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Abstract: This paper presents an exact model and a genetic algorithm for the       
multi-mode resource constrained project scheduling problem with generalized 
precedence relations in which the duration of an activity is determined by the mode 
selection and the duration reduction (crashing) applied within the selected mode. All 
resources considered are renewable. The objective is to determine a mode, the amount 
of continuous crashing, and a start time for each activity so that all constraints are 
obeyed and the project duration is minimized. Project scheduling of this type occurs in 
many fields; for instance, predicting the resources and duration of activities in 
software development projects. A key feature of the model is that none of the typical 
models can cope with the continuous resource constraints. Computational results with 
a set of 100 generated instances have been reported and the efficiency of the proposed 
model has been analyzed.    
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1. Introduction1 

For many real-life applications of project scheduling, it 
is possible to perform the individual activities in 
alternative ways (modes). These modes are different in 
processing time, time lags to other activities, and 
resource requirements. They reflect time/cost, 
time/resource and resource/resource trade-offs [10]. 
Such real-life projects can be modeled as instances of 
the Multi-Mode Resource-Constrained Project 
Scheduling Problem or briefly MRCPSP which is 
denoted by . MRCPSP in the 
situations involving minimum and maximum time lags 
or 

max|| CprecMPS

Generalized Precedence Relations called MRCPSP-
GPR [7: Page 512] and denoted by 

 [16: Page 160, 9: Ch 6 Page 103]. 
MRCPSP is a generalized version of the standard well-
known 

max|| CtempMPS

Resource-Constrained Project Scheduling 
Problem or briefly RCPSP ( ) which 
is in GPR denoted by RCPSP-GPR or 

 [16, Page 22]. 

max|| CprecPS

                                                          

max|| CtempPS
There is a general case of MRCPSP-GPR in which the 
duration/cost of an activity is treated as a function of 
both the resource requirements (mode selection) and 
the amount of crashing (duration reduction), applied 
within the selected mode. This complex case has been 
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introduced by Ahn and Erenguc [1] and called 
Resource-Constrained Project Scheduling Problem 
with Multiple Crash able Mode or briefly 
RCPSPMCM. They provide this example: Activity i  
can be done by "worker A using machine X (mode 1)" 
or by "worker B using machine Y (mode 2)". 
Assuming 8 hours of work per day, worker A, using 
machine X can finish activity in 10 working days at a 
price of $400 and worker B using machine Y can 
complete the activity in 8 working days at the price of 
$500. Furthermore, workers A and B can shorten the 
activity duration by working additional hours each day. 
For example, worker A can finish the activity in 8 days 
by working 10 hours a day. Duration reduction, i.e. 
crashing, can be done in various ways: using overtime 
or additional shift(s), or allocating more resources that 
might be acquired easily by incurring additional 
expenditures. 

i

Their objective function involves the minimization of 
the total project cost which is the sum of the activity 
execution cost and the tardiness cost. In the absence of 
resource constraints, the problem reduces to the 
Time/Cost Trade-off Problem or briefly TCTP. In the 
absence of crashing within a mode, the problem 
reduces to the MRCPSP.      
The complexity of the problem is increased when the 
crashing applied within a selected mode is continuous 
and minimum and maximum time lags (time windows) 
between a pair of activities are considered. In such a 
case denoted by RCPSPMCM-GPR, due to the 
continuous crashing, no exact solution method has 
been reported [1: Page 255].  
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The problem is strongly NP-hard. Moreover, the 
problem RCPSP-GPR is also NP-hard, and even the 
question whether a problem instance has a feasible 
solution is NP-complete in strong sense [3]. As a 
generalization of the problem RCPSP-GPR, the 
problem MRCPSP-GPR and its corresponding 
feasibility problem belong to the same complexity 
class. [9: Page 8, 16: Page 165].      
The remainder of this paper is organized as follows: In 
Section 2, we discuss the relevant literature review. 
Section 3 gives a conceptual formulation based on the 
previous works. A brief reason why this specific 
formulation is tackled by the authors is discussed in 
Section 4. New mathematical formulation for RCPSP-
GPR, MRCPSP-GPR, MRCPSP-GPR with Mode-
Dependent time lags and RCPSPMCM-GPR as the 
contributions of this paper are presented in Subsections 
5.1, 5.2, 5.3 and 5.4 respectively. Genetic algorithm 
implementation as another contribution is discussed in 
Section 6. Computational results are reported in 
Section 7. Section 8 is reserved for our conclusions. 
 

