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KKEEYYWWOORRDDSS                                  ABSTRACT 
 

In this paper, we propose an iterated greedy algorithm for solving the 

blocking flow shop scheduling problem with total flow time 

minimization objective. The steps of this algorithm are designed very 

efficient. For generating an initial solution, we develop an efficient 

constructive heuristic by modifying the best known NEH algorithm. 

Effectiveness of the proposed iterated greedy algorithm is tested on 

the Taillard's instances. Computational results show the high 

efficiency of this algorithm with comparison state-of-the-art 

algorithms. We report new best solutions for 88 instances of 120 

Taillard's instances. 
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11..  IInnttrroodduuccttiioonn


  

The flow shop scheduling problem is one of the 

most popular machine scheduling problems with 

extensive engineering relevance, representing nearly a 

quarter of manufacturing systems, assembly lines and 

information service facilities in use nowadays [1]. In 

the general flow shop model, it is assumed that the 

buffers have unlimited capacity. However, in many 

real flow shop environments, the buffers may have 

limited capacity due to technological requirements or 

process characteristics [2].  

A special case of these environments is the flow shop 

with zero capacity buffers that the related problem is 

known as the blocking flow shop scheduling problem 

(BFSP). Since there are no buffers between machines, 

no intermediate queues of jobs are allowed in the 

production system for their next operations [3]. In 

BFSP, the completed job on a machine may block it 

until the next downstream machine is free. Grabowski 
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and Pempera [4] present a real life example in the 

production of concrete blocks that does not allow 

storage in some stages. A detailed review of studies 

and applications of the BFSP can be found in [2]. It has 

been proved that the BFSP with makespan criteria and 

more than two machines is strongly NP-hard [2]. Also, 

Rock [5] showed that the BFSP with total flow time 

criteria and two machines is strongly NP-hard.  

In recent years, the BFSP has attracted much attention 

among researchers. Since the problem is strongly NP-

hard for large numbers of jobs and machines, as is 

usual in real systems, it is more practical to use 

heuristics and metaheuristics to solve it. The simplest 

heuristics are constructive procedures, which use rules 

to assign a priority index to each job, in each step, to 

build a sequence.  

Most studies of the BFSP have dealt with makespan 

criteria. Among the proposed constructive heuristics 

for the BFSP with makespan criteria, one can refer to 

Profile Fitting (PF) [6], MinMax (MM) [7], MME [7], 

PFE [7], NEH2 [8].  

The most important proposed constructive heuristic for 

the BFSP with total flow time criteria is NEH-WPT 

[9]. Most of the proposed heuristics for the BFSP have 
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been developed by modifying the best known NEH 

[10] heuristic. As we know, the NEH algorithm is as 

follows [10]:  

 

Step 1: Sort the jobs according to the non-increasing 

sums of their processing times and let the 

obtained sequence ( (1), , ( ))n    . 

Step 2: The first two jobs of the  are taken and two 

possible partial sequences of these two jobs are 

evaluated. Then, the better partial sequence is 

chosen as the current sequence and let L = 3. 

Step 3: Find the best partial sequence by placing the 

job (L) in all possible positions of the current 

sequence. The best partial sequence becomes 

the next L-job current sequence. 

Step 4: If L = n, end and otherwise, let L = L + 1 and 

back to step 3. 

 

Recently, different types of metaheuristics have been 

developed for the BFSP. Genetic algorithm (GA) [11], 

tabu search (TS) [3], hybrid discrete differential 

evolution (HDDE) algorithm [1], iterated greedy (IG) 

algorithm [12] and hybrid modified global-best 

harmony search (hmgHS) algorithm [13] are the most 

important metaheuristics so far presented for the BFSP 

with makespan criteria.  

Among these algorithms, Wang et al [13] have claimed 

that their hmgHS algorithm outperforms the others. 

Studies about BFSP with total flow time criteria are 

scarce. To the best of our knowledge, only one 

research paper has so far been reported on the BFSP 

with total flow time criteria using metaheuristics. 

