

An Iterated Greedy Algorithm for Solving the

Blocking Flow Shop Scheduling Problem with Total

Flow Time Criteria

D. Khorasanian & G. Moslehi

*

Danial Khorasanian is an M.S. Student of Department of Industrial Engineering, Isfahan University of Technology, Isfahan, Iran
Ghasem Moslehi is a Professor of Department of Industrial Engineering, Isfahan University of Technology, Isfahan, Iran

KKEEYYWWOORRDDSS ABSTRACT

In this paper, we propose an iterated greedy algorithm for solving the

blocking flow shop scheduling problem with total flow time

minimization objective. The steps of this algorithm are designed very

efficient. For generating an initial solution, we develop an efficient

constructive heuristic by modifying the best known NEH algorithm.

Effectiveness of the proposed iterated greedy algorithm is tested on

the Taillard's instances. Computational results show the high

efficiency of this algorithm with comparison state-of-the-art

algorithms. We report new best solutions for 88 instances of 120

Taillard's instances.

 © 2012 IUST Publication, IJIEPR, Vol. 23, No. 4, All Rights Reserved.

11.. IInnttrroodduuccttiioonn



The flow shop scheduling problem is one of the

most popular machine scheduling problems with

extensive engineering relevance, representing nearly a

quarter of manufacturing systems, assembly lines and

information service facilities in use nowadays [1]. In

the general flow shop model, it is assumed that the

buffers have unlimited capacity. However, in many

real flow shop environments, the buffers may have

limited capacity due to technological requirements or

process characteristics [2].

A special case of these environments is the flow shop

with zero capacity buffers that the related problem is

known as the blocking flow shop scheduling problem

(BFSP). Since there are no buffers between machines,

no intermediate queues of jobs are allowed in the

production system for their next operations [3]. In

BFSP, the completed job on a machine may block it

until the next downstream machine is free. Grabowski

**

Corresponding author: Ghasem Moslehi
 Email: . moslehi@cc.iut.ac.ir

 Paper first received July. 05, 2012, and in revised form Oct.

 9, 2012.

and Pempera [4] present a real life example in the

production of concrete blocks that does not allow

storage in some stages. A detailed review of studies

and applications of the BFSP can be found in [2]. It has

been proved that the BFSP with makespan criteria and

more than two machines is strongly NP-hard [2]. Also,

Rock [5] showed that the BFSP with total flow time

criteria and two machines is strongly NP-hard.

In recent years, the BFSP has attracted much attention

among researchers. Since the problem is strongly NP-

hard for large numbers of jobs and machines, as is

usual in real systems, it is more practical to use

heuristics and metaheuristics to solve it. The simplest

heuristics are constructive procedures, which use rules

to assign a priority index to each job, in each step, to

build a sequence.

Most studies of the BFSP have dealt with makespan

criteria. Among the proposed constructive heuristics

for the BFSP with makespan criteria, one can refer to

Profile Fitting (PF) [6], MinMax (MM) [7], MME [7],

PFE [7], NEH2 [8].

The most important proposed constructive heuristic for

the BFSP with total flow time criteria is NEH-WPT

[9]. Most of the proposed heuristics for the BFSP have

Constructive heuristic,

Iterated greedy algorithm,

Blocking flow shop,

Total flow time

DDeecceemmbbeerr 22001122,, VVoolluummee 2233,, NNuummbbeerr 44

pppp.. 330011--330088

hhttttpp::////IIJJIIEEPPRR..iiuusstt..aacc..iirr//

IInntteerrnnaattiioonnaall JJoouurrnnaall ooff IInndduussttrriiaall EEnnggiinneeeerriinngg && PPrroodduuccttiioonn RReesseeaarrcchh

 ISSN: 2008-4889

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ie
pr

.iu
st

.a
c.

ir
 o

n
20

25
-0

7-
19

]

 1 / 8

mailto:moslehi@cc.iut.ac.ir
https://ijiepr.iust.ac.ir/article-1-452-en.html

D. Khorasanian & G. Moslehi An Iterated Greedy Algorithm for Solving the Blocking Flow Shop… 302

IInntteerrnnaattiioonnaall JJoouurrnnaall ooff IInndduussttrriiaall EEnnggiinneeeerriinngg && PPrroodduuccttiioonn RReesseeaarrcchh,, DDeecceemmbbeerr 22001122,, VVooll.. 2233,, NNoo.. 44

been developed by modifying the best known NEH

[10] heuristic. As we know, the NEH algorithm is as

follows [10]:

Step 1: Sort the jobs according to the non-increasing

sums of their processing times and let the

obtained sequence ((1), , ())n    .

Step 2: The first two jobs of the  are taken and two

possible partial sequences of these two jobs are

evaluated. Then, the better partial sequence is

chosen as the current sequence and let L = 3.

Step 3: Find the best partial sequence by placing the

job (L) in all possible positions of the current

sequence. The best partial sequence becomes

the next L-job current sequence.

