakdown, lead time, and etc. 

Nowadays, warehouse inventory management (WIM) 

is a significant aspect in the supply chain management. 

In a manufacturing company, inventory usually 

represents 20 to 60 percent of the total assets [1]. In 

other words, Inventory costs make up the second 

largest cost factor in many industries after production 

costs [2]. However, to determine the optimal cost of 
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inventories and to stay competitive in today’s fast 

changing business environment, manufacturing 

companies should adopt new and more efficient 

inventory control policies [1]. Inventory management 

problems have been studied for more than a half 

century. After developing the policy of economic order 

quantity (EOQ) proposed by Harris in 1913, many 

researchers and practitioners have been studied this 

issue under different operating parameters and 

modeling assumptions [3]. 

The two main streams of the research in the inventory 

management area have been continuous and periodic 

review control systems. In the continuous review 

system, the customer has the freedom to initiate an 

order anytime depending on the inventory level on 

hand. However, in the periodic review case, the orders 

can be only placed in a periodic framework [4].  

So far, many inventory control systems have been 

proposed by combination of the s, r, R, Q, and S 

supply chain, 

 warehouse inventory management,  

(s,S) policy, 

stationary and non-stationary 

demand, 

service level 

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parameters in which s and r are reorder points, R is 

generally periodic review periods, Q is reorder 

quantities, and S is order-up-to levels. The control 

systems, such as (s, Q), (s, S), (R, S), (R, Q), (S-1, S) 

and (R, s, S), are called classic inventory control 

systems. However, finding the optimal values for the 

respective parameters of these control systems are 

usually challenging and problematic [5]. 

   Karlin and Scarf [6] illustrated two periodic review 

inventory systems: the first system considered lost 

sales and the second one embedded the backordering 

into the model. In the second system, they introduced 

the optimality situations where a base-stock policy is 

used. However, they could not obtain an optimal policy 

for the first case.  

Nahmias [7] considered a periodic review inventory 

system with consideration of lost sale, partial 

backordering, set-up costs, and random lead times. He 

developed two heuristics to find order-up-to level. 

Donselaar et al. [8] suggested a heuristic to find order-

up-to level in systems, allowing shortage in form of 

lost sales. Johansen [9] introduced a modified base-

stock policy.  

In this paper, we developed a new control system for 

WIM.  The primary source of the mathematical 

formulation of this control system arises from FP 

model, which was proposed by Fletcher and 

Ponnambalam  (FP) for reservoir management in 1996 

[10]. According to the similarities between reservoir 

and warehouse, the respective formulation is extended 

to WIM. To evaluate the model efficiency, a single-

item inventory is considered in which warehouse can 

order from an external supplier to respond to a 

stochastic customers’ demand which is assumed to be 

normally distributed.  

Storage of the warehouse is constrained to an upper 

and a lower bound. The excessive products (surplus) at 

the end of each period should be returned or sold off in 

the open market. The lead time for an order is assumed 

to be negligible. For this policy, the total expected 

value of cost consisting of ordering, holding, surplus, 

and shortage should be minimized in a steady-state for 

a warehouse.  

The rest of this paper is organized as follows: Section 2 

describes motivation and advantage of using this new 

control system for WIM. In Section 3, continues 

review (s,S) policy is introduced. Section 4 presents FP 

model formulation for stochastic WIM systems. 

Section 5 prsents a numerical example to compare 

optimal FP and (s,S) policy for a steady state situation 

based on annual cost evaluation and service level. 

Finally, Section 6 provides the conclusions and the 

future works.  

 

2. Motivation and Advantages 
By extending the FP model to the WIM, in 

addition to finding an optimal policy in a periodic 

framework, one can determine the reliability of meeting 

the specified demand in a warehouse with a limited 

capacity. The derived policy in FP model, called 

randomized policy in the literature [11], depends on the 

storage level. Moreover, this method can be used to find 

the capacity of a warehouse such that an acceptable 

level of reliability is guaranteed. 

The work presented in this paper is also capable of 

obtaining an appropriate estimation for the two first 

moments of the system storage using the probability 

distribution of the demand. This mathematical 

formulation is also able to estimate the probabilities of 

within containment, surplus, and shortage for each 

period in the steady-state operation. The interesting 

point is that these probabilities are achieved without 

adding any new decision variables. 