2. Relevant Literature Review 
 MRCPSP without maximum time lag has been treated 
by several authors since the early eighties [16, P. 160]. 
RCPSPMCM without GPR in which resource/resource, 
time/resource and time/cost trade-off are considered, 
has been introduced by Ahn and Erenguc [1]. They 
have presented a heuristic procedure for RCPSPMCM 
but no exact solution method has been reported. A 
linear approximation of duration function has been 
carried out by Deckro and Hebert [6] called modeling 
diminishing returns but they have not considered 
resource constraints in their model.  
     Exact algorithms for the case of MRCPSP have 
been reviewed and their performance has been tested 
by Hartmann and Drexl [12].  
The most efficient method for solving MRCPSP known 
thus far is the branch-and-bound algorithm of Sprecher 
and Drexl [19]. The best heuristic procedure for 
MRCPSP at present is a genetic algorithm published by 
Hartmann [16: Page 160].  
Since we are going to present a mathematical 
formulation for RCPSPMCM, the focus of remaining 
literature review will be on the exact procedures 
especially mathematical formulations.  
In order to be able to specify the resource constraints in 
the correct and solvable form, linear programming 
based approaches for RCPSP (not MRCPSP) have been 
presented by several authors [7].  
In formulation by Pritsker et al. [17], the binary 
decision variable  is defined to be 1 if activity  

finishes at time instant , and to be 0  otherwise.  
itx i

t
For the MRCPSP without GPR ( ), 

the best programming model based on an 
extension of the formulation by Pritsker et al., has been 
presented by Talbot [20]. The model of Talbot have 
been developed by Reyck and Herroelen [8] for the 

case of GPR ( ). 

max|| CprecMPS
10 −

max|| CtempMPS
Since lower bound calculations play the most 
important role in branch-and-bound procedures, it has 
been addressed by recent papers [2].  
The best known lower bound for RCPSP and MRCPSP 
is currently based on the resolution of several large 
linear programs [4, 13]. Computational experience by 
Mothering et al. [16: Page 75] has shown that already 
for medium-sized projects of RCPSP with 100 
activities, the resulting linear program cannot be solved 
in an acceptable amount of computational time. Broker 
and Knits [4] strengthen one of this relaxation by 
taking into account time windows for the activities and 
use column generation to deal with the large number of 
variables.   
 
3. Conceptual Formulation for RCPSPMCM-

GPR 
Let: 

iimv               binary decision variable; 1 if activity  is 
performed in mode mi, 0 otherwise. 

i

ii fs /           starting/finishing time of activity i  
 

id           duration of activity   i
 

maxmin / ijij ssss   minimal/maximal time lag between  
 

start to                            start times of activities and   i j
 

maxmin / ijij sfsf   minimal/maximal time lag between start 

to .                              finish times of activities i and   j
 

maxmin / ijij fsfs  minimal/maximal time lag between finish 

to .                                 start times of activities i and   j
 

maxmin / ijij ffff   minimal/maximal time lag between finish 

to .                               finish times of activities i and   j
 

min
, ji jmimss     elements of transformed matrix of 

minimal  .                               time lags, if activities i  
and  are                                                  performed in  j
 

modes  and  respectively im jm

kR            availability or the maximum number of 
the Kth                             resource type 
 

kimi
r                resource requirement of type  for 

activity i in mode  

k

im
 

K           number of resource types required for 
the .                                      project 
T           upper bound on the shortest project 
duration  .                    where 1+≥ nesT  (earliest start) 

D                  project due date 
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P                  per period penalty cost incurred if the 
project is delayed beyond D   

iimc                marginal crashing cost of activity  

using mode  

i

im
 

ii imim dd /   rashed (minimum) / normal (maximum) 

duration of activity i  in mode  im
 

ii imim cc /    crashed (maximum) / normal (minimum) 

cost of activity  in mode  i im
Assuming an AoN network N(v) in standardized form 
with minimal start to start precedence relations using 
the transformation rules [3], the problem can be 
modeled conceptually as a mathematical programming 
model in the following way [1, 16] : 

},0max{)}({ 1
1

DSPvddccMin n

n

i
im

M

m
iimimim i

i

i

iii
−+×−×+ +

=
∑∑     (1) 