Step 4: If L = n, end and otherwise, let L = L + 1 and

back to step 3.

Recently, different types of metaheuristics have been

developed for the BFSP. Genetic algorithm (GA) [11],

tabu search (TS) [3], hybrid discrete differential

evolution (HDDE) algorithm [1], iterated greedy (IG)

algorithm [12] and hybrid modified global-best

harmony search (hmgHS) algorithm [13] are the most

important metaheuristics so far presented for the BFSP

with makespan criteria.

Among these algorithms, Wang et al [13] have claimed

that their hmgHS algorithm outperforms the others.

Studies about BFSP with total flow time criteria are

scarce. To the best of our knowledge, only one

research paper has so far been reported on the BFSP

with total flow time criteria using metaheuristics.

Wang et al [9] have presented three modified harmony

search (hHS, hgHS and hmgHS) algorithms where

hmgHS outperforms the others. In this study, NEH-

WPT heuristic has been used for an initial solution

generation.

In this paper, we want to solve the BFSP with total

flow time criteria using the IG algorithm. The IG

algorithm is a metaheuristic that, despite its simple

structure, can find very good solutions efficiently. This

algorithm has been used successfully for both the

permutation flow shop scheduling problem (PFSP) [14]

and the BFSP [12] with makespan criteria. However, it

has not so far been used for the BFSP with total flow

time criteria. General frame of the IG algorithm is

shown in Fig. 1.

This algorithm includes two phases. In phase 1, an

efficient initial solution (0) is generated. This solution

is considered as both the current solution () and the

best solution (best). Then, until the stopping criteria are

met, phase 2 which includes three main steps repeats.

In step 1, efforts are made to improve the current

solution by a local search procedure. In step 2,

acceptance criteria are checked for the current solution

and if it is rejected, the best solution is considered as

the current solution. In step 3, a deconstruction and

reconstruction is done for the current solution to escape

from deep local optima.

Procedure iterated greedy

 % Phase 1

 Generate initial solution (0)

  = 0

 best = 0

 %Phase 2

repeat

% step 1

   = Local Search ()

 if total flow time ( ) < total flow time (best)

 then
best  endif

 % step 2

  = Acceptance criteria (best,  )

 %step 3

  = deconstruction ()

  = reconstruction ( )

if total flow time () < total flow time (best)

then
best  endif

until stopping criteria is met

end

Fig. 1. General frame of the IG algorithm

After this introduction, we will formulate the BFSP in

Section 2. Section 3 details the proposed IG algorithm.

Then, in Section 4, we will show the parameter settings

and computational results. Finally, we will present

some conclusions and suggestions for future studies in

Section 5.

2. Problem Formulation
In the BFSP with total flow time criteria, there are n

jobs and m machines and every job must be processed

on machine 1 to m. Because intermediate buffers have

zero capacity, there are not intermediate queues of jobs

between machines. The completed job on a machine

may block it until the next downstream machine is free.

Suppose that the release time of all jobs is zero and that

the set-up time on each machine is included in the

processing time. At any time, each machine can

process at most one job and each job can be processed

on at most one machine. The objective of this problem

is to find a permutation that minimizes the total flow

time.

Because the jobs may be blocked after their completion

times, departure times may be different from

completion times. Consider the permutation

((1), , ())n    .

The departure time of job (j) from machine i is shown

by , ()i jD  . Departure times of jobs in the permutation 

from each machine can be calculated by the following

equations:

 0, π 1
0D  (1)

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ie
pr

.iu
st

.a
c.

ir
 o

n
20

25
-0

7-
19

]

 2 / 8

https://ijiepr.iust.ac.ir/article-1-452-en.html

303 D. Khorasanian & G. Moslehi An Iterated Greedy Algorithm for Solving the Blocking Flow Shop…

IInntteerrnnaattiioonnaall JJoouurrnnaall ooff IInndduussttrriiaall EEnnggiinneeeerriinngg && PPrroodduuccttiioonn RReesseeaarrcchh,, DDeecceemmbbeerr 22001122,, VVooll.. 2233,, NNoo.. 44

 ,π(1) 1,π(1) ,π 1
; 1, , 1i i i

D D p i m     (2)

 0,π(k) 1,π k 1
; 2, , D D k n


   (3)

        ,π k 1,π k ,π k 1,π k 1
max , ;

i i i i
D D p D

  
 

 1, , 1; 2, ,i m k n     (4)

,π(k) 1,π(k) ,π(k); 1, , m m mD D p k n    (5)

In these equations, 0, ()jD  represents the starting time

of job (j) on machine 1 and , ()m jD  designates the

departure time of job (j) from machine m. Because

the jobs are not blocked on machine m, for every job,

departure time from machine m is equal to completion

time on machine m. So, we can calculate total flow

time of the permutation , as follows:

,π(j)

1

n

m

j

TFT D


 (6)

TFT calculation of the  has O(mn) complexity [1].