Wang et al [9] have presented three modified harmony 

search (hHS, hgHS and hmgHS) algorithms where 

hmgHS outperforms the others. In this study, NEH-

WPT heuristic has been used for an initial solution 

generation.  

In this paper, we want to solve the BFSP with total 

flow time criteria using the IG algorithm. The IG 

algorithm is a metaheuristic that, despite its simple 

structure, can find very good solutions efficiently. This 

algorithm has been used successfully for both the 

permutation flow shop scheduling problem (PFSP) [14] 

and the BFSP [12] with makespan criteria. However, it 

has not so far been used for the BFSP with total flow 

time criteria. General frame of the IG algorithm is 

shown in Fig. 1.  

This algorithm includes two phases. In phase 1, an 

efficient initial solution (0) is generated. This solution 

is considered as both the current solution () and the 

best solution (best). Then, until the stopping criteria are 

met, phase 2 which includes three main steps repeats. 

In step 1, efforts are made to improve the current 

solution by a local search procedure. In step 2, 

acceptance criteria are checked for the current solution 

and if it is rejected, the best solution is considered as 

the current solution. In step 3, a deconstruction and 

reconstruction is done for the current solution to escape 

from deep local optima.  

 
Procedure iterated greedy 

 % Phase 1 

 Generate initial solution (0) 

  = 0 

 best = 0 

  %Phase 2 

repeat 

% step 1 

    = Local Search () 

 if  total flow time (  ) < total flow time (best)  

 then 
best   endif 

 % step 2 

  = Acceptance criteria (best,   )  

 %step 3 

   = deconstruction () 

  = reconstruction (  )           

if  total flow time () < total flow time (best)  

then 
best   endif 

until  stopping criteria is met 

end 

Fig. 1. General frame of the IG algorithm 

 

After this introduction, we will formulate the BFSP in 

Section 2. Section 3 details the proposed IG algorithm. 

Then, in Section 4, we will show the parameter settings 

and computational results. Finally, we will present 

some conclusions and suggestions for future studies in 

Section 5. 

 

2. Problem Formulation 
In the BFSP with total flow time criteria, there are n 

jobs and m machines and every job must be processed 

on machine 1 to m. Because intermediate buffers have 

zero capacity, there are not intermediate queues of jobs 

between machines. The completed job on a machine 

may block it until the next downstream machine is free. 

Suppose that the release time of all jobs is zero and that 

the set-up time on each machine is included in the 

processing time. At any time, each machine can 

process at most one job and each job can be processed 

on at most one machine. The objective of this problem 

is to find a permutation that minimizes the total flow 

time. 

Because the jobs may be blocked after their completion 

times, departure times may be different from 

completion times. Consider the permutation 

( (1), , ( ))n    .  

The departure time of job (j) from machine i is shown 

by , ( )i jD  . Departure times of jobs in the permutation  

from each machine can be calculated by the following 

equations: 

 

 0,  π 1
0D                                                                  (1) 
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 ,π(1)    1,π(1)    ,π 1   
;   1, , 1i i i

D D p i m                             (2) 

 

 0,π(k)   1,π k 1  
;                     2, ,    D D k n


                          (3) 

 

        ,π k 1,π k   ,π k 1,π k 1  
max , ;                     

i i i i
D D p D

  
 

 
                   1, , 1; 2, ,i m k n                                 (4) 

 

,π(k)  1,π(k)  ,π(k);  1, ,   m m mD D p k n                             (5) 

 
In these equations, 0, ( )jD  represents the starting time 

of job (j) on machine 1 and , ( )m jD   designates the 

departure time of job (j) from machine m. Because 

the jobs are not blocked on machine m, for every job, 

departure time from machine m is equal to completion 

time on machine m. So, we can calculate total flow 

time of the permutation , as follows: 

 

,π( j)

1

n

m

j

TFT D


                                                            (6) 

 
TFT calculation of the  has O(mn) complexity [1]. 