Subject to: 

∑
=

=
i

i

i

M

m
imv

1

1 ni ,...,1=                               (2) 

∑∑
= =

≥−
i

i

j

j

jiji

M

m

M

m
jmimjmimij vvssss

1 1

min .     ,ji ≺      (3) 
min,

ss
Eji ∈〉〈

ii

i

i

i

i

i

ii

i

i

imim

M

m
im

M

m
iimim

M

m

vdvdvd ∑∑∑
===

≤≤
111

                    

(4) 

ni ,...,1=

( , , ) 1

i

i i
i

M

im k im k
i A s t v m

r v R
∈ =

≤∑ ∑     ,Kk ,...,1= Tt ≤≤0                   (5) 

0≥is                                                                            (6) 
 

00 =s                                                                            (7)  

),...,1,(}1,0{ iiim MmViv
i

=∈∈             (8) 

 
Eq. (1) minimizes the project cost including crashing 
cost within each mode and penalty cost incurred if the 
project is delayed beyond tardiness of the project, 
computed as },0max{ 1 Dsn −+ .  and  are the 
starting times of the non-real first and end activities 
respectively and ,  and are decision variables 
to be determined. Eq. (2) ensures that only one of the 
modes is selected. Eq. (3) denotes the GPRs in 
standardized form.  

0s 1+ns

is id
iimv

The duration variable of the activity, is bounded 
between 

iimd  and 
iimd  by Eq. (4) if activity i  is 

performed in . Eq. (5) which is a conceptual 
statement of the resource constraints expresses that at 

no time instant of t , during the project horizon 
between  and 

im

0 T  the resource availability may be 
violated.  Moreover, we define:  

)0(},{:),,( ≥+<≤ t                (9) ∈=Α tdssVivts iii

which is the set of real activities in progress at time , 
depending on starting time and assignment .  

t
s v

 
4. Difficulties of Modeling Resource 

Constraints 
The mathematical program above cannot be solved 
directly because it is necessary to translate the set 

, that is used in Eq. (5) into the solvable 
constraints. Hence 0-1 programming formulations have 
to be used in order to be able to specify the resource 
constraints in the correct and solvable form [7: P 208].  

),,( vtsA

In formulation by Talbot [20] which is for the case of  
MRCPSP, the binary decision variable  is defined 

to be 1 if activity  is performed in mode  and 

started at time t , and to be 0  otherwise. Thus the Eq. 
(5) can be stated as follows:   

timi
v

i im

∑ ∑∑
=

−

−==

==≤
n

i
k

lst

esdts
sim

M

m
imk TtKkRvr

i

iim

i

i

i1

},1min{

},max{1

,...,2,1;,...,2,1    (10) 

 

The variable  can only be defined over the interval 

between the earliest ( ) and latest ( ) starting time 
of the activity in question. The difficulty increases 
when dealing with different and smaller duration units 
(e.g., hour, minute, second) is necessary. 
Consequently, the number of decision variables will be 
increased exponentially.  

imtv

ies ils

 
5. New Mathematical Formulation 

The formulation which is presented here has been 
inspired by one of the rectangle packing problems 
models [5].  

 
5.1. Mathematical Formulation for RCPSP-GPR  
5.1.1. Main Idea 
In RCPSP-GPR we have a single mode so  must be 
omitted from the notations defined above. For 
visualizing the problem in three dimensions, imagine 
the number of resource types required for the project 
are two (K=2).  

im

It can, however, be beyond the confines of two, i.e. any 
integer value (K=1, 2, 3, ...). Moreover, it must be 
noted that the geometrical model is applicable in the 
situation involving the uniformly distributed resource 
needs over processing times which is not the case 
about nonrenewable resources. Thus renewable 
resources which usually have this property are 
considered.  
In such a case, there is a certain correspondence 
between boxes to be packed, and activities to be 
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scheduled. Each box would correspond to an activity, 
with a duration equal to the length and a resource 
request of type k (k=1, 2) equal to width and height 
respectively.  
An empty box  of width  equal to time 

horizonT , length  equal to , the resource 
capacity 

0B 0W

0L 1R

available of type 1 and height   equal to , the 
resource capacity available of type 2 is given. There is 
a series of boxes  (or Activities ) ( ), 

of width , length  and height  
 to be packed in which  has been omitted 

from both  and for the case of single mode.  

