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KKEEYYWWOORRDDSS                                  ABSTRACT 
 

The distribution center location problem is a crucial question for 
logistics decision makers. The optimization of these decisions needs 
careful attention to the fixed facility costs, inventory costs, 
transportation costs and customer responsiveness. In this paper we 
study the location selection of a distribution center which satisfies 
demands with a M/M/1 finite queueing system plus balking and 
reneging. The distribution center uses one for one inventory policy, 
where each arrival demand orders a unit of product to the 
distribution center and the distribution center refers this demand to its 
supplier. The matrix geometric method is applied to model the 
queueing system in order to obtain the steady-state probabilities and 
evaluate some performance measures. A cost model is developed to 
determine the best location for the distribution center and its optimal 
storage capacity and a numerical example is presented to determine 
the computability of the results derived in this study. 
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11..  IInnttrroodduuccttiioonn

                                                

∗  
Total logistics costs (inventory plus transportation) 

are important parts of a product cost in many countries. 
According to costly and difficult to reverse nature of 
facility location problems (FLPs) and its long time 
horizon impact, there is a critical management decision 
in the design of efficient logistics systems, which 
discuss about the choice of locations for distribution 
centers (DCs) to enhance operation efficiency and 
logistics performance. Distribution center is defined as 
an entity that links an enterprise with its suppliers and 
customers. Identification of a distribution center 
location should be based on expenses as inventory 
costs, transportation costs, construction costs, operating 
costs and in some cases the service level costs. There 
are many articles of analytic study on FLP, where 
locating distribution centers is one of the main 
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motivations for them. In an article by Aikens (1985), 
nine basic location models where all of them are to 
minimize the fixed investment costs and transportation 
costs are surveyed. Many applications and methods for 
facility location problems and location models for 
distribution systems are surveyed in Dresner (1995) 
and Klose and Drexl (2005), respectively. Moreover, 
Syam (2002) investigated a FLP model and some 
methodologies considering logistical components.  
Some models considered the demand uncertainty 
effects on DCs optimal location. A notable work in 
such topic is the published article by Cole (1995) who 
considers Normal distribution for demand and a 
required safety stock for a specific customer service 
level in order to identify the DC location and customer 
allocation. Also, simple dynamic and stochastic 
location models are developed for considering the 
dynamic nature of FLP and the stochastic nature of 
demand by Owen and Daskin (1998). In a related 
article Song (2006), proposes a model where he 
minimizes the sum of all the associated costs of a 
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supply chain network, subject to a variety of related 
constraints.  
Inventory costs should be considered jointly with other 
facility transportation and operation costs in 
determining the optimal locations for DCs. An instance 
for mentioned topic is Nozick and Turnquist (1998) 
article where they describe a method including 
inventory costs within a fixed charge facility location 
model for developing an optimal system design. 
Furthermore, they present a case study involving the 
distribution of finished vehicles by an automotive 
manufacturer in another article which provides an 
integrated view with a careful attention to facility 
costs, transportation costs, inventory and customer 
responsiveness costs (Nozick and Turnquist 2001).  
Applying queueing theory in FLPs, first was discussed 
by Larson (1974) where he analyzed problems of 
vehicle location-allocation and response district design 
in emergency response services that operate in the 
server to customer mode. Following Larson (1974) 
study, providing probabilistic models that consider 
queuing theory in FLPs has been developed by many 
researchers. Instances of such models are described by 
Batta (1989), Marianov and Serra (2002), Snyder 
(2006) and Marianov (2008).  
The distribution center location problem that is 
considered as a basic model in this paper is composed 
of a supplier with stochastic replenishment lead time, a 
distribution center with stochastic service time and an 
infinite source of customers (who can balk and renege) 
with stochastic demand arrival times. We deal with the 

 queue with finite capacity of impatient 
customers. The behavior of impatient customers which 
upon arrival may or may not go in the queue for 
service depending on the number of customers in the 
system and those which on going to the queue depart 
the queue without being served, is investigated in this 
study. The queueing systems with balking and reneging 
have been discussed in many articles. Examples of 
such studies can be seen in Wang et al. (2007), Yue 
and Sun (2008) and Al-Seedy et al. (2009).  

1//MM

This paper aims to study the impact of impatient 
customers and their demand uncertainties on the 
optimal location of a distribution center and the size of 
its storage capacity which is needed to be established. 
The primary objectives of the study are: 
• Developing the steady-state solutions for the 

1//MM  queueing system with finite capacity, 
reneging and balking. 