3. The Proposed IG Algorithm
As previously mentioned, the IG algorithm

includes two phases. In phase 1, an initial solution is

generated and in phase 2, three main steps are repeated

until the stopping criteria are met. The proposed

procedures for each part of the IG algorithm are as

follows:

3-1. Initial Solution

As we know, the NEH [10] heuristic was originally

developed for the PFSP with makespan criteria.

Nevertheless, this heuristic and its modifications have

been efficiently used for the PFSP and the BFSP with

different criteria, such as [12] [15] [16] and [17]. An

alternative method of modifying the NEH heuristic to

improve its efficiency for a specific problem is

changing the step 1 of its algorithm.

Wang et al [9] present NEH-WPT by sorting the jobs

according to the non-decreasing sum of their

processing times on each machine in the step 1. They

showed that NEH-WPT outperforms the NEH

heuristic. In this paper, we present a new sorting

procedure for the jobs in the step 1 which is called

step1-MK. In this procedure, first a job with minimum

sum of processing times on each machine is selected as

the first job. Then an unsorted job with minimum value

of the following expression is selected as the next job.

This process is repeated until the entire jobs are sorted.

   
1

1,

1 1

1 ()
m m

ij ij i q

i i

n p n L m l p p 




 

      (7)

In the above expression, j and q represent the candidate

job for assignment and the last assigned job,

respectively. This expression includes the
1

m

iji
p

 and

1 ,

1

1()
m

i qi j im l p p 




  terms that their weights are

(1)n and ()n L  , respectively. If the weight of the

second term be equal to zero; i.e. 0  , obtained

sequence by the step1-MK procedure will be same as

the sequence which is obtained by sorting the jobs

according to non-decreasing sum of processing times

on each machine.

The second term represents the sum of weighted

approximate of block and idle times on each machine

generated by placing the candidate job after the last

assigned job.

In this term, the weights are considered to decrease

with machine stage number. This is because the larger

becomes the machine stage number, the smaller will be

the effect of its block and idle times on starting times

of the following jobs. The weight of this term is

considered to be decreasing with respect to the

assigned jobs number (L). This is because the effect of

the block and idle times of the candidate job on starting

times of the following jobs become smaller as the

assigned jobs number increases and so that of the

unassigned jobs decreases. Algorithm of the step1_MK

procedure is as follows:

Step 1: Let a job with minimum sum of processing

times on each machine as first job. If more than

one job have this characteristic, select a job with

minimum processing time on machine 1 among

them. If more than one job have this

characteristic yet, assign one of them randomly.

Let L = 2.

Step 2: Among the unsorted jobs, assign a job with

minimum value of expression (7) as Lth job. If

more than one job have this characteristic, select

one of them, randomly. Let L = L +1.

Step 3: If L = n, end; otherwise, back to step 2.

Simply, we can find that the complexity of step1-MK

procedure is O(mn
2
). Another alternative for improving

the NEH [10] algorithm is modifying the step 3 of its

algorithm. In step 3, after finding the best place for the

new job, we can improve the obtained current sequence

by a procedure like a local search. In following, a

procedure is presented instead of step 3 of NEH [10]

heuristic that is called step3-MK(k). We can adjust

improving level (k) with considering the time limit.

Suppose that jnew is the new job to assign in step 3 and

the current sequence has L – 1 jobs. For this case,

algorithm of the step3-MK(k) procedure is as follows:

Step 1: Find the best partial sequence by placing jnew in

all possible positions of current sequence. The

best partial sequence becomes the next L-job

current sequence.

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ie
pr

.iu
st

.a
c.

ir
 o

n
20

25
-0

7-
19

]

 3 / 8

https://ijiepr.iust.ac.ir/article-1-452-en.html

D. Khorasanian & G. Moslehi An Iterated Greedy Algorithm for Solving the Blocking Flow Shop… 304

IInntteerrnnaattiioonnaall JJoouurrnnaall ooff IInndduussttrriiaall EEnnggiinneeeerriinngg && PPrroodduuccttiioonn RReesseeaarrcchh,, DDeecceemmbbeerr 22001122,, VVooll.. 2233,, NNoo.. 44

Step 2: Let (1) /d k L n     . If d = 0 end;

otherwise, go to step 3.

Step 3: Select d non-repetitive jobs except jnew among

the jobs in the current sequence randomly and

save them in
1 dS 

 matrix. Let i = 1.

Step 4: Remove the job S[i] from its position in the

current sequence and place it in its L – 1 other

possible positions in this sequence. Among

these obtained L sequences, select the best one

as the next L-job current sequence.

Step 5: If i = d, end; otherwise, let i = i + 1 and back

to step 4.

In step 2 of the above algorithm, the operator   

represents the integer part of a number. In the step3-

MK(k) procedure, a specific portion of the jobs of the

current sequence is reinserted. This portion is related to

parameter k and n. The larger the values of k, the more

the number of jobs reinserted for a given problem.