 
3. An Introduction of (s,S) Policy 

One of the most popular inventory policies in a 

continues review system that has been studied 

extensively is the so-called (s,S) policy, reorder-point 

order-up-to policy, where s is the reorder point and S is 

the order-up-to level. With this policy, when the 

inventory is below or equal s, an order is placed to bring 

the inventory level up to S. When the inventory level is 

above s, there will be no order. It is introduced in the 

early inventory literature such as Arrow, Harris, and 

Marschak [12], where a single item periodic review 

inventory system is studied. 

 
4. FP Model Formulation for WIM 

In this section, the FP Model proposed by Fletcher 

and Ponnambalam in 1996 [10] is extended for WIM 

where the demand is stochastic and only one echelon is 

considered. In other words, the constraints (e.g., 

inventory balance equations) and the objective function 

should be expressed in terms of the first or the second 

moments. Moreover, the objective function is to 

minimize the expected value of the annual cost. 

 
4-1. Notations 

We will be using the following notations for the 

mathematical formulation of FP model extended for 

WIM: 

 
4-1.1. Sets 

{1,2, , }t T : The number of time periods. 

 
4-1-2. Parameters 

td : The random demand variable in period t. 
tD : The natural mean of demand variable in period t. 

td
 : The zero-mean random component of demand 

variable in period t. 

min

ts : The minimum inventory level of warehouse in 

period t. 

max

ts : The maximum inventory level of warehouse in 

period t. 
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4-1-3. Decision Variables 

[ ]1 : The indicator functions as zero-one random 

variable. 
tu : Order quantity that is ordered from supplier in 

period t. 
ts : The end-of-period inventory level of warehouse in 

period t. 

( )tE s : The first moment of the storage state variable 

in period t.  

 2( )tE s : The second moment of the storage state 

variable in period t.  

ˆts : The end-of-period available inventory warehouse 

in period t. 
tk : The fixed part of warehouse stochastic ordering 

policy in period t. 

 

Remark 1: In this study ordering policy is randomized 

which means that depends on ts  as a random variable 

in our proposed method. This policy is expressed 

as 1t t tu k s   .  

 

Remark 2: Random demand is broken down into two 

components, the constant part (the mean of demand) 

and the random part (white noise). This is written as
 

t

t t

d
d D   , where td

 is a zero-mean random 

normal variable ( 2(0, )td
N  ). 

  
 

4-2. Introduction of Methodology  

Conceptually, the available inventory level in the end-

of-period t can be written as: 

 
1ˆ . (1)t t t ts s u d  

 

Where by substitution of 1t t tu k s    and 

t

t t

d
d D   in equation (1), equation (2) is obtained 

as bellow: 
 

ˆ . (2)t

t t t t

d
s k D   

 

Now, the inventory balance equation for warehouse is 

given as: 
 

  1

max minmin ,max , . (3)t t t t t ts s s s u d  

 

The above formulation can be rewritten according to 

indicator functions such as:  
 

min max

min max

[ , ]

min max( , ) ( , )

ˆ( ).1 ( )

ˆ ˆ( ).1 ( ) ( ).1 ( ). (4)

t t t

t t

t t t t t

d s s

t t t t

s s

s k D s

s s s s



 

  

 

 

The indicator function of variable ˆts , takes zero or one 

in based on the following conditions: 

min max

min max

[ , ]

ˆ1
ˆ1 ( ) (5)

0 .
t t

t t t

t

s s

s s s
s

otherwise

  
 
  

 

min

min

( , )

ˆ1
ˆ1 ( ) (6)

0 .
t

t t

t

s

s s
s

otherwise

   
 
  

 

max

max

( , )

ˆ1
ˆ1 ( ) (7)

0 .
t

t t

t

s

s s
s

otherwise

   
 


       

 

Note that, in equation (4), only one of the indicator 

functions of equations 5, 6, or 7 can have identity value 

in each arbitrary period. Furthermore, the expected 

value for indicator functions in expression (5), (6) and 

(7) gives the probabilities of within containment, 

shortage, and surplus in each period, respectively. 