• Developing a cost model to identify the optimal 
distribution center location in order to minimize 
the steady-state expected cost per unit time. 

• Obtaining the optimal storage capacity in each 
candidate location site which minimizes the 
steady-state related inventory expected costs per 
unit time.  

The remainder of the paper is organized as follows. In 
Section 2 we describe the system definition and more 
explicitly queueing relations. Section 3 is dedicated to 

calculating some performance measures and deriving 
the cost analysis is discussed in Section 4. We have 
shown the convexity of the expected total cost function 
by a numerical example in Section 5 and finally, 
Section 6 provides conclusions and directions for 
future research.  
 

2. System Definition 
We consider a distribution center with one server 

which satisfies the arrival demands using a queueing 
system with finite capacity. The arrival demands signal 
out from i demand points and the time points of these 
demands occurrences form a Poisson process with 
parameter ),...,2,1( aii =λ  for each demand point. So, 
the total rate of demands referring to the distribution 

center equals with . See Fig. 1 for a diagram 

depicting the model. 

∑
=

=
a

i
i

1
λλ

Each customer who comes into the distribution center 
has a demand and satisfying this demand needs an on 
hand inventory and a process (set up) must be done by 
distribution center, which takes some time. Each 
customer needs exactly a product of unit size and DC 
uses one for one inventory policy. Therefore, the on 
hand inventory plus in order inventory must be hold at 
a pre-specified level (S) so the demand pattern is 
transferred exactly to the supplier. The DCs’ ordering 
quantity to supplier is of unit size and it occurs when a 
demand refers to it.  
It is notable that the order satisfying times from the DC 
to the demand points are exponentially distributed with 
mean )0(1 >μ which are independent from the 
distances to the demand points. Also replenishment 
lead time from the supplier is exponentially distributed 
with mean )0(1 >ν .  
 

 
Fig. 1.  Distribution center location problem with 
stochastic replenishment time, service time and 

demand 

 
The certain time that a customer wait for service to 
begin before getting impatient, is random variable 
which is distributed as a negative exponential 
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distribution with parameter β . It is important to say 
there is no physical queue in the system and the arrival 
demands go to an order queue which does not need a 
physical line. The transportation process is performed 
using one vehicle.  
The DC can serve just one customer at a time and the 
service process assumed to be independent of customer 
arrivals. The problem is to find the best location for 
distribution center and its optimal storage capacity 
according to defined system parameters. 

2-1. The Markov Chain 
The system can be described by a quasi birth-and-death 
Markov process with states . Consider the 
continuous Markov chain 

),( kn
}0,0),,{( SkNnkn ≤≤≤≤  

where n is the number of customers in the system 
including the one being served and k is the number of 
products which are available in the distribution center 
storage. The state space with transition rates is depicted 
in Fig.2. 

 

 
Fig. 2. State transition rates diagram 

 
2-2. Steady state results 
We described the state of the system by the pairs 

. Now, let }0,0),,{( SkNnkn ≤≤≤≤ nθ  denote the 
probability that a customer enters the queue when there 
are n customers in the system. nθ  is defined as follows 
(Bhat 2008): 
 

1 0
1 1

0

n
n

n
e n

n N

μθ −

=⎧
⎪= ≤⎨
⎪ ≥⎩

,
,N≤ −  

 
Since the waiting time before getting impatient is a 
random variable which follows an exponential 
distribution with mean β1  and customers decisions 
are independent of each other, the average renege rate 
is βn .  
In order to develop the steady-state probabilities 

SkNnkn ≤≤≤≤ 0,0,),(π , we get help from the 

matrix geometric method which was first introduced by 
Neuts (1981). The generator matrix of the under study 
Markov chain is given as: 
 

⎥
⎥
⎥
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Q
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Where ,  and  are block square matrixes of 
order  

nA nB nC
1+S  which are displayed in Appendix A. 

According to the finite capacity of the queue, there is 
no need to check the stability condition for the system 
under consideration.  It is notable that , nA )0( ≠nBn  

and giving the rate at which the number of the 
customer orders in the system increase by one, stay at 

nC
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the same level, or decrease by one.  is the matrix 
rate at which the customer orders in the system moves 
from zero to one. 