Because, for a specific value of the mentioned portion,

execution time of the above step extremely increases

with increasing the value of n, this value is considered

decreasing respect to n for regulating the execution

time of this step. Obviously, when k = 0, this

procedure is equivalent to step 3 of the NEH [10]

algorithm.

In the following, we present a constructive heuristic

that is called NEH-MK(k). This heuristic is a

modification of the NEH [10] heuristic in which step1-

MK and step3-MK(k) procedures are used instead of

steps 1 and 3 of its algorithm, respectively. This

heuristic has two parameters (, k) and its algorithm is

as follows:

Step 1: Obtain the sequence ((1), , ())n    by using

the step1-MK procedure.

Step 2: The first two jobs of  are taken and two

possible partial sequences of these two jobs are

evaluated. Then, choose the better partial

sequence as the current sequence and let L = 3.

Step 3: By considering (L) as the new job and with

the current sequence with L – 1 jobs, obtain the

next L-job current sequence using the step3-

MK(k) procedure.

Step 4: If L = n, end; otherwise, let L = L + 1 and go

back to step 3.

A glance at the algorithm reveals that step 3 of the

above algorithm determines its complexity. This step

requires ((1) / (1)) L k L n L       times objective

calculation of an L-job sequence. Because the objective

calculation of an L-job sequence has O(mL)

complexity [1], we can say that the complexity of the

NEH-MK(k) algorithm is about 3 ()O mn k . In the

proposed IG algorithm, we use the NEH-MK(k)

heuristic for the initial solution generation.

3-2. Local Search

By using the local search, the solution obtained from

the deconstruction and reconstruction step is accepted

with more probability. Two consecutive pair-wise and

insert-based local searches are used for this purpose.

The pair-wise based local search considered is a non-

exhaustive decent algorithm that tries to improve the

current sequence by swapping any two of its positions.

If, during this process, a new sequence improves the

value of the objective function, it becomes the new

current sequence and the process continues until all of

the positions of the current sequence have been

permuted and no more improvement takes place [12].

After this pair-wise local search, the insert-based local

search is executed on the current sequence thus

obtained.

In this local search, job 1 is placed in the L – 1 other

possible positions of the current sequence. Among the

obtained L – 1 sequences and the current sequence, the

best one is considered as the next current sequence.

This process is repeated up to job n.

3-3. Acceptance Criteria

Acceptance criteria are those that determine the

acceptance or rejection of the solution obtained in the

local search step ( ) as the next current solution ().

If this solution is equal to or better than the best

solution (best), it is accepted. Else if the   is worse

than the best, it is accepted with a specific value of

probability. If   is rejected, then best is considered as

the next . In this study, for the sake of the parameters

adjustment of the proposed IG algorithm becomes

manageable, the probability of acceptance of the worse

sequence is considered equal to 0.5, like the reference

[12].

3-4. Deconstruction and Reconstruction

In the deconstruction part of this step, Nr jobs are

randomly removed from the current sequence and

saved in a 1 rNR  matrix. The result is a current

sequence with (
rn N) jobs. Then in the

reconstruction part, R[1] is considered as the new job

for this current sequence and the next current sequence

with (1rn N ) jobs is obtained using the step3-

MK(k) procedure.

This process is repeated up to job []rR N . Before the

execution of the proposed IG algorithm, the parameter

k of the step3-MK(k) procedure used in this step,

should be adjusted.

4. Experimental Evaluation

In this section, we intend to evaluate the

effectiveness of the proposed IG algorithm. For this

purpose, we use the Taillard instances [18] combining

20, 50, 100, 200 and 500 jobs with 5, 10 and 20

machines. These benchmark instances are composed of

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ie
pr

.iu
st

.a
c.

ir
 o

n
20

25
-0

7-
19

]

 4 / 8

https://ijiepr.iust.ac.ir/article-1-452-en.html

305 D. Khorasanian & G. Moslehi An Iterated Greedy Algorithm for Solving the Blocking Flow Shop…

IInntteerrnnaattiioonnaall JJoouurrnnaall ooff IInndduussttrriiaall EEnnggiinneeeerriinngg && PPrroodduuccttiioonn RReesseeaarrcchh,, DDeecceemmbbeerr 22001122,, VVooll.. 2233,, NNoo.. 44

12 groups each of which has 10 instances of the same

size.

In these evaluations, a time limit of 20.m.n

milliseconds is considered for solving each instance.

Before these evaluations, the parameters of the

proposed algorithm should be adjusted. To avoid over

learning in parameter adjustment, we have generated a

new random set of instances by using the Taillard

procedure [10] and random seeds. In this random set,

there are 20 groups, 10 instances per each group for

every combination of m and n where

{5,10,15,20}m  and {20,60,100,150,200}n  . In the

parameter adjustment, a time limit of 5.m.n

milliseconds is considered for solving each instance.