 

3. The Proposed IG Algorithm 
As previously mentioned, the IG algorithm 

includes two phases. In phase 1, an initial solution is 

generated and in phase 2, three main steps are repeated 

until the stopping criteria are met. The proposed 

procedures for each part of the IG algorithm are as 

follows: 

 

3-1. Initial Solution  

As we know, the NEH [10] heuristic was originally 

developed for the PFSP with makespan criteria. 

Nevertheless, this heuristic and its modifications have 

been efficiently used for the PFSP and the BFSP with 

different criteria, such as [12] [15] [16] and [17]. An 

alternative method of modifying the NEH heuristic to 

improve its efficiency for a specific problem is 

changing the step 1 of its algorithm.  

Wang et al [9] present NEH-WPT by sorting the jobs 

according to the non-decreasing sum of their 

processing times on each machine in the step 1. They 

showed that NEH-WPT outperforms the NEH 

heuristic. In this paper, we present a new sorting 

procedure for the jobs in the step 1 which is called 

step1-MK. In this procedure, first a job with minimum 

sum of processing times on each machine is selected as 

the first job. Then an unsorted job with minimum value 

of the following expression is selected as the next job. 

This process is repeated until the entire jobs are sorted. 

 

   
1

1,

1 1

1 ( )
m m

ij ij i q

i i

n p n L m l p p 




 

                   (7) 

In the above expression, j and q represent the candidate 

job for assignment and the last assigned job, 

respectively. This expression includes the 
1

m

iji
p

  and 

1 ,

1

1( )
m

i qi j im l p p 




   terms that their weights are 

(1 )n and ( )n L  , respectively. If the weight of the 

second term be equal to zero; i.e.   0  , obtained 

sequence by the step1-MK procedure will be same as 

the sequence which is obtained by sorting the jobs 

according to non-decreasing sum of processing times 

on each machine.  

The second term represents the sum of weighted 

approximate of block and idle times on each machine 

generated by placing the candidate job after the last 

assigned job.  

In this term, the weights are considered to decrease 

with machine stage number. This is because the larger 

becomes the machine stage number, the smaller will be 

the effect of its block and idle times on starting times 

of the following jobs. The weight of this term is 

considered to be decreasing with respect to the 

assigned jobs number (L). This is because the effect of 

the block and idle times of the candidate job on starting 

times of the following jobs become smaller as the 

assigned jobs number increases and so that of the 

unassigned jobs decreases. Algorithm of the step1_MK 

procedure is as follows: 
 

Step 1: Let a job with minimum sum of processing 

times on each machine as first job. If more than 

one job have this characteristic, select a job with 

minimum processing time on machine 1 among 

them. If more than one job have this 

characteristic yet, assign one of them randomly. 

Let L = 2. 

Step 2: Among the unsorted jobs, assign a job with 

minimum value of expression (7) as Lth job. If 

more than one job have this characteristic, select 

one of them, randomly. Let L = L +1. 

Step 3: If L = n, end; otherwise, back to step 2. 

Simply, we can find that the complexity of step1-MK 

procedure is O(mn
2
). Another alternative for improving 

the NEH [10] algorithm is modifying the step 3 of its 

algorithm. In step 3, after finding the best place for the 

new job, we can improve the obtained current sequence 

by a procedure like a local search. In following, a 

procedure is presented instead of step 3 of NEH [10]  

heuristic that is called step3-MK(k). We can adjust 

improving level (k) with considering the time limit. 

Suppose that jnew is the new job to assign in step 3 and 

the current sequence has L – 1 jobs. For this case, 

algorithm of the step3-MK(k) procedure is as follows:  

 
Step 1: Find the best partial sequence by placing jnew in 

all possible positions of current sequence. The 

best partial sequence becomes the next L-job 

current sequence. 
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Step 2: Let   ( 1) /d k L n     . If d = 0 end; 

otherwise, go to step 3. 

