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Abstract: In this paper a meta-heuristic approach has been presented to solve lot-
size determination problems in a complex multi-stage production planning problems 
with production capacity constraint. This type of problems has multiple products 
with sequential production processes which are manufactured in different periods to 
meet customer’s demand. By determining the decision variables, machinery 
production capacity and customer’s demand, an integer linear program with the 
objective function of minimization of total costs of set-up, inventory and production is 
achieved. In the first step, the original problem is decomposed to several sub-
problems using a heuristic approach based on the limited resource Lagrange 
multiplier. Thus, each sub-problem can be solved using one of the easier methods. In 
the second step, through combining the genetic algorithm with one of the 
neighborhood search techniques, a new approach has been developed for the sub-
problems. In the third step, to obtain a better result, resource leveling is performed 
for the smaller problems using a heuristic algorithm. Using this method, each 
product’s lot-size is determined through several steps. This paper’s propositions 
have been studied and verified through considerable empirical experiments. 

 
Keywords: Production planning, Integer linear programming, Hybrid genetic 
algorithm, Neighborhood search method, Resource  leveling, Lagrange multiplier 

 
1. Introduction1 

During the past century, production scheduling 
problems have evolved significantly. Material 
Requirement Planning (MRP) is an approach used in 
production planning to determine parts and materials 
for final products. Following that, manufacturing 
resource planning  (MRP-II) and enterperacie resource 
planning (ERP) have been developed based on the 
hierarchical production plan. In MRP-II and ERP 
methods, Master Scheduling Planning (MPS) which has 
been obtained through the customer’s predicted demand 
is generalized to the smallest parts of the products using 
bill of material (BOM). Despite the extensive 
application of these methods, all of them are somehow 
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limited. The primary problem of these systems is 
ignoring the resource constraint [1].  
In these systems if there are not enough resources for 
production, a part of the production activity is delayed 
or production plan is completed using surplus resources 
required at the specified time. These delays in the 
production plan may lead to non-practical programs; on 
the other hand, usage of surplus resources by each 
system increases the costs which are in contrast with 
cost reduction objective [2]. 
The proposed lot-size determination approach in this 
paper for multi-stage production planning problems 
with production capacity constraint, the holding, set-up 
and production costs has been considered. In another 
word, the lot-size determination and cost minimization 
objectives are considered simultaneously while the 
resource constraint is regarded. The production 
estimation for each part to meet customer’s demand is 
performed in the production planning horizon. In multi-
stage production planning, planning for each product is 
related to other products plan at the lower level.  
Issue literature review indicates that production 
planning has direct relation with customer demand and 
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production capacity and this relationship has been 
studied extensively, but no more progress has been 
achieved for resources and products with uniform 
distribution during the production scheduling [3, 4, 5,6]. 
Accordingly, most of the production planning problems 
including resource constrained multi-stage production 
planning problem with set-up cost are categorized as 
NP-Hard problems [7].  
Many solutions have been developed to solve this kind 
of problems using branch-and-bound approach [8]. 
Solution methods for this kind of problems are divided 
to optimization and heuristic approaches.  
To solve these problems, the heuristic algorithms show 
more effectiveness than optimization approaches [9]. 
However, increasing usage of computers and needs to 
correct planning, finding new solutions to obtain the 
low cost programs seems very crucial and inevitable. 
Development of the genetic algorithm (GA) is one of 
the efforts to solve this kind of problems during 1960-
1970 [10]. GA has been a successful meta-heuristic 
solution [11].  
GA performs well in general surveys but it is not much 
quick in obtaining the final solution since it does not 
perform well in neighborhood search.  
However, in most cases, this method provides a final 
solution. Thus, to accomplish a GA algorithm a 
neighborhood search algorithm must accompany it and 
a hybrid genetic algorithm is developed. GA, 
Neighborhood Search (NS) hybrid approach has been 
applied as an initial solution by Wang [12].  
Bitran and Yanasse [13] have developed a heuristic 
approach to solve multi-stage single-product production 
planning problem.  
When they added a second product to the problem, it 
was converted to a NP-Hard problem and when they 
considered a non-zero set-up time, determination of a 
feasible solution for the problem was converted to a 
NP-Hard problem [14].  
An extensive issue literature review for lot-sizing has 
been conducted by Bahl, Kuik and Simpson [15,16,17]. 
Researchers have developed a multiple heuristic 
approach according to complexity of multi-stage 
production planning problem [18,19,20,21]. Katok [22] 
has extended a heuristic approach based on Harrison 
and Lewis [23].  
Franca [17] developed a heuristic approach consisting 
four patterns based on the production transfers among 
the periods.  
Their algorithm starts with Wagner-Whitin initial 
solution [24]. This approach typically develops a non-
practical solution.  
Following that, various approaches have been proposed 
to seek a practical, low cost or even a new initial 
solution. We use these approaches as a basis to develop 
a hybrid genetic algorithm.  
Tempelmeir and Derstroff [25] extended an approach 
according to Lagrange multipliers.  
They also used Wagner-Whitin [241] solution as initial 
solution. Then using Langrage multiplier they tried to 
find a practical solution.  