The algorithms have been coded in C# and tested on a

Core 2 Due T9600, 2.8 GHz and 4 GB of RAM

memory.

To analyze the effectiveness of solution A for instance

s, we used the relative percentage deviation (RPD)

calculated by equation (8):

()
100As s

As

s

TFT bestTFT
RPD

bestTFT


  (8)

Where, "TFTAS" is the total flow time of solution A for

instance s and "bestTFTs" is the best known total flow

time for the same instance.

4-1. Experimental Parameter Setting

The NEH-MK(k) heuristic which generates the initial

solution has two parameters,  and k. With a little

attention to this heuristic, we can find that different 

levels have not any effect on the execution time of it.

However this issue is not true for the parameter k. We

have evaluated the effect of k levels on average

execution time (in seconds) of NEH-MK(k) in Fig. 2.

As we see in this figure, execution time of the NEH-

MK(k) increases with k. Because of the time limit for

the proposed IG algorithm, both the quality of the

initial solution and the time taken to obtain are

important.

So, we can tune the parameter  separately. But, we

have to adjust the k with respect to the other

parameters of the proposed IG algorithm. We

considered the following levels for each parameter of

the NEH-MK(k):

 , 11 levels: 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,

0.9, 1.0;

 k, 4 levels: 0, 2, 5, 10.

Considering the time limit chosen for the proposed IG

algorithm, we cannot recommend the larger levels for

k; because the execution time of the initial solution

generation for the instances with 500 jobs and 20

machines will be more than a half of the time limit. We

performed a 11 4 full factorial experiment for finding

the best level of the parameter . Due to the

randomness of the NEH-MK(k), for each 44 different

combinations of  and k parameters, we performed 5

runs per instance. So, instance s was solved 220 times

by the NEH-MK(k) heuristic and the best TFT among

them is selected as the bestTFTs for RPD calculation.

The above results were analyzed by a multi-way

analysis of variance (ANOVA).

First, the normality, homoscedasticity, and

independence assumptions were checked and no

considerable departure was found. This analysis

showed that both parameters are significant, but their

interaction is not like this (P-value < 0.05). By analysis

of different levels of the parameter  with Tukey HSD

95% confidence intervals, α 0.2 is selected as the best

level for the NEH-MK(k) heuristic.

Fig. 2. Effect of k on execution time of the NEH-

MK(k)

We are now left with the adjustment of the three

parameters in the proposed IG algorithm, namely k in

the NEH-MK(k) heuristic in the initial solution

generation phase which we designated as
1 k ; Nr in the

deconstruction part and finally k2 in the step3-MK(k2)

procedure in the reconstruction part. We considered the

following levels for each parameter:

 k1, 4 levels: 0, 2, 5, 10;

 Nr, 3 levels: 3, 5, 10;

 k2, 4 levels: 0, 2, 5, 10.

For finding the best level of each parameter, we

performed a 4 3 4  full factorial experiment. Due to

the randomness of the IG algorithm, we performed 5

runs per instance for each 48 different combination of

k1, Nr and k2. So, each instance was solved 240 times

by the IG algorithm.

As already mentioned above, the time limit in these

evaluations is 5. .m n milliseconds. For instance s, the

best TFTs is considered equal to the objective of the

best solution among the ones obtained for this instance

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ie
pr

.iu
st

.a
c.

ir
 o

n
20

25
-0

7-
19

]

 5 / 8

https://ijiepr.iust.ac.ir/article-1-452-en.html

D. Khorasanian & G. Moslehi An Iterated Greedy Algorithm for Solving the Blocking Flow Shop… 306

IInntteerrnnaattiioonnaall JJoouurrnnaall ooff IInndduussttrriiaall EEnnggiinneeeerriinngg && PPrroodduuccttiioonn RReesseeaarrcchh,, DDeecceemmbbeerr 22001122,, VVooll.. 2233,, NNoo.. 44

in this experiment. These results were analyzed by a

multi-way ANOVA.

The normality, homoscedasticity, and independence

assumptions were checked and no considerable

departures were found.

This analysis showed that all the parameters and their

interactions are significant, except the
1 2k k ,

1 rk N

and
1 2 rk k N  interactions. So first we found the best

level of k1. By the Tukey HSD 95% confidence

interval, we found that the best level for k1 is 10. Then

we compared the different combination of the Nr and k2

levels by the Tukey HSD 95% confidence interval and

with assumption of
1 10k  . We found that (5, 2), (5, 5)

and (5, 10) combinations of the (Nr, k2) are in the best

homogenous subset that we select (5, 2) which has the

minimum average RPD. So the value of the parameters

, k1, Nr and k2 are finally considered equal to 0.2, 10,

5 and 2, respectively.