0H 2R

iB iA ni ,...,1=

ii dw = 1ii rl =

2ii rh = im

iimd kimi
r

Furthermore, the constraint that activity preemption is 
not allowed corresponds to the natural requirement that 
boxes must be packed as a whole.  
The bottom left behind corner of the big empty box  
is supposed to be at point )  so the top right front 
corner is . Let:  

0B
0,0,0(

),,( 21 RRT
 

),,( iii zyx :            The bottom left behind 
coordinates of activity i , 
 

),,( 21 iiiiii rzrydx +++ : The top right front 
coordinates of activity i .   
 
5.1.2. GPRs Constraints 
The x-coordinate of the bottom left behind corner of 
activity i  is given by the activity starting time:  

nnsx ii ,...,2,1==                                         (11) 

and is the most important decision variable to be 
determined. Thus, GPRs can be formulated as follows:  
 

ssijijiji Ejissxxssx ∈〉〈+≤≤+ ,maxmin ,                    (12) 

sfijijjiji Ejisfxdxsfx ∈〉〈+≤+≤+ ,maxmin ,              (13) 

fsijiijijii Ejifsdxxfsdx ∈〉〈++≤≤++ ,maxmin ,        (14) 

ffijiijjijii Ejiffdxdxffdx ∈〉〈++≤+≤++ ,maxmin ,  (15) 

in which  and are the 

finishing time of activity i  and  respectively.  
iii dxf += jjj dxf +=

j
 
5.1.3. Constraint of Makespan 
The finishing time of end activities should 
not be exceeded from T, i.e.,   

iii dxf +=

0≥−− ii dxT .                       (16) activitiesendi∈

5.1.4. The Objective Function 
The minimization of makespan for RCPSP-GPR  
which is linear and the most popular objective in the 
project scheduling problems can be used as follows: 
 

Minimize   T.                                                          (17) 

 
5.1.5. No Overlapping Constraints 
The constraints for packing boxes are as follows [5]: 
1. Since the activity boxes may not be rotated, each 
edge of an activity box should be parallel to a specific 
edge of  the main box . 0B
2. There should be no overlapping for any two small 
boxes, i.e., the overlapping area is zero.  
In the situations involving single type renewable 
resources in project (K=1), the problem can be 
formulated as the same as rectangle packing problem. 
The difficulties start when the number of resource 
types are two or more . In this case which is 
one of the contributions of this paper, the problem must 
be formulated totally different from packing problem. 
In packing problem, boxes must be packed to a 
container in which no overlapping between a pair of 
boxes coordinates is permitted, i.e., one of y-z, x-z or 
x-y overlapping is allowed at a time. 

)2( ≥K

The no overlapping constraints for project scheduling 
must be changed as: There should be no overlapping 
for any two boxes between x- and y-coordinates as 
well as x- and z-coordinates, i.e., it is not important to 
have overlapping between y- and z-coordinates.  
For RCPSP-GPR with single type renewable resource 
in which no precedence relation of type 

between two activities i  and exists, one of 
the following constraints must be held: 

0min ≥ijfs j

1 1

( ) (

( ) (
j i i i j j

j i i i j j

x x d x x d

y y r y y r

≥ + ∨ ≥ + ∨

≥ + ∨ ≥ +

)

)
                                (18) 

Let: 
xijt :  0-1 integer variable; 0 if activity  to be 

located at the left hand side of activity j 
(activity  precedes activity ) without any 
overlapping between them, 1 otherwise.  

i

i j

xjit : 0-1 integer variable; 0 if activity  to be 

located at the left hand side of activity i  
(activity  precedes activity ) without any 
overlapping between them, 1 otherwise.  

j

j i

 

We use the same definitions for notations  and  

toward y-coordinate,  and  toward z-coordinate. 
yijt yjit

zijt zjit
Using the binary decision variables above, these 
constraints can be stated as follows: 
 
 

0* ≥+−− xijiij tMdxx ,ji < ,1,....,1 −= ni  

nj ,....,2=                                                                 (19) 
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0* ≥+−− xjijji tMdxx ,ji < ,1,....,1 −= ni  

nj ,....,2=                                                                 (20) 

0*1 ≥+−− yijiij tMryy ,ji < ,1,....,1 −= ni  

nj ,....,2=                                                                 (21) 