0B

We define the steady-state probability vector 
],...,,[ 10 Nππππ =  for the Markov chain 

. Each }0,0),,{( SkNnkn ≤≤≤≤ nπ  can be calculated 

using 0=Qπ  and ∑ , where  
=

=
N

n
n

0

1π

],...,,[ ),()1,()0,( Snnnn ππππ =  is a row vector. )1(1 +× S

),( knπ  denotes the steady-state probability associated 
with the condition that there are n customers and k 
products in the system.  
Referring to the state transition diagram for the finite 

 queueing system with balking and reneging 
which is shown in Fig. 2, the following balance 
equations are derived: 

1// MM

 
( , ) ( 1, ) ( 1, 1)( ) 0,n n k n k n k n k 0θ λ ν π βπ μπ+ + ++ = + = =  

11,0)( )1,()1,1(),1(),( −≤≤=++=+ −+++ Sknknknknknn νπμπβππνλθ  

Sknknknknn ==+= −+ ,0)1,(),1(),( νπβπλπθ  

0,11

)1()(

),1(1

)1,1(),1(),(

=−≤≤+

++=++

−−

+++

kNn

nn

knn

knknknn

λπθ

μπβππνβλθ
 

11,11

)1()(

)1,(),1(1
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−−−
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SkNn

nn

knknn

knknknn

νπλπθ
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SkNn

nn

kn

knnknknn

=−≤≤+

++=++

−

−−+

,11

)1()(

)1,(

),1(1),1(),(

νπ

λπθβππμβλθ
 

0,)( ),1(1),( ===+ −− kNnn knnkn λπθπνβ  

11,)( )1,(),1(1),( −≤≤=+=++ −−− SkNnn knknnkn νπλπθπνμβ  

SkNnn knknnkn ==+=+ −−− ,)( )1,(),1(1),( νπλπθπμβ  

 
In order to solve 0=Qπ , it is not possible to define a 

constant rate matrix R such that as 
discussed in Neuts (1981), because of the asymmetric 
structure of Qs’ sub-matrixes.  

1
11

−
− == n

nn RR πππ

So, due to the finite number of sub-matrixes in 
generator matrix Q, balance equations are solved 
directly by MATLAB 7.1 (the language of technical 
computing), in order to calculate the steady-state 
probabilities. 

3. System Performance Measures 
In this section we derive a number of performance 
measures of the system under consideration in the 
steady-state.  
 

3.1. Mean Inventory Level 
Let  represent the average inventory of products 
in the steady state. Then we have 

 

)(IE

∑∑
= =

=
N

n

S

k
knkIE

0 1
),()( π
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3.2. Mean Backorder Level 
Let  denote the mean number of backorders in the 

steady-state. Then we have  

)(BE

∑
=

=
N

n
nnBE

1
)0,()( π

 
3.3. Mean Customer Order Fulfillment Delay 
Let  represent the average customer order 
fulfillment delay in the steady-state. In order to 
calculating  we have to obtain the mean 
customer orders in the system  that is achievable 

as follows  

)(WE

)(WE
)(LE

∑∑
= =

=
S

k

N

n
knnLE

0 1
),()( π

Then via Little’s law we have ( ) ( )E W E L λ′=  

( , )
0

(1 )
S

N k
k

λ π λ
=

′ = −∑  

 

3.4. Mean Rate of Customer Loss 
Let E(BA), E(RE) and E(LO) denote the average 
balking rate, the average reneging rate and the average 
rate of customer loss. Using the concept of Ancker and 
Gafarian (1963) these average rates are obtained as 
follows 

∑∑
= =

−=
S

k

N

n
knnBAE

0 1
),()1()( λπθ  

 

∑∑
= =

=
S

k

N

n
knnREE

0 1
),()( βπ  

 
)()()( REEBAELOE +=  

 
4. Optimal DC Location and Storage Capacity 

The expected total cost in the steady-state for the 
considered logistic model is defined to be: 

1

( )( , ) ( )

( ) ( ) ( ) ( ( ))

a

j j ij i sj j
i

b j w l

E LOTC j S F cr cr k c

c E B h E I c E W c E LO

λλ ν
λ=

−
= + + +

+ + + + ×

∑ cj

 
 

where 

j  Index of the distribution center candidate sites 

jS  Maximum storage capacity which can be 
established in candidate site j  

jF  Fixed cost of opening a distribution center in 
candidate site j  

c  Constant coefficient for transforming distance 
to cost 

ijr  Euclidian distance between demand point i  
and j th candidate site 

sjr  Euclidian distance between supplier and j th 
candidate site 

cjc  
The cost of establishing product storage 
capacity per unit product per unit time in 
candidate site j  

bc  The fixed backorder cost per order per unit 
time 

jh  The holding cost per unit product per unit time 
in candidate site j  

wc  The cost of order fulfillment delay per unit 
product per unit time 

lc  The loss cost of one customer (renege or balk) 
per unit time 

 
It is notable that the constant ))((

λ
λ LOE− denotes the 

percentage of satisfied orders for each demand point. 
Replacing the values of mean performance measures, 
we get the following expected total cost function. 