4-2. Experimental Results

As already mentioned, we used the Taillard benchmark

instances for evaluating the effectiveness of the

proposed IG algorithm. The total flow time values of

the best known solutions for these instances are shown

in Table 1, which we used for calculating the RPD in

this section. In this Table, the Dataset column indicates

the size (n|m) and number of the instances, Best

column indicates the total flow time of the best known

solution, and S represents the algorithm that obtained

the best known solution. In the S column, "1"

designates the hmgHS [9] and "2" represents the

proposed IG algorithm.

First we compared the effectiveness of the NEH-

MK(k) heuristics, {0, 2, 5,1 0}k  , with the NEH-WPT

[9] heuristic. For this purpose, each instance was

solved 5 times with each heuristic. Average RPD

values of the solutions and their average execution

times for each group of Taillard instances obtained by

each heuristic are shown in Tables 2 and 3,

respectively.

According to the data in Table 2, the average RPD

values of the Taillard instances for NEH-WPT, NEH-

MK(0), NEH-MK(2), NEH-MK(5), and NEH-MK(10)

are equal to 4.10, 3.68, 3.12, 2.42 and 2.07,

respectively.

All the NEH-MK(k) heuristics, {0, 2, 5,1 0}k  ,

exhibited better efficiency than the NEH-WPT

heuristic. Larger values of k resulted in better

efficiencies for the NEH-MK(k) heuristic. These

claims have been confirmed by the Tukey HSD 95%

confidence intervals. The only difference between the

NEH-WPT [9] and NEH-MK(0) algorithms lies in

their step 1. So, the above results clearly show the

more effectiveness of the proposed step1-MK

procedure with comparison step 1 of the NEH-WPT

[9].

Tab. 1. Best known solutions for Taillard

benchmark instances

D
a

ta
se

t

B
e
st

S

D
a

ta
se

t

B
e
st

S

D
a

ta
se

t

B
e
st

S

20|5 20|10 20|20

1 14953 1,2 11 22358 1,2 21 34683 1,2

2 16343 1,2 12 23881 1,2 22 32855 1,2

3 14297 1,2 13 20873 1,2 23 34825 1,2

4 16483 1,2 14 19916 1,2 24 33006 1,2

5 14212 1,2 15 20196 1,2 25 35328 1,2

6 14624 1,2 16 20126 1,2 26 33720 1,2

7 14936 1,2 17 19471 1,2 27 33992 1,2

8 15193 1,2 18 21330 1,2 28 33388 1,2

9 15544 1,2 19 21585 1,2 29 34798 1,2

10 14392 1,2 20 22582 1,2 30 33174 1,2

50|5 50|10 50|20

31 73101 2 41 100193 2 51 137222 2

32 78411 2 42 96135 2 52 130386 2

33 73499 2 43 92234 2 53 128102 1

34 77621 2 44 98820 2 54 132378 2

35 78824 2 45 98502 2 55 131058 2

36 75543 2 46 97721 2 56 131936 2

37 74291 2 47 100138 2 57 135148 2

38 74056 2 48 98565 2 58 133379 2

39 71161 2 49 97372 2 59 133012 2

40 79306 2 50 98368 2 60 136249 1

100|5 100|10 100|20

61 292863 2 71 357766 2 81 430626 2

62 283784 2 72 339274 2 82 440768 2

63 280031 2 73 347673 2 83 435725 2

64 265390 2 74 364470 2 84 438568 2

65 278352 2 75 342828 2 85 433014 2

66 273840 2 76 333139 2 86 436769 2

67 279652 2 77 341278 2 87 443088 2

68 275113 2 78 347754 2 88 446417 2

69 289241 2 79 361197 2 89 437340 2

70 285839 2 80 353220 2 90 444264 2

200|10 200|20 500|20

91 1309697 2 101 1531757 2 111 8983587 2

92 1304588 2 102 1563365 2 112 9120898 2

93 1308056 2 103 1580211 2 113 9023587 2

94 1299421 2 104 1564420 2 114 9111421 2

95 1303077 2 105 1545823 2 115 9078369 2

96 1281034 2 106 1557750 2 116 9158850 2

97 1332859 2 107 1559874 2 117 9025125 2

98 1325551 2 108 1568342 2 118 9096221 2

99 1303549 2 109 1545995 2 119 9073555 2

100 1299273 2 110 1562535 2 120 9115986 2

Tab. 2. Mean of RPD comparisons of the NEH-

MK(k) with NEH-WPT

n|m
NEH-

WPT

NEH-

MK(0)

NEH-

MK(2)

NEH-

MK(5)

NEH-

MK(10)

20|5 3.31 3.09 2.39 1.80 1.42

20|10 3.09 3.08 2.40 1.47 1.35

20|20 3.58 2.27 1.90 1.23 0.94

50|5 5.50 4.65 4.35 3.87 3.47

50|10 5.12 4.66 4.01 3.14 2.68

50|20 4.33 4.21 3.41 2.60 2.37

100|5 6.17 5.48 4.70 4.04 3.61

100|10 4.75 4.39 3.84 2.92 2.66

100|20 3.87 3.47 2.92 2.31 1.89

200|10 4.37 4.06 3.51 2.77 2.25

200|20 2.92 2.72 2.28 1.67 1.38

500|20 2.21 2.08 1.69 1.20 0.85

Average 4.10 3.68 3.12 2.42 2.07

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ie
pr

.iu
st

.a
c.