0*1 ≥+−− yjijji tMryy ,ji < ,1,....,1 −= ni  

nj ,....,2=                                                                 (22) 
3=+++ yjiyijxjixij tttt  , ,ji < ,1,....,1 −= ni  

nj ,....,2=                                                                 (23) 

where M is a big constant. Equations above ensure that 
there should be no overlapping for any two boxes, 
between x- and y-coordinates. No overlapping 
constraints for x- and z-coordinates which are 
applicable in double types of renewable resources, are 
defined as follows: 
 

0*2 ≥+−− zijiij tMrzz ,ji < ,1,....,1 −= ni  

nj ,....,2=                                                                 (24) 

0*2 ≥+−− zjijji tMrzz ,ji < ,1,....,1 −= ni  

nj ,....,2=                                                                 (25) 

3=+++ zjizijxjixij tttt , ,ji <   ,1,....,1 −= ni

nj ,....,2=                                                                 (26) 
 

The same equations as (24), (25) and (26) can be 
developed in situations involving 2>K . 
 
5.1.6. Resource Constraints  
The y- and z-coordinates of activities should not 
exceed from  and  respectively.  This can be 
stated in the form of constraints as follows: 

1R 2R

 

011 ≥−− ii ryR                                         (27) ni ,....,1=
 

022 ≥−− ii rzR                                         
(28) 

ni ,....,1=

 
5.2. Mathematical Formulation for MRCPSP-GPR  
In the case of MRCPSP-GPR individual activities can 
be executed in alternative ways (modes). Activity 

 when performed in mode 

 has a duration  and requires 

, a constant amount of resource k over duration. 
To describe the mathematical formulation, Let: 

i ),...,1( ni =

im ),...,1( ii Mm =
iimd

kimi
r

 

∑
=

=
i

i
ii

M

m
miimi vdd

1

.                                       (29) ni ,...,1=

∑
=

=
i

i
ii

M

m
mikimik vrr

1

.                     (30) ni ,...,1= Kk ,...,1=

 
MRCPSP-GPR can be formulated by replacing Eq. 
(29), (30) and (2) into the RCPSP-GPR model.  

5.4. Mathematical Formulation for RCPSPMCM-
GPR  
The RCPSPMCM-GPR involves MRCPSP-GPR plus 
the continuous crashing in each mode.  
Let: 

mK             number of resources types required for each  
                  mode different from other modes 
 

),...,( 1 miii Kimimim rrd  duration of activity  in mode  
as a function of resources 
requirements  

i im

 

kimi
r / kimi

r   lower/upper bound on resource 

requirement of type  for activity i  
in mode  

k
im

 

kimi
rΔ          resource increment of type above the 

lower bound in mode  for 
Activity  

k

im
i

 

kc                  procurement cost per unit of resource of 

type   k
 

iβ                 regression coefficient  
 
All other notations remain as previously defined.   
As illustrated in Fig. 1, an approximation of an activity 
duration in each mode is made by the function defined 
over the range of possible values of the upper and 
lower bounds on the resources requirements of any 
type in that mode as follows: 
 

),...,( 1 miiii Kimimimim rrdd = kimkimkim iii
rrr ≤≤ , 0>kimi

r (33) 
 

So 
iimd and 

iimd are constants and can be calculated 
by Eqs. (32) and (33) respectively. 

),...,( 1 miiii Kimimimim rrdd =                                         (34) 

),...,( 1 miiii Kimimimim rrdd =                                          (35)  

The duration reduction (crashing) for each activity 
between 

iimd  and 
iimd  is allowed by increasing the 

amount of resources committed to it.  
may be a constant, a linear expression, or a non-linear 
function such as hyperbolic function and can be 
different from activity to activity.  

),...,( 1 miii Kimimim rrd

Eq. (33) can be replaced by Eq. (36) as follows: 
),...,( 11 miiiiii KimKimimimimim rrrrdd Δ+Δ+= ni ,....,1=  

ii Mm ,...,1=                                                                 (36) 
where: 

kimkimkim iii
rrr Δ+=   ni ,....,1= ii Mm ,...,1=   

mKk ,...,1=                                                                (37) 

kimkimkim iii
rrr −≤Δ≤0 ni ,....,1= ii Mm ,...,1=  

mKk ,...,1=                                                                (38) 
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),...,( 11 miiiii KimKimimimim rrrrd Δ+Δ+  may be a linear or a 
non-linear function and can be obtained by regression 
as follows:  

kimimimim iiii
rdd Δ−+= )( β  .    