)))1((()(

)
)1(

(),(

),(
0 1

),(
0 1

),(

0 1
),(

1
)0,(

),(
0 1

),(

1

kn

S

k

N

n
knnl

S

k

N

n
kn

w

N

n

S

k
knj

N

n
nbcjjsj

kn

S

k

N

n
knna

i
iijjj

nc
n

ckh

ncckcr
n

crFSjTC

βπλπθ
λ

π
π

πν
λ

βπλπθλ
λ

+−×+++

+++
+−−

+=

∑∑
∑∑

∑∑

∑
∑∑

∑

= =

= =

= =

=

= =

=  

 
According to recursive computation of the π ’s, it is 
quite difficult to show the convexity of the expected 

total cost function. However we present a numerical 
example to prove the computability of the results 
derived in this study. 
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5. Numerical Example 

 For a distribution center with a queueing system, 
we set the system capacity . We assume the 
following parameter values: 

8=N
35=μ products per 

month, 33=ν  unit replenishments per month, 20=c  
dollars per kilometer,  dollars per order per 
month,  dollars per unit product per month and 

35=bc

70=wc

100=lc  dollars per customer per month. The waiting 
time before getting impatient is a random negative 
exponential distributed variable with parameter 

3.0=β . The replenishment supplier is located in 
coordinates (4,1) which is expressed in kilometers. 
Other necessary information about demand points and 
candidate sites for locating the distribution center are 
provided in Table 1 and Table 2. 

 
Tab. 1. Demand points information 

Demand point Demand point coordinates (Kilometers) Demand arrival rate 
 (Order per month) 

1 (1,3) 4 
2 (3,1) 5 
3 (4,4) 3 
4 (6,7) 6 
5 (7,4) 3 
6 (2,8) 6 
7 (5,3) 5 

 
Tab. 2. Candidate sites information 

Candidate 
site 

Candidate site 
coordinates 
(Kilometers) 

Fixed cost of opening a 
distribution center 

(1000 dollars) 
c hc(Dollars per unit 

product per month) 
 (Dollars per unit 
product per month) 

Maximum 
possible storage 

capacity 
1 (3,3) 10 45 8 7 
2 (4,4) 9 36 7 9 
3 (5,4) 9.5 47 10 6 

 
The values of expected total costs are given in Table 3. 
The optimal storage capacity is shown in bold for each 
distribution center candidate site. The numerical values 
shown that expected total cost function is convex in . 

The optimum value which represents the minimum 
possible cost for the distribution center is obtained in 
candidate site 1 with 3 products storage capacity. 

k

 
Tab. 3. Numerical example results 

Expected total cost for each candidate site (Dollars) 
Established storage capacity (k) 

1 2 3 

1 14180 14998 14200 
2 14079 14888 14089 
3 14050 14850 14056 
4 14057 14848 14061 
5 14082 14862 14087 
6 14114 14885 14121 
7 14154 14915 - 
8 - 14947 - 
9 - 14981 - 

 
Using the presented model, we can select the near 
optimal decisions if the optimal one can not be 
performed. More explicitly, if we can not open the DC 
in candidate site 1, we know the next optimal solution, 
which is establishing the DC in candidate site 3 with 3 
products storage capacity. 

 
6. Conclusion 

A distribution center location problem with 
uncertain demand and impatient customers is studied. 
Product replenishment time in DC, demand satisfying 
time and the time between demand arrivals follow an 
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exponential distribution. The service procedure is 
modeled as a finite queueing system with customer loss 
(renege and balk). The matrix geometric method is 
used to model the queueing system. This paper 
generalizes a method to obtain an optimal location for 
a distribution center among some candidate sites and 
its optimal storage capacity, applying an integrated 
total cost function. Using this method, decision maker 
enables to select near optimal solutions simultaneously, 
if the optimal one can not be performed. 
Analyzing the problem discussed in this article 
assuming the queueing system has no finite capacity 
and customers can jockey between more than one 
distribution centers would be a good topic for future 
research. Another interesting extension could be made 
by relaxing the assumptions of exponentially 
distributed replenishment time, service time and the 
time between demand arrivals. 
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