ir
 o

n
20

25
-0

7-
19

]

 6 / 8

https://ijiepr.iust.ac.ir/article-1-452-en.html

307 D. Khorasanian & G. Moslehi An Iterated Greedy Algorithm for Solving the Blocking Flow Shop…

IInntteerrnnaattiioonnaall JJoouurrnnaall ooff IInndduussttrriiaall EEnnggiinneeeerriinngg && PPrroodduuccttiioonn RReesseeaarrcchh,, DDeecceemmbbeerr 22001122,, VVooll.. 2233,, NNoo.. 44

Tab. 3. Average CPU time (second) comparisons of

the NEH-MK(k) with NEH-WPT

n|m
NEH-

WPT

NEH-

MK(0)

NEH-

MK(2)

NEH-

MK(5)

NEH-

MK(10)

20|5 0.00 0.00 0.00 0.00 0.00

20|10 0.00 0.00 0.00 0.00 0.01
20|20 0.00 0.00 0.00 0.01 0.01

50|5 0.01 0.01 0.01 0.02 0.04

50|10 0.01 0.01 0.02 0.03 0.06
50|20 0.01 0.02 0.03 0.07 0.11

100|5 0.03 0.04 0.07 0.16 0.27

100|10 0.06 0.06 0.11 0.26 0.45
100|20 0.10 0.11 0.20 0.46 0.85

200|10 0.44 0.45 0.83 2.08 3.62

200|20 0.79 0.80 1.50 3.75 6.40

500|20 12.36 12.50 23.61 55.93 99.09

Average 1.15 1.17 2.20 5.23 9.24

The proposed IG algorithm was evaluated by

comparing its efficiency with that of the hmgHS

algorithm [9] which had in previous studies shown to

have the best efficiency. The procedure presented for

the local search step of the proposed IG algorithm was

also evaluated by using a modified form of the IG

algorithm (mIG) which differed only in its local search

step. The local search step of the mIG lacked the

insert-based local search part of that of the proposed IG

algorithm. All these three algorithms were coded in the

same structure.

As previously mentioned, we considered a time limit of

20. .m n millisecond in this evaluation. Due to the

randomness of these algorithms, each Taillard instance

was solved 10 times using each algorithm. Average

RPD values of each group of the Taillard instances for

each algorithm are shown in Table 4. It is seen that the

proposed IG algorithm enjoys a higher efficiency than

the others. This result has been confirmed using the

Tukey HSD 95% confidence intervals. These results

also indicate that the application of two consecutive

pair-wise and insert-based local searches lead to the

higher efficiency of the IG algorithm than when one

pair-wise based local search is used.

Tab. 4. Effectiveness evaluation of the proposed IG

algorithm

n|m hmgHS IG mIG
Time

(seconds)

20|5 0.06 0.02 0.02 2.00

20|10 0.01 0.01 0.03 4.00

20|20 0.01 0.00 0.01 8.00

50|5 1.78 0.70 0.71 5.00

50|10 1.13 0.57 0.73 10.00

50|20 0.66 0.42 0.57 20.00

100|5 3.70 0.63 0.80 10.00

100|10 2.59 0.61 0.84 20.00

100|20 1.68 0.43 0.62 40.00

200|10 3.25 0.61 0.79 40.00

200|20 2.03 0.48 0.59 80.00

500|20 2.03 0.39 0.42 200.00

Average 1.58 0.41 0.51 36.58

5. Conclusion
In this paper, we presented an IG algorithm for

solving the BFSP with total flow time criteria. For

generating an efficient initial solution for this

algorithm, we developed the NEH-MK(k) that is

obtained by modifying the steps 1 and 3 of the NEH

[10] algorithm.

Computational results showed that for

each {0,2,5,10}k  , the efficiency and the execution

time of the NEH-MK(k) increases with k. It was also

found that all NEH-MK(k) heuristics, {0,2,5,10}k  ,

have higher efficiencies than the NEH-WPT [9]

heuristic. The results revealed that the proposed IG

algorithm is more efficient than the hmgHS [9]

algorithm. In the proposed IG algorithm, we used two

consecutive pair-wise and insert-based local searches

and we showed that it is more efficient than a pair-wise

based local search.

The proposed concepts maybe used for developing

efficient algorithms for solving similar problems such

as the BFSP with other criteria. Also, with respect to

the fact that the most computational burden of the

proposed algorithms lies with the objective

computation of the parent sequences' offspring, it may

be interesting to develop rules that reject some of the

offspring before their objective functions are

computed.