Step 3: Select d non-repetitive jobs except jnew among 

the jobs in the current sequence randomly and 

save them in 
1 dS 

 matrix. Let i = 1. 

Step 4: Remove the job S[i] from its position in the 

current sequence and place it in its L – 1 other 

possible positions in this sequence. Among 

these obtained L sequences, select the best one 

as the next L-job current sequence.  

Step 5: If i = d, end; otherwise, let i = i + 1 and back 

to step 4.  

 

In step 2 of the above algorithm, the operator      

represents the integer part of a number. In the step3-

MK(k) procedure, a specific portion of the jobs of the 

current sequence is reinserted. This portion is related to 

parameter k and n. The larger the values of k, the more 

the number of jobs reinserted for a given problem. 

Because, for a specific value of the mentioned portion, 

execution time of the above step extremely increases 

with increasing the value of n, this value is considered 

decreasing respect to n for regulating the execution 

time of this step. Obviously, when k = 0, this 

procedure is equivalent to step 3 of the NEH [10] 

algorithm. 

In the following, we present a constructive heuristic 

that is called NEH-MK(k). This heuristic is a 

modification of the NEH [10] heuristic in which step1-

MK and step3-MK(k) procedures are used instead of 

steps 1 and 3 of its algorithm, respectively. This 

heuristic has two parameters (, k) and its algorithm is 

as follows: 

 
Step 1: Obtain the sequence ( (1), , ( ))n    by using 

the step1-MK procedure. 

Step 2: The first two jobs of  are taken and two 

possible partial sequences of these two jobs are 

evaluated. Then, choose the better partial 

sequence as the current sequence and let L = 3. 

Step 3: By considering (L) as the new job and with 

the current sequence with L – 1 jobs, obtain the 

next L-job current sequence using the step3-

MK(k) procedure. 

Step 4: If L = n, end; otherwise, let L = L + 1 and go 

back to step 3. 

 
A glance at the algorithm reveals that step 3 of the 

above algorithm determines its complexity. This step 

requires ( ( 1) / ( 1)) L k L n L       times objective 

calculation of an L-job sequence. Because the objective 

calculation of an L-job sequence has O(mL) 

complexity [1], we can say that the complexity of the 

NEH-MK(k) algorithm is about 3  ( )O mn k . In the 

proposed IG algorithm, we use the NEH-MK(k) 

heuristic for the initial solution generation.  

3-2. Local Search 

By using the local search, the solution obtained from 

the deconstruction and reconstruction step is accepted 

with more probability. Two consecutive pair-wise and 

insert-based local searches are used for this purpose. 

The pair-wise based local search considered is a non-

exhaustive decent algorithm that tries to improve the 

current sequence by swapping any two of its positions. 

If, during this process, a new sequence improves the 

value of the objective function, it becomes the new 

current sequence and the process continues until all of 

the positions of the current sequence have been 

permuted and no more improvement takes place [12]. 

After this pair-wise local search, the insert-based local 

search is executed on the current sequence thus 

obtained.  

In this local search, job 1 is placed in the L – 1 other 

possible positions of the current sequence. Among the 

obtained L – 1 sequences and the current sequence, the 

best one is considered as the next current sequence. 

This process is repeated up to job n. 

 

3-3. Acceptance Criteria 

Acceptance criteria are those that determine the 

acceptance or rejection of the solution obtained in the 

local search step (  ) as the next current solution (). 

If this solution is equal to or better than the best 

solution (best), it is accepted. Else if the    is worse 

than the best, it is accepted with a specific value of 

probability. If    is rejected, then best is considered as 

the next . In this study, for the sake of the parameters 

adjustment of the proposed IG algorithm becomes 

manageable, the probability of acceptance of the worse 

sequence is considered equal to 0.5, like the reference 

[12]. 