                                                                       (39) 
ni ,....,1= ii Mm ,...,1=

imk ∈
In which 

iimβ  is the non-positive slope of the linear 

approximation of activity duration i  in mode , for 

resource type k  and can be calculated simply in the 
following form as well. 

im

kimkim

imim
im

ii

ii

i rr
dd

−

−
=β .                    ni ,....,1= ii Mm ,...,1=

imk ∈                                                                 (40) 

In the situation involving two types resources different 
from the other types in each mode ( ), multiple 
regression with two independent variables can be used 
in the following form: 

2=mk

2211 )()(
iiiiii imimimimimim rrdd Δ−+Δ−+= ββ ,                      (41) 

in which 1iimβ  and 2iimβ can be found easily using 
MATLAB and having enough observations. 
 
5.4.3. The Objective Function 
The objective function can be stated in detail by 

incorporating concerning items as follows: Cost/Resource 
   Bic    },0max{}{

1

DTPvrcrcMinimize
n

i
imkim

M

m
kkimk

mk
ii

i

i

i

i

−+×Δ+∑∑ ∑
= ∈

(42) 
2 Bir   

where 

∑
∈

=
i

ii
mk

kimkim rcc ,                                                       (43) 

)( iimim
mk

kimk ddcrc
ii

i

i
−×=Δ∑

∈

.                                   (44) 

     In which Eq. (1) has been modified by replacing the 
duration costs with the resource requirements costs. As 
a special case, when 0== Dck  and 1=P , Eq. (42) is 
converted to Eq. (17). The model is a non-linear 
programming due to 

ii imkim vrΔ but in the absence of 
discrete multi-mode, and using linear regressions such 
as Eqs. (39) and (41), the problem is converted to a 
linear programming. In the absence of crashing within 
a mode the problem reduces to the MRCPSP-GPR and 
the linear model as well. 
 
5.4.4. An Example  
Fig.2 shows an example in the form of an AoN network 
for a project with eight real activities, each of which 
can be executed in two discrete mode and a single type 
of resources required for each mode. Crashing in each 
mode can be performed using Eq. (39) by increasing 

kimi
rΔ . 

 
 
 
 
 
 
 

 

 
 

Relevant data of Fig. 2 are shown in Tables 1 and 2. 
 

Table 1. Relevant data of  Fig. 2 for mode 1and resource type  1=k
 
 

 

 

 

 

 

 

 
 

 

 

 

 

2

   Aic     Mode 2 using worker B 
1 Air1                    

Bic 2    Bir  Mode 1 using worker A2

   Aic     1 Air 1     

              1id               1id                 Duration 

     2id    
2id  

Fig 1. Continuous time/resource trade-off in each mode 
of an activity 
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HF 

E 

C
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Fig. 2. An example in the form of an AON network 
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Resource 
   required r  

Resource increment 

11i 1111110 iii rrr −≤Δ≤  
Activity Linear approximation 

i  

    A           1 5          1             0

11ir11ir 1id1id    
 11111111 )( iiiii rdrd Δ−=Δ β

11ArΔ+ 11 4≤Δ≤ Ar

BrΔ+ 11

      9     4      9  1125.1 ArΔ−
    B           1 2          1             011 1≤Δ≤ Br BrΔ−

CrΔ+ CrΔ−

DrΔ+ 11

      4     2.4           4  1160.1
    C           1 1          1                                        3     3              3  11 011 =Δ Cr 1100.0
    D    1 3          1             011 2≤Δ≤ Dr DrΔ−

ErΔ+ 11

                4     2              4  1100.1
    E           1 3          1             011 2≤Δ≤ Er ErΔ−

FrΔ+ 11

                9     1               9   1100.4
    F      1 2          1             011 1≤Δ≤ Fr FrΔ−

GrΔ+
                 4     3      4  1100.1

    G    1 2          1              11 10 11 ≤Δ≤ Gr      4     1      4   1100.3 GrΔ−

50 11 ≤Δ≤ Hr    H    1 6          111 HrΔ+              9    1.5      1150.19 HrΔ−
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Resource increment 

 
 
 
 
 

Assume the availability of the renewable resource of type 1 
and 2 are 5.51 =R  and  respectively, in which 
decimal part of the number, means the level of part-time 
effort as a percentage that this resource will be working on 
the project in a day. Accordingly, 0.50 or 50% (out of 5.5)     

25.32 =R

 
 

shows one resource will be working half-time addition to 5 
full-time. Moreover, assume ,121 == cc 0=D  and 

1000=P .The problem has been solved using LINGO 8. 
Table 3 shows the amount of important decision variables.

