جلد 22، شماره 1 - ( 12-1389 )                   جلد 22 شماره 1 صفحات 42-31 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:
Mendeley  
Zotero  
RefWorks

Yaghini M, Momeni M, Sarmadi M. Finding the Shortest Hamiltonian Path for Iranian Cities Using Hybrid Simulated Annealing and Ant Colony Optimization Algorithms. IJIEPR 2011; 22 (1) :31-42
URL: http://ijiepr.iust.ac.ir/article-1-272-fa.html
Finding the Shortest Hamiltonian Path for Iranian Cities Using Hybrid Simulated Annealing and Ant Colony Optimization Algorithms. نشریه بین المللی مهندسی صنایع و تحقیقات تولید. 1389; 22 (1) :31-42

URL: http://ijiepr.iust.ac.ir/article-1-272-fa.html


چکیده:   (11693 مشاهده)

  The traveling salesman problem is a well-known and important combinatorial optimization problem. The goal of this problem is to find the shortest Hamiltonian path that visits each city in a given list exactly once and then returns to the starting city. In this paper, for the first time, the shortest Hamiltonian path is achieved for 1071 Iranian cities. For solving this large-scale problem, two hybrid efficient and effective metaheuristic algorithms are developed. The simulated annealing and ant colony optimization algorithms are combined with the local search methods. To evaluate the proposed algorithms, the standard problems with different sizes are used. The algorithms parameters are tuned by design of experiments approach and the most appropriate values for the parameters are adjusted. The performance of the proposed algorithms is analyzed by quality of solution and CPU time measures. The results show high efficiency and effectiveness of the proposed algorithms .

     
نوع مطالعه: پژوهشي | موضوع مقاله: و موضوعات مربوط
دریافت: 1390/4/5 | انتشار: 1389/12/24

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.