The objective function is constructed as expected value 

of annual cost consisting of ordering, holding, surplus 

and shortage costs such as: 

 

 

 

   

 

   

 

min

min

max

max

1

1

min ( , )

( , )

max ( , )

( , )

( , )

( ) . ( )

( ) . ( ) ( ) 2

ˆ( ) . ( ) . 1 ( )

ˆ1 ( )

ˆ( ) . . 1 ( )

ˆ1 ( ) . (8)

t

t t

t

t t

t t

T
t t t

t

t t t

t t t t t

s

t

d s

t t t t t

s

t

d s

E f k s

oc k E s

hc E s E s

shc s k D E s

E s

suc k D s E s

E s



















  

  
 

  





  







 
which must be minimized. Also ( )toc is ordering cost 

per item, ( )tstc  is storage or holding cost per item, 

( )tsuc  is surplus cost per item and  ( )tshc  is shortage 

cost per item, all in period t. Finally, the first and the 

second moment of storage can be written as Equations 

(9) and (10), respectively. To figure out how to derive 

these equations, one can refer to Appendix.   
 

     
       

min max min max

min max

[ , ] [ , ]

min max( , ) ( , )

( )

ˆ ˆ. 1 ( ) .1 ( )

ˆ ˆ. 1 ( ) . 1 ( ) . (9)

t t t t t

t t

t

t t t t

s s d s s

t t t t

s s

E s

k D E s E s

s E s s E s



 



 

 
 

 

       

     

   

min max min max

min max min

max

2

2

[ , ] [ , ]

2
2

min[ , ] ( , )

2

max ( , )

( )

ˆ ˆ. 1 ( ) 2 . .1 ( )

ˆ ˆ( ) .1 ( ) . 1 ( )

ˆ. 1 ( ) . (10)

t t t t t

t t t t

t

t

t t t t t t

s s d s s

t t t

d s s s

t t

s

E s

k D E s k D E s

E s s E s

s E s










  

 



 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ie
pr

.iu
st

.a
c.

ir
 o

n 
20

25
-0

7-
19

 ]
 

                               3 / 8

https://ijiepr.iust.ac.ir/article-1-456-en.html


M. Mahootchi, T. Ahmadi & K. Ponnambalam                       Introducing a New Formulation for the ……                          280  

IInntteerrnnaattiioonnaall  JJoouurrnnaall  ooff  IInndduussttrriiaall  EEnnggiinneeeerriinngg  &&  PPrroodduuccttiioonn  RReesseeaarrcchh,,  DDeecceemmbbeerr  22001122,,  VVooll..  2233,,  NNoo..  44  

4-3. Nonlinear Programming 

For implementation, using the rules of probabilities and 

Taylor series approximation, equations (8), (9) and 

(10) are obtained, in terms of error function as 

expressions (11), (12) and (13). For more details about 

mathematical operations, see [10] and [11]. The 

mathematical model is presented as: 

 

 
 

2

max

1

1

2 ( )max
max

( , ) ( ) . ( ) ( ) . ( ) ( ) 2

( )1
( ) . . 1 .

2 22 ( )

t t t

t td

t

T
t t t t t t t t

t

s k D
t t t

Vart t t t d

d

Min E f k s oc k E s hc E s E s

Vars k D
suc k D s erf e

Var









 


         

                                      





 
 

2

min

2 ( )
min

min

( )1
( ) . ( ) . 1 . . (11)

2 22 ( )

t t t

t td

t

s k D
t t t

Vart t t t d

d

Vars k D
shc s k D erf e

Var





 


                                     

 

 

2 2( )maxmin
2 ( )

max min

( )

2 ( )

:

1
( ) .

2 2 ( ) 2 ( )

( )
.

2

t t

t t t t t ts k D

Var tt dtd

t t t t t t

t t t

d d

s k D

Var
d

subject to

s k D s k D
E s k D erf erf

Var Var

Var
e e



 





 
    

 

  
 
 
 

                
          

 
  
  
 

 


 

 

min

min

max

max

1
. 1

2 2 ( )

1
. 1 . (12)

2 2 ( )

t

t

t t t

t

d

t t t

t

d

s k D
s erf

Var

s k D
s erf

Var





           
       

         
      

 
    

 

2 2( )maxmin
2 ( )

2
2 max min

( )

2 ( )

1
( ) ( ) .