  
 
 

 

6. Genetic Algorithm Implementation 
6.1. Chromosome Representation 
The first step in the proposed GA is to consider a 
chromosome representation or solution structure as 
shown in Figure 3. This structure is severely depends 
on nature of model decision variable(s) and constraints. 
According to the proposed model, each solution is 
represented by a matrix of size , where n is 
number of activities. The associated chromosome for 
the example project is shown in Figure 4. For example, 
activity "E" must be down by mode 1 and 

nK ×+ )1(

21 =Δ Er . 
Therefore, the activity duration "E" is equal to 1. 
  

 1 2 3 … n 

Mode,  im 1m  2m  3m  … 
nm  

1iimr or  1iimrΔ 11 1mr  12 2mr  13 3mr  … 
1nnmr  

: :  :  :  :  :  

Kimi
r or  Kimi

rΔ Kmr
11  Kmr

22  Kmr
33  … 

Knmn
r  

Fig. 3. Chromosome representation 
 

A B C D E F G H 

1 1 2 2 1 1 2 2 

2.5 0.3 0 1.2 2 0.5 0.7 5 

2 1 0.7 2 0.5 0.3  0.4 2 
 

Fig. 4. A typical Chromosome for example project given 
in Figure 2 

 
6.2. Genetic Operators 
For exploring of solution space, we use the single and 
double point crossovers and two specialized versions 
of mutation named 'Mode Mutation' (MM) and 
'Resource Mutation' (RM). Mutation operators enable 
the proposed GA to explore the search space which can 
not be reachable by the crossover operators [11].  
 
6.2.1. Single Point Crossover 
It is the same classical crossover in which two selected 
parents are recombined by a single cross point. An 
instance of single point crossover implementation for 
the example of Figure 2 is shown in Figure 5. The bold 
line is cross point.  

Activity i  
ix          id iy 11ir 11irΔ                Δ  iz 22ir 22ir

A    0    1 0.0000 2.4500  ------  ------  ------ 0.0000 3.0000 2.0000 
B    1      0 2.4500 3.0769 3.9230 1.5769 0.5769  ------  ------  ------ 
C    1    0 2.5269 3.0000 2.9230 1.0000 0.0000  ------  ------  ------ 
D    1    0 2.4500 2.0769 0.0000 2.9230 1.9230  ------  ------  ------ 
E    0     1 5.6519 2.2907  ------  ------  ------ 1.5842 1.6657 1.4157 

 F    0    1 5.5269 2.4157  ------  ------  ------ 0.0000 1.5842 0.0842 
   G    1    0 4.5269 1.0000 0.9230 2.0000 1.0000  ------  ------  ------ 
 H    0    1 7.9427 1.5400  ------  ------  ------ 0.0000 3.2500 2.2500 

Table 3. Optimum solution of example 1 

1iv  
 

2iv  

48.9=T  

Resource 
   required  22ir 2222220 iii rrr −≤Δ≤  

Activity 
i 

    A           1 3          1             22ArΔ+ 20 22 ≤Δ≤ Ar         6     2.45        6  2278.1 ArΔ−
    B           0.5 1.5       0         225. BrΔ+ 10 22 ≤Δ≤ Br         2     1               2200.12 BrΔ−
    C           0.75 2          0        02275. CrΔ+ 22 25.1≤Δ≤ Cr CrΔ−

rΔ+
            4     1.5           4  2200.2

    D    1 3.25     1            022D 25.222 ≤Δ≤ Dr DrΔ−
25. ErΔ+ 5.10

            6     1.85         6  2285.1
    E           0.25 1.75     0      22 22 ≤Δ≤ Er rΔ−

225. rΔ+ 5.00
             12     1.71        12   2285.6 E

    F      1.5 2          1         F 22 ≤Δ≤ Fr 00.15. FrΔ−

22GrΔ+ 5.022

            2.5     2     2  22

    G    1 1.5       1              0 ≤Δ≤ Gr 2234.2 GrΔ−             5     3.83      5   