References

[1] Wang, L., Pan, Q.K., Suganthan, P.N., Wang, W.H., &

Wang, Y.M., "A Novel Hybrid Discrete Differential

Evolution Algorithm for Blocking Flow Shop Scheduling

Problems", Computers and Operations Research, Vol. 37,

2010, pp. 509-520.

[2] Hall, N.G., Sriskandarajah, C., "A Survey of Machine

Scheduling Problems with Blocking and No-Wait in

Process", Operations Research, Vol. 44, 1996, pp. 510-

525.

[3] Grabowski, J., Pempera, J., "The Permutation Flow Shop

Problem with Blocking. A Tabu Search Approach",

Omega, Vol. 35, 2007, pp. 302-311.

[4] Grabowski, J., Pempera, J., "Sequencing of Jobs in Some

Production System", European Journal of Operational

Research, Vol. 125, 2000, pp. 535-550.

[5] Rock, H., "Some New Results in Flow Shop Scheduling",

Zeitschrift fur Operations Research, Vol. 28, 1984, pp. 1-

16.

[6] McCormick, S.T., Pinedo, M.L., Shenker, S., Wolf, B.,

"Sequencing in an Assembly Line with Blocking to

Minimize Cycle Time", Operations Research, Vol. 37,

1989, pp. 925-935.

[7] Ronconi, D.P., "A Note on Constructive Heuristics for the

Flow Shop Problem with Blocking", International Journal

of Production Economics, Vol. 87, 2004, pp. 39-48.

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ie
pr

.iu
st

.a
c.

ir
 o

n
20

25
-0

7-
19

]

 7 / 8

https://ijiepr.iust.ac.ir/article-1-452-en.html

D. Khorasanian & G. Moslehi An Iterated Greedy Algorithm for Solving the Blocking Flow Shop… 308

IInntteerrnnaattiioonnaall JJoouurrnnaall ooff IInndduussttrriiaall EEnnggiinneeeerriinngg && PPrroodduuccttiioonn RReesseeaarrcchh,, DDeecceemmbbeerr 22001122,, VVooll.. 2233,, NNoo.. 44

[8] Companys, R., Mateo, M., "Different Behaviour of a

Double Branch-and-Bound Algorithm on Fm|Prmu|Cmax

and Fm|Block|Cmax Problems", Computers and

Operations Research, Vol. 34, 2007, pp. 938-953.

[9] Wang, L., Pan, Q.K., Tasgetiren, M.F., "Minimizing the

Total Flow Time in a Flow Shop with Blocking by using

Hybrid Harmony Search Algorithms", Expert Systems

with Applications, Vol. 37, 2010, pp. 7929-7936.

[10] Nawaz, M., Enscore Jr, E.E., Ham, I., "A Heuristic

Algorithm for the m-Machine, n-Job Flow-Shop

Sequencing Problem", Omega, Vol. 11, 1983, pp. 91-95.

[11] Caraffa, V., Ianes, S., Bagchi, T.P., Sriskandarajah, C.,

"Minimizing Makespan in a Blocking Flow Shop using

Genetic Algorithms", International Journal of Production

Economics, Vol. 70, 2001, pp. 101-115.

[12] Ribas, I., Companys, R., Tort-Martorell, X., "An Iterated

Greedy Algorithm for the Flow Shop Scheduling Problem

with Blocking", Omega, Vol. 39, 2011, pp. 293-301.

[13] Wang, L., Pan, Q.K., Tasgetiren, M.F., "A Hybrid

Harmony Search Algorithm for the Blocking Permutation

Flow Shop Scheduling Problem", Computers & Industrial

Engineering, Vol. 61, 2011, pp. 76-83.

[14] Ruiz, R., & Stutzle, T., "A Simple and Efective Iterated

Greedy Algorithm for the Permutation Flow Shop

Scheduling Problem", European Journal of Operational

Research, Vol. 177, 2007, pp. 2033-2049.

[15] Ronconi, D.P., Henriques, L.R.S., "Some Heuristic

Algorithms for Total Tardiness Minimization in a

Flowshop with Blocking", Omega, Vol. 37, 2009, pp.

272-281.

[16] Framinan, J.M., Leisten, R., "An Eficient Constructive

Heuristic for Flowtime Minimisation in Permutation

Flow Shops", Omega, Vol. 31, 2003, pp. 311-317.

[17] Kalczynski, P.J., Kamburowski, J., "An Improved NEH

Heuristic to Minimize Makespan in Permutation Flow

Shops", Computers and Operations Research, Vol. 35,

2008, pp. 3001-3008.

[18] Taillard, E., "Benchmarks for Basic Scheduling

Problems", European Journal of Operational Research,

Vol. 64, 1993, pp. 278-285.

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ie
pr

.iu
st

.a
c.

ir
 o

n
20

25
-0

7-
19

]

Powered by TCPDF (www.tcpdf.org)

 8 / 8

https://ijiepr.iust.ac.ir/article-1-452-en.html
http://www.tcpdf.org