Other researchers also have been using Lagrange 
method to solve production planning problems and it’s 
efficiency in solving problems with limited resources 
have been proved [24,26,27].  
Ozdamar and Barbarosoglu [19] developed another 
approach combining the Lagrange multiplier and 
annealing simulation.  
They have compared their results with the results of the 
Tempelmeir and Derstroff’s approach [25] but 
unfortunately, their method did not show any 
improvements.  
As the issue literature review indicates, all of the 
articles are proposed for the single product production 
planning problem and no significant study has been 
carried out for multi-product planning problem.  
The aim of this paper is to develop a heuristic approach 
according to the evolution trend of the existing 
algorithms to solve the multi-stage, multi-product and 
multi-period production planning problems with limited 
resources and set-up and installation time and cost. We 
have extended a more expertise HGA Algorithm.  
In addition to a general search to find a near optimal 
solution, a local search is also used and demonstrated to 
generate random examples in production planning 
problems. Local search approaches are based on the 
Franca search approaches [28].  
The paper has the following structure. In section 2, the 
mathematical model of problem and its decomposition 
algorithm to define sub-problems accompanying the 
mathematical model for each product is provided. In 
section 3, Franca’s heuristic approach is described. 
Section 5 describes the surplus resource leveling and in 
section 6, the solution algorithm is described.  
Section 7 refers to the experiment design using several 
examples. Finally, in section 8 is devoted to conclusion. 

 
2. Mathematical Model of the Problem 

In this section we describe the model of the multi-stage, 
multi-product and multi-period production planning 
problem (CMLSP) with production capacity constraint. 
In this problem we have n products which compete with 
each other in the limited resource allocation and thus, 
the production batches in each stage and period must be 
determined, so all products demands at various periods 
are satisfied. 
 
decision parameters and variables includes: 
N: Number of products  Ni ,...,2,1=
 

T: Number of periods in production planning horizon 
Tt ...,,2,1=  

 

K: Number of stages required for each product 
Kj ...,,2,1=  

 

ijtX :  Production lot-size of product i in stage j and 
period t 

ijtI : On hand inventory of product i in stage j and 
period t 
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⎩
⎨
⎧

otherwise
tperiodofendtheatjstageinproducedisiproductif

Yijt 0
1

:
 

ijtA : Fixed production set-up cost for product i in stage 
j and period t 
 

itd : Demand for product i in period t 
 

jtb : Available resource in stage j and period t 
 

ija : Amount of required resource for product i in stage 
j and period t 
 

ijtH : Unit holding cost of product i in stage j and 
period t 
 

ijtS : Production set-up time of product i in stage j and 
period t 
 

M : Upper limit of the  decision variable. ijtX
 

ijtC
: Production cost of product i on machine j in 

period t 
 

ijtJ
: Amount of product i stored in stage j at the end of 

period t 
 
Objective Function: 