2 2 ( ) 2 ( )

( )
2 . .

2

t

t t

t t t t t ts k D

Var tt dtd

t t t t t t
t t t

d

d d

s k D

Vart t d

s k D s k D
E s k D Var erf erf

Var Var

Var
k D e e




 





 
  


 

  
 
 
 

                 
          

 
   
 
 

   

 

2 2( )maxmin
2 ( )

( )

2 ( )

min max

2
min

min ma

( )
. . .

2

1
. 1

2 2 ( )

t t t t t ts k D

Var tt dtd

t

s k D

Vart t t t t td

t t t
t

d

Var
s k D e s k D e

s k D
s erf s

Var









 
  

  
 

  
 
 
 

 
 
 
 
 

 
   
       
 

  
 

          
      

 
2

max
x

1
. 1 . (13)

2 2 ( )t

t t t
t

d

s k D
erf

Var 

        
      

 

 

Note that all variables except the constant part of order 

policy ( tk ) which is a free variable are positives 

variables. 

 
5. Numerical Example 

In this section, we consider two cases. The first 

one considers the stationary demand in which the 

pattern of demands is analogous for all periods. In the 

second case, called non-stationary demand, the pattern 

of demand is unique for each period. For both cases, 

the nonlinear programming (FP model) is formulated 

and solved by MATLAB Solver. The optimal policies 

obtained using FP models are evaluated by a Monte 

Carlo simulation.  

The total objective function and the service level are 

then compared with the optimal objective achieved and 

the service level achieved through the (s,S) policy. The 

problem parameters for two cases are demonstrated in 

Tables 1 and 2.  

 

5-1. Results of FP Model 

By solving the nonlinear programming model, we can 

obtain the optimal ordering policy, expected value of 

storage, variance, and the probabilities of within 

containment, surplus, and shortage in each period. The 

results of the optimization and simulation for two cases 

are presented in Tables 3 and 4. 

 

Tab. 1. Related parameters of inventory 

system;case1 

Periods 

Capacity Cost parameters Demand 

min

ts  
max

ts  oc stc suc shc Dt Var(dt) 

{1,2,… 12} 0 200 10 5 2 20 100 100 

 

 

 

 

 

 
(13) 

 

 
(11) 

 

 

 

 

 

 

 

 

 
(12) 
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Tab. 2. Related parameters of inventory system; 

case2 

Period  
Capacity Cost parameters Demand 

min

ts  
max

ts   oc stc suc shc Dt Var(dt) 

1 0 200 10 2 30 100 100 25 

2 0 200 5 3 50 50 300 100 

3 0 200 5 4 30 50 100 40 

4 0 200 2 1 30 80 250 50 

5 0 200 15 6 10 120 160 30 

6 0 200 7 7 70 110 170 25 

7 0 200 10 10 10 80 300 100 

8 0 200 5 3 50 150 350 120 

9 0 200 5 2 50 150 100 20 

10 0 200 5 5 50 100 250 50 

11 0 200 2 2 20 95 200 80 

12 0 200 1 1 10 170 100 25 

  

Tab. 3. The data gained through FP model for case 

1 

P
e
ri

o
d

 (
M

o
n

th
) 

O
p

ti
m

a
l 

p
o
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cy

  

(k
t ) 

E
x

p
. 
 v

a
lu

e 
o

f 

st
o

ra
g
e 

V
a

r
ia

n
ce

 o
f 

st
o

ra
g
e 

P
r
o

b
a

b
il

it
y

 o
f 

st
o

ra
g
e 

P
r
o

b
a

b
il

it
y

 o
f 

su
r
p

lu
s 

P
r
o

b
a

b
il

it
y

 o
f 

sh
o

r
ta

g
e 

O
rd

er
in

g
  

co
st

 

S
to

r
a
g
e
 c

o
st

 

S
u

r
p

lu
s 

co
st

 

S
h

o
r
ta

g
e 

co
st

 

1 10

4 
6.5 52.

3 

0.6

7 

0.0

0 

0.3

3 

542.

9 

141.

2 

0.

0 

44.

1 2 10

4 
6.5 52.