 

3-4. Deconstruction and Reconstruction 

In the deconstruction part of this step, Nr jobs are 

randomly removed from the current sequence and 

saved in a 1 rNR   matrix. The result is a current 

sequence with (
rn N ) jobs. Then in the 

reconstruction part, R[1] is considered as the new job 

for this current sequence and the next current sequence 

with ( 1rn N  ) jobs is obtained using the step3-

MK(k) procedure.  

This process is repeated up to job   [ ]rR N . Before the 

execution of the proposed IG algorithm, the parameter 

k of the step3-MK(k) procedure used in this step, 

should be adjusted. 

 
4. Experimental Evaluation 

In this section, we intend to evaluate the 

effectiveness of the proposed IG algorithm. For this 

purpose, we use the Taillard instances [18] combining 

20, 50, 100, 200 and 500 jobs with 5, 10 and 20 

machines. These benchmark instances are composed of 
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12 groups each of which has 10 instances of the same 

size.  

In these evaluations, a time limit of 20.m.n 

milliseconds is considered for solving each instance. 

Before these evaluations, the parameters of the 

proposed algorithm should be adjusted. To avoid over 

learning in parameter adjustment, we have generated a 

new random set of instances by using the Taillard 

procedure [10] and random seeds. In this random set, 

there are 20 groups, 10 instances per each group for 

every combination of m and n where 

{5,10,15,20}m  and {20,60,100,150,200}n  . In the 

parameter adjustment, a time limit of 5.m.n 

milliseconds is considered for solving each instance. 

The algorithms have been coded in C# and tested on a 

Core 2 Due T9600, 2.8 GHz and 4 GB of RAM 

memory.  

To analyze the effectiveness of solution A for instance 

s, we used the relative percentage deviation (RPD) 

calculated by equation (8): 

 

( )
100As s

As

s

TFT bestTFT
RPD

bestTFT


                                  (8) 

 

Where, "TFTAS" is the total flow time of solution A for 

instance s and "bestTFTs" is the best known total flow 

time for the same instance.  

 
4-1. Experimental Parameter Setting 

The NEH-MK(k) heuristic which generates the initial 

solution has two parameters,  and k. With a little 

attention to this heuristic, we can find that different  

levels have not any effect on the execution time of it. 

However this issue is not true for the parameter k. We 

have evaluated the effect of k levels on average 

execution time (in seconds) of NEH-MK(k) in Fig. 2. 

As we see in this figure, execution time of the NEH-

MK(k) increases with k. Because of the time limit for 

the proposed IG algorithm, both the quality of the 

initial solution and the time taken to obtain are 

important.  

So, we can tune the parameter  separately. But, we 

have to adjust the k with respect to the other 

parameters of the proposed IG algorithm. We 

considered the following levels for each parameter of 

the NEH-MK(k): 

 
 , 11 levels: 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 

0.9, 1.0; 

 k, 4 levels: 0, 2, 5, 10. 

 
Considering the time limit chosen for the proposed IG 

algorithm, we cannot recommend the larger levels for 

k; because the execution time of the initial solution 

generation for the instances with 500 jobs and 20 

machines will be more than a half of the time limit. We 

performed a 11 4  full factorial experiment for finding 

the best level of the parameter . Due to the 

randomness of the NEH-MK(k), for each 44 different 

combinations of  and k parameters, we performed 5 

runs per instance. So, instance s was solved 220 times 

by the NEH-MK(k) heuristic and the best TFT among 

them is selected as the bestTFTs for RPD calculation. 

The above results were analyzed by a multi-way 

analysis of variance (ANOVA).  

First, the normality, homoscedasticity, and 

independence assumptions were checked and no 

considerable departure was found. This analysis 

showed that both parameters are significant, but their 

interaction is not like this (P-value < 0.05). By analysis 

of different levels of the parameter  with Tukey HSD 

95% confidence intervals, α 0.2 is selected as the best 

level for the NEH-MK(k) heuristic. 