∑∑∑
= = =

++=
N

i

M

j

T

t
ijtijtijtijtijtijt JHXCYAZMin

1 1 1
]...[     (1) 

 
Constraints: 

Ttni
DIXI ittmitmitmi

,...,2,1,...,2,1
,,,,1,,

==

=−+−                           (2) 

1,...,2,1,...,2,1,...,2,1
,1,,,1,,

−===

++ +−

mtTtni

XXI tjitjitji             (3) 

Ttmj

bYSXa jtijtijtijt

n

i
ijt

,...,2,1,...,2,1
1

==

≤+∑
=

                                (4) 

mjTtni

YMX ijtijt

,...,2,1,...,2,1,...,2,1

.

===

≤             (5) 

mjTtni

IX ijtijt

,...,2,1,...,2,1,...,2,1

0),(

===

≥             (6) 

mjTtni

Yijt

,...,2,1,...,2,1,...,2,1

)1,0(

===

∈               (7) 

 
In this model, equation (1) represents the objective 
function which minimizes the total of set-up, holding 
and variable production costs. Equation (2) ensures the 
demand supply in each period. Equation (3) shows that 

in a network, total of in-flows to each node (i, j, t) is 
equal to out-flows from that node. Equation (4) 
represents the production and set-up times required in 
each stage for each product and equation (5) ensures 
that set-up and installation costs are considered as the 
production process begins. Finally, equations (6,7) 
represent the type of decision variables. 
 
2-1.Primary Decomposition Algorithm 
In problems with several groups of constraints and 
different structures, typically, this question arises that 
which one of these constraints must be considered as 
decomposition factor.  
To respond to this question, the following factors must 
be considered [28]: 

a) Proximity of the resultant solutions from the 
composition algorithm to the optimal solution.  

b) Facility to decompose the main problem to sub-
problems.  

c) Facility to solve each sub-problem and 
compose the problem solutions.  

In this model, it can be seen that only constraint (4) is 
in relation with all products. In the simplex problem of 
this constraint, we are facing a set of Lagrange 
multipliers ( ) which makes the objective function 
to follow the constraints (2, 3, 5) and converts the 
multi-product hybrid problem to n individual single 
product pro

jtλ

blems.  
Thizy [29] has shown that firstly Lagrange 
simplification is more precise than other simplification 
methods.  
Secondly, Lagrange simplification of capacity 
constraint in comparison to other constraints results in 
the most stable lower limit toward the optimal solution.  
Thirdly, applying the decomposition technique based 
on the limited resource Lagrange multiplier, for multi-
stage production models simplifies the main model to n 
individual problems.  
To decompose the main model to n individual single-
product problems first we calculate the average 
required resources in stage j using equation (8): 
 

∑
=

=
N

i
ijj a

N
a

1

1 mj ...,,2,1=  (8) 

 

Then, we determine the bottleneck station using 
equation (9): 

⎭
⎬
⎫

⎩
⎨
⎧

=
m

m
a
b

a
b

a
bMinq ,....,,

2

2

1

1  (9) 

 

If station j is considered as a bottleneck station, the 
capacity allocation to products is performed according 
to station j capacity consumption using equation (10): 

∑
=

= m

i
iji

iji
i

aD

aD
R

1
.

.  
j = bottleneck station (10) 
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jtA

jtX

jtC

jtI

jb

tD

jS

⎭
⎬
⎫

⎩
⎨
⎧

=
otherwise

tperiodinsetupisimachineif
Y

In the equation (10), ∑
=

=
T

t
iti D

T
D is equal to the 

average consumption of product i in periods t = 1, 2, 
…., T based on the economic order quantity (EOQ) 
concept of Wilson [30].  