3 

0.6

7 

0.0

0 

0.3

3 

977.

9 
32.5 0.

0 

44.

1 3 10

4 
6.5 52.

3 

0.6

7 

0.0

0 

0.3

3 

978.

0 
32.5 0.

0 

44.

1 4 10

4 
6.5 52.

4 

0.6

7 

0.0

0 

0.3

3 

978.

1 
32.5 0.

0 

44.

0 5 10
4 

6.5 52.
4 

0.6
7 

0.0
0 

0.3
3 

978.
0 

32.6 0.
0 

44.
0 6 10

4 
6.5 52.

4 

0.6

7 

0.0

0 

0.3

3 

978.

0 
32.5 0.

0 

44.

0 7 10
4 

6.5 52.
4 

0.6
7 

0.0
0 

0.3
3 

978.
0 

32.5 0.
0 

44.
0 8 10

4 
6.5 52.

4 

0.6

7 

0.0

0 

0.3

3 

978.

0 
32.5 0.

0 

44.

0 9 10

4 
6.5 52.

4 

0.6

7 

0.0

0 

0.3

3 

978.

0 
32.5 0.

0 

44.

0 10 10
4 

6.5 52.
4 

0.6
7 

0.0
0 

0.3
3 

978.
0 

32.5 0.
0 

44.
0 11 10

4 
6.5 52.

4 

0.6

7 

0.0

0 

0.3

3 

978.

0 
32.5 0.

0 

44.

0 12 99 3.3 28.
7 

0.4
4 

0.0
0 

0.5
6 

921.
0 

24.6 0.
0 

94.
5 

 

Tab. 4. The data gained through FP model for     

case 2 

P
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P
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P
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o
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f 

su
r
p

lu
s 

P
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o
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a
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f 
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e 
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S
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r
a
g
e
 c

o
st

 

S
u

r
p
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s 

co
st

 

S
h

o
r
ta

g
e 

co
st

 

1 10

6 
6.6 20.

9 

0.9

0 

0.

0 

0.1

0 
563.8 56.

6 

0.

0 

24.

0 2 31
4 

14.
5 

87.
0 

0.9
2 

0.
0 

0.0
8 

1537.
7 

31.
7 

0.
0 

17.
7 3 10

8 
8.4 33.

4 

0.9

0 

0.

0 

0.1

0 
467.7 45.

7 

0.

0 

15.

3 4 41
9 

169 50.
0 

1.0
0 

0.
0 

0.0
0 

820.9 88.
6 

0.
0 

0.0 

5 16

9 
8.9 27.

3 

0.9

5 

0.

0 

0.0

5 
0.00 533 0.

0 

15.

0 6 17

7 
7.5 22.

1 

0.9

3 

0.

0 

0.0

7 

1179.

0 

57.

5 

0.

0 

17.

2 7 31
1 

12.
0 

79.
7 

0.8
7 

0.
0 

0.1
3 

3038.
8 

97.
8 

0.
0 

50.
7 8 37

3 

23.

5 
116 0.9

8 

0.

0 

0.0

2 

1806.

9 

53.

3 

0.

0 
9.6 

9 10
9 

8.6 19.
0 

0.9
7 

0.
0 

0.0
3 

425.4 32.
1 

0.
0 

7.2 

10 26

2 

11.

8 

45.

8 

0.9

5 

0.

0 

0.0

5 

1265.

3 

51.

0 

0.

0 

14.

6 11 22

2 

22.

1 

79.

0 

0.9

9 

0.

0 

0.0

1 
420.6 33.

9 

0.

0 
1.9 

12 13

0 

30.

2 

25.

0 

1.0

0 

0.

0 

0.0

0 
108.1 26.

2 

0.

0 
0.0 

5-2. Validation of the Optimal FP Policy 

The result of the optimization model and the simulation 

in terms of the expected value and the variance of the 

storage using the optimal policies are compared to each 

other in Figures 1- 4. As it can be seen, there is a little 

gap between these results.  This verifies that the 

proposed optimization model can be a suitable 

representative of the real system. 
 

 
Fig. 1. The evaluation of optimal FP policy by 

simulation for case 1; Expected Value of Storage 
 

 
Fig. 2. The evaluation of optimal FP policy by 

simulation for case 1; Variance of Storage. 