 

 
Fig. 2. Effect of k on execution time of the NEH-

MK(k) 

 
We are now left with the adjustment of the three 

parameters in the proposed IG algorithm, namely k in 

the NEH-MK(k) heuristic in the initial solution 

generation phase which we designated as 
1 k ; Nr in the 

deconstruction part and finally k2 in the step3-MK(k2) 

procedure in the reconstruction part. We considered the 

following levels for each parameter: 

 

 k1, 4 levels: 0, 2, 5, 10; 

 Nr, 3 levels: 3, 5, 10; 

 k2, 4 levels: 0, 2, 5, 10. 

 
For finding the best level of each parameter, we 

performed a 4 3 4   full factorial experiment. Due to 

the randomness of the IG algorithm, we performed 5 

runs per instance for each 48 different combination of 

k1, Nr and k2. So, each instance was solved 240 times 

by the IG algorithm.  

As already mentioned above, the time limit in these 

evaluations is  5. .m n  milliseconds. For instance s, the 

best TFTs is considered equal to the objective of the 

best solution among the ones obtained for this instance 
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in this experiment. These results were analyzed by a 

multi-way ANOVA.  

The normality, homoscedasticity, and independence 

assumptions were checked and no considerable 

departures were found.  

This analysis showed that all the parameters and their 

interactions are significant, except the
1 2k k , 

1 rk N  

and 
1 2 rk k N   interactions. So first we found the best 

level of k1. By the Tukey HSD 95% confidence 

interval, we found that the best level for k1 is 10. Then 

we compared the different combination of the Nr and k2 

levels by the Tukey HSD 95% confidence interval and 

with assumption of 
1  10k  . We found that (5, 2), (5, 5) 

and (5, 10) combinations of the (Nr, k2) are in the best 

homogenous subset that we select (5, 2) which has the 

minimum average RPD. So the value of the parameters 

, k1, Nr and k2 are finally considered equal to 0.2, 10, 

5 and 2, respectively. 

 
4-2. Experimental Results 

As already mentioned, we used the Taillard benchmark 

instances for evaluating the effectiveness of the 

proposed IG algorithm. The total flow time values of 

the best known solutions for these instances are shown 

in Table 1, which we used for calculating the RPD in 

this section. In this Table, the Dataset column indicates 

the size (n|m) and number of the instances, Best 

column indicates the total flow time of the best known 

solution, and S represents the algorithm that obtained 

the best known solution. In the S column, "1" 

designates the hmgHS [9] and "2" represents the 

proposed IG algorithm.  

First we compared the effectiveness of the NEH-

MK(k) heuristics, {0, 2, 5,1  0}k  , with the NEH-WPT 

[9] heuristic. For this purpose, each instance was 

solved 5 times with each heuristic. Average RPD 

values of the solutions and their average execution 

times for each group of Taillard instances obtained by 

each heuristic are shown in Tables 2 and 3, 

respectively.  

According to the data in Table 2, the average RPD 

values of the Taillard instances for NEH-WPT, NEH-

MK(0), NEH-MK(2), NEH-MK(5), and NEH-MK(10) 

are equal to 4.10, 3.68, 3.12, 2.42 and 2.07, 

respectively.  

All the NEH-MK(k) heuristics,   {0, 2, 5,1  0}k  , 

exhibited better efficiency than the NEH-WPT 

heuristic. Larger values of k resulted in better 

efficiencies for the NEH-MK(k) heuristic. These 

claims have been confirmed by the Tukey HSD 95% 

confidence intervals. The only difference between the 

NEH-WPT [9] and NEH-MK(0) algorithms lies in 

their step 1. So, the above results clearly show the 

more effectiveness of the proposed step1-MK 

procedure with comparison step 1 of the NEH-WPT 

[9]. 