1

1

11) 

     

The average demand for each product in each period is 
considered to be constant.  
According to the ratio of average capacity consumption 
for each product ( ) in station (j), matrix is 
defined as follows: 

iR ijC

 

⎢
⎢
⎢
⎢

⎣

⎡

=

n

ij

RC

RC
RC

C

1

21

11

                    (

nRC

RC
RC

2

22

12

⎥
⎥
⎥
⎥

⎦

⎤

nm

m

m

RC

RC
RC

2

1

Each row of this matrix represents the allocated 
capacity to each product in various stages.  
 
2-2. Mathematical Model of Each Product  
After decomposing the main problem, the multi-stage, 
multi-period production planning model with 
production capacity constraint 

 is as 
follows: 

),...,,(),....,,( 2121 mimii bbbRCRCRC ′′′=

 
decision parameters and variables 
   = Set-up cost of stage j and period t 
 

     = Production quantity in stage j and period t 

jt 0
1

  
 

     = Variable production cost in stage j and period t   
 

jtH = Inventory holding cost in stage j and period t 
 

       = On hand inventory cost in stage j at the end of 
period t 
       = Available resource in stage j 
 

   = Order quantity of the finished product in stage j     
 

       = Set-up time of stage j 
 
 
 
Objective Function: 

∑∑
= =

++=
m

j

T

t
jtjtjtjtjtjt IHXCYAZMin

1 1
]...[  

(12) 

 
Constraints:  

ttmtmtm DIXI =−+− ,,1, (12)   Tt ....,,2,1=

0,1,,1, =−−+ +− tjtjtjtj XIXI                      (13)

 Tt .....,,2,1=   1....,,2,1 −= mj

jjtjjtjt bYSXa ′≤+∑
1

)(              (14) 

jjtijt bYX ′≤ .                (15) 

0),( ≥jtjt IX                (16) 

⎩
⎨
⎧ ≥

=
otherwise0

0Xif1
Y t,j

ijt              (17) 

In this model, equation (11) represents the objective 
function, which seeks to minimize the sum of set-up, 
holding and variable production costs.  
Equation (12) ensures the supply of demand in each 
period. Equation (13) shows that in a network, total of 
in-flows to each node (j, t) is equal to out-flows from 
that node. Relation (14) represents the set-up and 
production times constraint required in a stage. Relation 
(15) ensures that set-up and installation costs are 
considered if the production process begins. Equations 
(16, 17) represent the type of decision variables. 
 

3. France’s Heuristic Approach (H.) 
In this section we describe Franca’s heuristic approach 
named (H.).  
We get some of the ideas that we have obtained from 
details definition in our hybrid genetic algorithm 
(HGA). The main steps of this algorithm are as follows: 
 
3-1. Initial Solution Obtaining Method (P1) 
This method provides a primitive solution by repeatedly 
applying the Wagner-Whitin algorithm.  
Wagner-Whitin algorithm is used to determine the 
optimal lot-size in multi-stage, single-product 
production planning problems with production capacity 
constraint. In this method first the capacity constraint is 
disregarded and lot-size is determined for finished 
products.  
In this stage determined lot-sizes are equal to the 
previous stage values. The sequence is provided for 
sustainability.  
After reapplying the Wagner-Whitin algorithm for m 
times, an initial solution is obtained.  
This solution may be non-practical because in this 
model, the production capacity constraint is disregarded. 
If the resultant solution is not practical, return to the 
second stage; otherwise go to stage 3. 
 
3-2. Initial Solution Estimation Method (P2) 
This method starts with a non-practical initial solution. 
To find a practical solution, we transfer the production 
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among the periods. This technique consists of forward 
progress and backward regression.  
In each step, an experiment is carried out for non-
practical periods to transfer the production to other 
sections.  
During this transfer, maximum production capacity and 
required production capacity quantities are compared.  
In periods with resource shortage, production is 
transferred to periods with unused capacity.  
Among the possible transfers, the best transfer with the 
aim of cost minimization and practical solution is 
selected.  
These transfers are continued until the practical solution 
is obtained for the investigated period.  
The new non-practical periods are identified and 
analyzed. Both steps are carried out until a practical 
solution or a maximum number of pre-determined 
iterations is obtained. If a practical solution is not 
obtained using this method, the method fails. 