 

 
Fig. 3. The evaluation of optimal FP policy by 

simulation for case 2; Expected Value of Storage. 

 

 
Fig. 4. The evaluation of optimal FP policy by 

simulation for case 2; Variance of Storage. 
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5-3. Evaluation of  FP Policy  

In the both cases, FP optimal policies are compared 

with optimal (s,S) policy in terms of the expected value 

of the total cost and the service level in each period. 

The optimal parameters of (s,S) policy for the first and 

second cases are (s*=53, S*=104) and (s*=121, 

S*=200), respectively. In this section, optimal FP 

policy is compared with the policy (s*,S*)  for both 

cases and the results are graphically presented in 

Figures 5-8. 

 

 
Fig. 5. Comparison FP and (s,S) policy for case 1; 

Expected Value of monthly total cost. 
 

 
Fig. 6. Comparison FP and (s,S) policy for case 1; 

Expected Value of monthly service level 
 

 
Fig. 7. Comparison FP and (s,S) policy for case 2: 

Expected Value of monthly total cost. 
 

 
Fig. 8. Comparison FP and (s,S) policy for case 2; 

Expected Value of monthly service level 

According to results in Table I and the details in 

Figures 5 and 6, this can be figured out that FP policy 

provides higher service level and less annual cost 

compared to other policy in both cases, stationary and 

non-stationary situations. Furthermore, the difference 

between the corresponding measures in two cases is 

mostly remarkable especially in the second case. 

 
Tab. 5. Final result to comparison optimal FP and 

(s,S) policy 

Mea

sure 

Case1 Case 2 

FP policy (s,S) policy 
FP 

policy 
(s,S) policy 

Serv

ice 

level 

68 % 60 % 95 % 50 % 

Ann

ual 

cost 

12588 13667 13149 57463 

Bett

er 

polic

y 

FP policy FP policy 

 

 

6. Conclusion and Future Work 
A new modeling for WIM with stochastic demand 

was proposed which is originated from Fletcher and 

Ponnambalam model developed for reservoir 

management. To evaluate the performance of the 

optimal policy obtained from this model, two demand 

patterns were considered in form of stationary and non-

stationary as two different cases.  The FP policy is 

compared with the continues review (s,S) policy for 

these two cases. According to the demonstrated results, 

the FP policy gives superior service level and annual 

cost than other policy for two cases especially in the 

second case. 

Future work could include reliability analysis and risk 

concepts of warehouse inventory system in FP model, 

which is provided as the failure probability of system 

in each period. Also, the inputs and outputs of FP 

model such as the lower and upper bounds, expected 

value of storage could be used as essential information 

to design optimal capacity or variable optimal capacity 

of warehouse in each period. 
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Appendix 

Consider the following term in Equation (9): 
 

 
min max[ , ]

ˆ1 ( ) .t t

t

s s
E s

 

 

This term can be written as: 
 

   
min max

min max[ , ]
ˆ ˆ1 ( ) Pr .t t

t t t t

s s
E s s s s  

 

 

Recall that the available storage based on the balance 

equation can be calculated as 

ˆ .t

t t t t

d
s k D     

The respective probability in the above equation can be 

expanded as follows: 
 

 min max
ˆPr t t ts s s   min maxPr ,t

t t t t t

d
s k D s      

 

or, equivalently, 
 

 
max

min

min max

( )

( )

Pr ( ) ( )

( ). ( 1),

t

t t t

t t tt t t
td

t t t t t t t

d

s k D
t t

d ds k D

s k D s k D

f d A




 
 

 

     

 

  

where ( )t t
td

t

d
f


  is the density function for a zero-mean 

random variable t

t

d
 .   

As t

t

d
  is assumed to be normally distributed with zero 

mean (i.e., N(0, ( )t

t

d
Var  ), the error function can be 

used for the finding the numerical integration at (A1).  

Therefore, Equation (A1) can be written as: 

 

 min maxPr ( ) ( )t

t t t t t t t

d
s k D s k D       

max min
( ) ( )1

.
2 2 ( ) 2 ( )t t

t t t t t t

t t

d d

s k D s k D
erf erf

Var Var 

    
         

        
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