Tab. 1. Best known solutions for Taillard 

benchmark instances 

D
a

ta
se

t 

B
e
st

 

S
 

D
a

ta
se

t 

B
e
st

 

S
 

D
a

ta
se

t 

B
e
st

 

S
 

20|5   20|10   20|20   

1 14953 1,2 11 22358 1,2 21 34683 1,2 

2 16343 1,2 12 23881 1,2 22 32855 1,2 

3 14297 1,2 13 20873 1,2 23 34825 1,2 

4 16483 1,2 14 19916 1,2 24 33006 1,2 

5 14212 1,2 15 20196 1,2 25 35328 1,2 

6 14624 1,2 16 20126 1,2 26 33720 1,2 

7 14936 1,2 17 19471 1,2 27 33992 1,2 

8 15193 1,2 18 21330 1,2 28 33388 1,2 

9 15544 1,2 19 21585 1,2 29 34798 1,2 

10 14392 1,2 20 22582 1,2 30 33174 1,2 

         
50|5   50|10   50|20   

31 73101 2 41 100193 2 51 137222 2 

32 78411 2 42 96135 2 52 130386 2 

33 73499 2 43 92234 2 53 128102 1 

34 77621 2 44 98820 2 54 132378 2 

35 78824 2 45 98502 2 55 131058 2 

36 75543 2 46 97721 2 56 131936 2 

37 74291 2 47 100138 2 57 135148 2 

38 74056 2 48 98565 2 58 133379 2 

39 71161 2 49 97372 2 59 133012 2 

40 79306 2 50 98368 2 60 136249 1 

         
100|5   100|10   100|20   

61 292863 2 71 357766 2 81 430626 2 

62 283784 2 72 339274 2 82 440768 2 

63 280031 2 73 347673 2 83 435725 2 

64 265390 2 74 364470 2 84 438568 2 

65 278352 2 75 342828 2 85 433014 2 

66 273840 2 76 333139 2 86 436769 2 

67 279652 2 77 341278 2 87 443088 2 

68 275113 2 78 347754 2 88 446417 2 

69 289241 2 79 361197 2 89 437340 2 

70 285839 2 80 353220 2 90 444264 2 

         
200|10   200|20   500|20   

91 1309697 2 101 1531757 2 111 8983587 2 

92 1304588 2 102 1563365 2 112 9120898 2 

93 1308056 2 103 1580211 2 113 9023587 2 

94 1299421 2 104 1564420 2 114 9111421 2 

95 1303077 2 105 1545823 2 115 9078369 2 

96 1281034 2 106 1557750 2 116 9158850 2 

97 1332859 2 107 1559874 2 117 9025125 2 

98 1325551 2 108 1568342 2 118 9096221 2 

99 1303549 2 109 1545995 2 119 9073555 2 

100 1299273 2 110 1562535 2 120 9115986 2 

 
Tab. 2. Mean of RPD comparisons of the NEH-

MK(k) with NEH-WPT 

n|m 
NEH-

WPT 

NEH-

MK(0) 

NEH-

MK(2) 

NEH-

MK(5) 

NEH-

MK(10) 

20|5 3.31 3.09 2.39 1.80 1.42 

20|10 3.09 3.08 2.40 1.47 1.35 

20|20 3.58 2.27 1.90 1.23 0.94 

50|5 5.50 4.65 4.35 3.87 3.47 

50|10 5.12 4.66 4.01 3.14 2.68 

50|20 4.33 4.21 3.41 2.60 2.37 

100|5 6.17 5.48 4.70 4.04 3.61 

100|10 4.75 4.39 3.84 2.92 2.66 

100|20 3.87 3.47 2.92 2.31 1.89 

200|10 4.37 4.06 3.51 2.77 2.25 

200|20 2.92 2.72 2.28 1.67 1.38 

500|20 2.21 2.08 1.69 1.20 0.85 

      

Average 4.10 3.68 3.12 2.42 2.07 
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Tab. 3. Average CPU time (second) comparisons of 

the NEH-MK(k) with NEH-WPT 

n|m 
NEH-

WPT 

NEH-

MK(0) 

NEH-

MK(2) 

NEH-

MK(5) 

NEH-

MK(10) 