 
3-3. Improvement Method (P3) 
This method gets a practical solution as an input and 
tries to improve it.  
Cost reduction method uses the forward and backward 
amounts of production transfers method.  
This method in addition to leveling the resource usage, 
maintains the practicality of the solutions. This method 
is considered as a local transfer.  
Therefore, it begins with a practical solution and using 
production transfers for adjacent periods, seeks a lower-
cost practical solution.  
Adjacent transfers are a set of solutions which can be 
obtained through a production transfer. Transfer steps 
are recurred frequently until no more improvement is 
possible after a forward or backward step or maximum 
number of pre-determined iterations. 
Finally, this method ends with a better solution or in the 
worst state, a solution with equal cost.  
 
3-4. Incorporation Method (P4) 
The solution resulted from the improvement method is 
a start point for incorporation method.  
In the case that no improvement is obtained by the 
previous method, the solution resulted from the 
estimation method is used as start point.  
In this method, over-load for each product at each 
period is selected and replaced with free time of 
machinery in other periods. This transfer ends after N 
steps. There are two different objectives for this kind of 
transfer. If the initial solution is non-practical, an effort 
is required to obtain a practical solution or reduce the 
resource usage in those periods.  
If the initial solution is practical, incorporation method 
is suitable to obtain a low-cost solution. 

 
4. Hybrid Genetic Algorithm (HGA) 

Hybrid Genetic Algorithm is an extended genetic 
algorithm. This algorithm is based on the population of 
individuals like the rest of the genetic algorithms.  

However, this algorithm is less constrained than other 
methods because there is no production planning 
structure in this method. In other words, this algorithm 
is designed for general production planning problems 
and is only based on the product components.  
Unlike the traditional methods, HGA originally 
investigates all of the related variables [31, 32]. New 
solutions are obtained at each step of this algorithm 
through various combinations of these populations [33].  
These populations also can be used to classify the 
genetic algorithm search. Now we describe the HGA 
steps: 
 
4-1. Initial Solution Representation 
Each solution is obtained by a (T 2m) matrix (m: 
number of elements; T: number of periods).  

×

This solution consists of lot-size and inventory for each 
element in each period.  
This solution may be practical or non-practical. Each 
solution is illustrated as follows: 
 

⎢
⎢
⎢
⎢

⎣

⎡

1

21

11

mX

X
X

     

2

22

12

mX

X
X

3

23

13

mX

X
X

mT

T

T

X

X
X

2

1

1

21

11

mI

I
I

         

2

22

12

mI

I
I

3

23

13

mI

I
I

⎥
⎥
⎥
⎥

⎦

⎤

mT

T

T

I

I
I

2

1

(18) 
  
4-2. Fitness Function 
Each solution has a value. This value is related to actual 
performance of the solution. Accordingly, practical and 
non-practical solutions can be obtained for each 
population group. A method to control impossible 
solutions is to use the cost and feasibility factors 
simultaneously. This method is shown in relation (19): 
 

0
0

Z objective functionvalue for a practical solution
fitness

Z objetive functionvalue for a non practical solution
>

=
= −

⎧
⎨
⎩

 (19) 

 
In this solution, value of the objective function is equal 
to the total cost value, if solution is practical; otherwise, 
value of the objective function is equal to zero.  
Thus, fitness function has two modes, one mode 
represents the cost value for practical solution and the 
other indicates the practicality of the solution. 

 
4-3. Population Size and Structure 
Population reported in this paper consists of m groups. 
The relationship between these groups is based on the 
sequential production systems and has m levels. Each 
group of this population consists of two sub-classes. 
These two sub-classes represents production value 
vector ( ) and inventory value vector ( ).  jtX jtI
Each of these groups stays in successive levels of the 
production hierarchy. Group m is the main root of the 
product tree and this forward group has a follower 
group named m-1. Also, m-1 follower group is a 
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forward group for group (m-2). Therefore, group m-2 is 
a follower group for m-1 group. 

 
 

 
Fig 1. Production steps diagram for each product 

 
Product tree is expanded accordingly to the end. 
According to the hierarchical structure of the product, 
solution vector of each follower group is connected to 
the following group solution vector.  
This method transfers the follower group solutions to 
the forward groups and ensures the best solutions for 
the upper level elements of the product. 
 
4-4. Initial Population 
Each solution of the initial population is obtained using 
Wagner-Whitin algorithms like P1 in H. heuristic 
algorithm. Since this solution is non-practical, we apply 
P2 algorithm after P1.  
Our objective is to produce different solutions for fixed 
set-up costs. These changes are randomly selected for a 
value between 100 fold of the set-up cost and 0.01 of 
the set-up cost.  
These changes in some cases lead to high set-up costs 
and in other cases lead to low set-up costs. On the other 
hand, to generate more solutions, we use randomly 
uniform distribution for lot-size and inventory in 
allowable intervals.  
These methods are studied as hybrid methods in 
subsections 4-6 and 4-7. Using these methods we obtain 
more solutions and also gain access to production 
process leveling. 
 
4-5. Combination 
In this step, each follower group is combined with a 
forward group and each combination generates a new 
solution. This group of new solution is added to the 
existing population.  
For example, according to Figure 1; group 1 is 
concluded from the combination of the follower group 
1 and forward group 2 and the new solution of group 2 
is achieved from the combination of the follower group 
2 and forward group 3.  
This process continues until the final stage in the 
follower group m and amount of the demand. Since 
there is only one follower group for sequential 
hierarchy structure of this sub-set, a crossover action is 
generated. Because of this combination, m new groups 
are obtained.  
In this investigation to obtain a combination, an 
algorithm is designed and experimented. New hybrid 
groups are added to the initial population. However, we 
notice that these hybrid groups are extremely related to 
product structure.  
Therefore, we consider them as a proposed solution. In 
this algorithm, we start with the final elements that lie 
at the lowest level of the final product and then we deal 
with the highest level products.  

This indicates the practicality of the solution with 
respect to constraints. 
 
4-6. Memetic Algorithm m1 2 3 m m
The amount of the production and inventory for each 
offspring is calculated as follows: 
 

[ ]⎪⎩

⎪
⎨
⎧

>−==

≤−==

0,,

0,0
1

jtjt
offspring
jt

offspring
jt

parent
jtjt

offspring
jt

jtjt
offspring
jt

offspring
jt

aifaXIXauX

aifaIX  (19) 

where 
 

offspring
tj

offspring
jtjtjt IXda 1, −−−=  (20) 

 
Equation (20) refers to the element j production 
capacity in period t. Production of this element in 
period t is not necessary if .  0>jta
For this problem to be practical, the minimal amount of 
the product j in period t must be equal to a . (a,b) 
distribution function shows the uniform random 
production values in (a,b). This function is used for a 
variety of solutions in the society.  

jt

Stochastic production comparison is carried out using 
minimum required production values ( ) and 
forward group production value in the hierarchical 
structure ( ).  

jta

1parent
jtX

Then using new lot-size ( ) and equation 

(19), inventory (I) is determined. We continue this 
action according to method P1 until the inventory and 
production values are determined for all elements.  

offspring
jtX

Then we start a leveling trend.  
The objective of this trend is to change and update the 
inventory of all elements in periods (0-T) [34].  

 
4-7. Wagner-Within Combination 
This combination uses the Wagner-Within (WW) 
algorithm. We change set-up costs randomly for some 
elements and some periods according to relations (21) 
and (22): 

10000 21 ×== jt
parent
jt

parent
jt SifXandX  (21) 

100/00 21
jt

parent
jt

parent
jt SifXandX >>  (22) 

We use Wagner-Within algorithm for each production 
stage. These set-up costs changes affect the production 
cost of the next level parts estimation for other periods. 
These effects refer to the production state of the upper 
level parts in previous periods.  
The solution generated here is a practical solution 
according to (12) and (13). But it may not be a practical 
solution with respect to the resource capacity constraint 
(14).  
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In this case we use Frank et al. leveling trend. As 
described earlier, this leveling trend is used to find a 
practical solution.  
In case the obtained solution is practical, we use the 
improvement trend. To select the elements in Wagner-
Whitin combination,  uniform distribution is 
used [24]. 