20|5 0.00 0.00 0.00 0.00 0.00 

20|10 0.00 0.00 0.00 0.00 0.01 
20|20 0.00 0.00 0.00 0.01 0.01 

50|5 0.01 0.01 0.01 0.02 0.04 

50|10 0.01 0.01 0.02 0.03 0.06 
50|20 0.01 0.02 0.03 0.07 0.11 

100|5 0.03 0.04 0.07 0.16 0.27 

100|10 0.06 0.06 0.11 0.26 0.45 
100|20 0.10 0.11 0.20 0.46 0.85 

200|10 0.44 0.45 0.83 2.08 3.62 

200|20 0.79 0.80 1.50 3.75 6.40 

500|20 12.36 12.50 23.61 55.93 99.09 

      

Average 1.15 1.17 2.20 5.23 9.24 

 
The proposed IG algorithm was evaluated by 

comparing its efficiency with that of the hmgHS 

algorithm [9] which had in previous studies shown to 

have the best efficiency. The procedure presented for 

the local search step of the proposed IG algorithm was 

also evaluated by using a modified form of the IG 

algorithm (mIG) which differed only in its local search 

step. The local search step of the mIG lacked the 

insert-based local search part of that of the proposed IG 

algorithm. All these three algorithms were coded in the 

same structure.  

As previously mentioned, we considered a time limit of 

20. .m n millisecond in this evaluation. Due to the 

randomness of these algorithms, each Taillard instance 

was solved 10 times using each algorithm. Average 

RPD values of each group of the Taillard instances for 

each algorithm are shown in Table 4. It is seen that the 

proposed IG algorithm enjoys a higher efficiency than 

the others. This result has been confirmed using the 

Tukey HSD 95% confidence intervals. These results 

also indicate that the application of two consecutive 

pair-wise and insert-based local searches lead to the 

higher efficiency of the IG algorithm than when one 

pair-wise based local search is used.   

 

Tab. 4. Effectiveness evaluation of the proposed IG 

algorithm 

n|m hmgHS IG mIG 
Time 

(seconds) 

20|5 0.06 0.02 0.02 2.00 

20|10 0.01 0.01 0.03 4.00 

20|20 0.01 0.00 0.01 8.00 

50|5 1.78 0.70 0.71 5.00 

50|10 1.13 0.57 0.73 10.00 

50|20 0.66 0.42 0.57 20.00 

100|5 3.70 0.63 0.80 10.00 

100|10 2.59 0.61 0.84 20.00 

100|20 1.68 0.43 0.62 40.00 

200|10 3.25 0.61 0.79 40.00 

200|20 2.03 0.48 0.59 80.00 

500|20 2.03 0.39 0.42 200.00 

     

Average 1.58 0.41 0.51 36.58 

5. Conclusion 
In this paper, we presented an IG algorithm for 

solving the BFSP with total flow time criteria. For 

generating an efficient initial solution for this 

algorithm, we developed the NEH-MK(k) that is 

obtained by modifying the steps 1 and 3 of the NEH 

[10] algorithm.  

Computational results showed that for 

each {0,2,5,10}k  , the efficiency and the execution 

time of the NEH-MK(k) increases with k. It was also 

found that all NEH-MK(k) heuristics, {0,2,5,10}k  , 

have higher efficiencies than the NEH-WPT [9] 

heuristic. The results revealed that the proposed IG 

algorithm is more efficient than the hmgHS [9] 

algorithm. In the proposed IG algorithm, we used two 

consecutive pair-wise and insert-based local searches 

and we showed that it is more efficient than a pair-wise 

based local search. 

The proposed concepts maybe used for developing 

efficient algorithms for solving similar problems such 

as the BFSP with other criteria. Also, with respect to 

the fact that the most computational burden of the 

proposed algorithms lies with the objective 

computation of the parent sequences' offspring, it may 

be interesting to develop rules that reject some of the 

offspring before their objective functions are 

computed. 
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