),1( mu

 
4-8. Mutation 
Hybrid genetic algorithm sometime uses the stochastic 
approaches to change the solutions regardless of the 
amount of fitness.  
We evaluate the fitness and consistency of the solutions 
before mutation using P4 method.  
After combination, we apply mutation operations in 
each period with  probability.  )1,0(u
In this operation, m random numbers are generated 
between 0 and 1 which is smaller than 0.1 for each 
group. Mutation is applied according to equations (23), 
(24) and (25): 
 

⎪
⎩

⎪
⎨

⎧

>−−=′

≤−+=′

jjtjtjtjtjt

jjtjtjjtjt

bXifaXXX

bXifXbXX

)(1.0

)(1.0
 

jtjtjt aXI −=′               (25) 

 
Equations (23) and (24) are used according to limited 
resource and production constraints.  
These new groups are also added to the initial 
population. 

 
4-9. Restart (Selection) 
In this algorithm, we use restart strategy, because the 
existing population shows a few of the evaluated 
solutions.  
We implement all of the existing population solutions 
and in each group a solution with minimum objective 
function value is selected.  
Since the obtained solution is the best solution until 
now, they are similar to the initial population solutions 
except that they may have better objective function 
values.  
To increase the number of solutions, some steps of the 
H. method must be repeated. The generated values by 
restart method are used when we use the return 
approach.  
In these experiments, restart is used 20 times.  
Stop criteria in HGA could be equal to the maximum 
number of the generated solutions or implementation 
time constraint.  
If this algorithm does not obtain a practical solution, we 
will not be able to say with certainty that this is a non-
practical problem.  
Even, one solution does not ensure the practicality of 
this problem. HGA implementation steps are illustrated 
in Figure 2. 

4-10. Computational Results  
Hybrid genetic algorithm is written with Visual Basic 
programming language.  
300 problems with various dimensions have been 
considered for the program testing.  
Domains, which have been used to generate the 
examples, are provided in Table 1.  
 

 
 

Fig 2. HGA flowchart 

(23) 
 

(24)  

 
These domains are used by Rigna [34]. In these 
problems, the sequential production structure has been 
used. Sequential structure means that each element has 
exactly one previous and one next sample.  
Number of steps in each problem and comparison 
results are provided in Table (4).  
In each row of Table (4) 60 test problems are generated 
using distribution functions in Table (3) and objective 
function values for three methods of HGA, MA and H. 
have been compared.  
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6. Original Problem Solution Algorithm Table 3. Uniform distribution of the stochastic 

examples Step 1: Decompose the original problem to n individual 
problems using Lagrange multiplier in limited resource.  Interval Parameter 

u(1.5,2) Step 2: Solve each sub-problem using hybrid genetic 
algorithm. jtC 

u(5,90) tsetupLowForA jt cos

tsetuphighForA jt cos

jtH
itemsfindFord jt

itemsfindnoFord jt

 

u(50,950)  

u(0.2,0.4)  

u(0,180)  

u(0,18)  

Step 3: Calculate the remaining capacity of each sub-
problem with respect to the allocated capacity. 
Step 4: Implement the resource leveling operation for 
all total remaining capacities (TRC). 
Step 5: Return to step 2 and continue until the stop 
criteria is reached.  

 
7. Design of Experiment 

 To evaluate the proposed algorithm’s performance, 300 
stochastic problems with various dimensions have been 
designed. Their characteristics are as follows: 

Table 4. Comparative results of HGA method versus 
MA and H.  

1. Problem dimensions: (N.M.T) = (3 × 3 × 5) up 
(N.M.T) = (5 × 8 × 15). List of the problems are 
provided in Table (3). 

HGA MA H. Number 
of steps 

7.4 8.7 9.3 10 
9.8 10.9 11.5 20 

11.1 12.2 12.8 30 
14.4 15.2 16.1 40 
21.3 22.8 25.2 50 

2. Set-up time and cost for each product in each 
period are determined in random and from (0,10) 
uniform distribution.  
3. Inventory holding and production variable costs for 
each product in each period are also determined from 
(0,10) uniform distribution.   

From the above table, it can be seen that HGA method 
has lower cost in comparison with H. and MA.  

Order quantity of each product in each period is 
selected randomly from (0,10) uniform distribution.  

 4. Machinery production capacity in each step is 
randomly determined from (15,30) uniform 
distribution.  

5. Resource Leveling 
To implement resource leveling, the surplus capacity is 
calculated for each sub-problem using equation (26): To solve the problems above, two programs have been 

written in Visual Basic environment. The first program 
is written combining the genetic algorithm and 
Lagrange multiplier (HGA-LR) and the second one is 
written with Memetic Algorithm (MA).  

).(

1
∑
=

−′=
m

j
ijiii aDbRC  (26) 

 The total cost and time for each method are provided in 
Table (5). Comparison results demonstrate that HGA-
LR costs solves the problem in much less time, in 
addition to better solutions and lower costs. This 
algorithm also solves large size problems in less than 
10 hours with near optimal solutions while it takes 10 
hours (maximum time) to solve these problems by MA 
and Lingo algorithms. The improvement obtained by 
this algorithm is 25.8 percent in time reduction and 19.3 
percent in cost reduction. 

The total remaining capacity is calculated using 

equation .  )(

1
∑
=

=
m

j
iRCRCT

This remaining capacity is distributed among sub-
problems according to the used resource capacity. In 
this method, less capacity is allocated to sub-problems 
with more remaining capacity and vice versa.  
Resource leveling is implemented according to 
equation (27) to achieve better feasible solutions:  

∑
=

′

=
n

i
iji

iji
i

ab

aD
RCTBA

0
.

.
.  

(27) 
8. Conclusion 

In this approach a meta-heuristic approach has been 
developed to decompose large and complex problems 
to small sub-problems based on Lagrange multipliers 
and combining them with hybrid genetic algorithm to 
determine the dynamic lot-size in multi-stage, multi-
product and multi-period production planning problems 
with limited resources and minimizing the total of set-
up, production and inventory holding costs. This 
heuristic approach starts with decomposing the main 
problem to n sub-problems. After solving each sub-
problem using hybrid genetic algorithm (Genetic 
Algorithm + local search), remaining capacities are 
calculated and resource leveling is carried out.  

 
Each sub-problem with the new justified capacity is 
resolved using hybrid genetic algorithm.  
Therefore, according to the resource capacity increase 
in problems that need more capacity and resource 
capacity reduction in problems that require less 
capacity (resource leveling), the total cost decreases. 
This operation continues until the total cost difference 
between two successive steps ( ) is less than ε . 

 is determined according to the required accuracy.  
TCΔ

ε
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Table 5. Comparison among HGA-LR, MA And lingo methods results 

HGA-LR Lingo MA 

Total cost ($) Solution   
time (minute) Total cost ($) Solution time 

(minute) Total cost ($) Solution time 
(minute) 

Number  
of Problems Solved 

Problem 
Size 

(N.M.T) 

45 5  0.45 49  0.32  0.22  
8 

10 

3×3×5 
3×3×10 
3×3×15  

 
These steps are continued until we reach the stop 
criteria. Computational results indicate that 
composition and decomposition approach based on the 
limited resource Lagrange multipliers and hybrid 
genetic algorithm is a suitable solution for lot-size 
determination in similar problems. Also, combination 
of the composition and decomposition approaches 
based on the limited resource Lagrange multipliers and 
meta-heuristic approaches provides better results and 
more suitable solutions in resource allocation and 
resource leveling operations.  
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