    H    1 3.25     1 22HrΔ+ 22           0 25.2≤Δ≤ Hr           5     1.54      5 2254.1 HrΔ−   

22ir  22ir  2id  2id  Linear approximation 

2222222 )( iiiii rdrd Δ−=Δ β  

Table 2. Relevant data of  Fig. 2 for mode 2 and resource type k  2=
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6.2.2. Double Points Crossover  
It is an extended version of single point crossover in 
which two selected parents are recombined by two 
cross points. Figure 6 shows an instance of double 

point crossover implementation in which offspring 1 
and 2 are created when information related to activities 
"D", "E", and "F" is swapped between parents 1 and 2. 

 

A B C D E F G H A B C D E F G H 

1 1 2 2 1 1 2 2 1 1 2 1 2 2 1 1 

2.5 0.3 0 1.2 2 0.5 0.7 5 2.5 0.3 0 2 1.5 1 0.3 3 

Parent 

1 

2 1 0.7 2 0.5 0.3 0.4 2 

Offspring 

1 

2 1 0.7 1.5 1.1 0.4 0.2 0.7

                  

A B C D E F G H A B C D E F G H 

2 2 1 1 2 2 1 1 2 2 1 2 1 1 2 2 

4 1 0 2 1.5 1 0.3 3 4 1 0 1.2 2 0.5 0.7 5 

Parent 

2 

1.5 0.5 1.2 1.5 1.1 0.4 0.2 0.7

Offspring 

2 

1.5 0.5 1.2 2 0.5 0.3 0.4 2 

Fig 5. Implementing single point crossover 
 

A B C D E F G H A B C D E F G H 

1 1 2 2 1 1 2 2 1 1 2 1 2 2 2 2 

2.5 0.3 0 1.2 2 0.5 0.7 5 2.5 0.3 0 2 1.5 1 0.7 5 

Parent 

1 

2 1 0.7 2 0.5 0.3 0.4 2 

Offspring 

1 

2 1 0.7 1.5 1.1 0.4 0.4 2 

                  

A B C D E F G H A B C D E F G H 

2 2 1 1 2 2 1 1 2 2 1 2 1 1 1 1 

4 1 0 2 1.5 1 0.3 3 4 1 0 1.2 2 0.5 0.3 3 

Parent 

2 

1.5 0.5 1.2 1.5 1.1 0.4 0.2 0.7

Offspring 

2 

1.5 0.5 1.2 2 0.5 0.3 0.2 0.7

Fig 6. Implementing double point crossover  

 
6.2.3. Mode Mutation  
It is implemented on the first row of chromosome as follows: 
an activity is randomly selected then the current mode is 
randomly changed into other mode (i.e., 1,…, ). In Figure 
7, the mode assigned to activity "D"  is changed into 2.   

iM

 
 
 

6.2.4. Resource Mutation 
It is implemented on the other rows of chromosome as 
follows: an activity is randomly selected then kimi

rΔ  in the 
current solution is randomly changed between 

kimkimkim iii
rrr −≤Δ≤0 . In Figure 7,  and 11DrΔ 22DrΔ are 

changed.  

A B C D E F G H A B C D E F G H 

1 1 2 2 1 1 2 2 1 1 2 1 1 1 2 2 

2.5 0.3 0 1.2 2 0.5 0.7 5 2.5 0.3 0 1.2 2 0.5 0.7 5 

Mode  

Mutation 

2 1 0.7 2 0.5 0.3 0.4 2 

Offspring

2 1 0.7 2 0.5 0.3 0.4 2 

                  

A B C D E F G H A B C D E F G H 

2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 

4 1 0 2 1.5 1 0.3 3 4 1 0 1 1.5 1 0.3 3 

Resource 

Mutation 

1.5 0.5 1.2 1.5 1.1 0.4 0.2 0.7

Offspring

1.5 0.5 1.2 1.5 1.1 0.1 0.2 0.7

Fig 7. Implementing mutation  
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6.3. Selection Strategy 
The selection strategy means that how to choose the 
individuals in the current population that will create 
offspring for the next generation. Generally, it is better 
that best solutions in the current generation selected as 
parents for creating offspring. The most common 
method for the selection mechanism is the "roulette 
wheel" sampling, in which each individual is assigned 
a slice of a circular "roulette wheel" and the size of the 
slice is proportional to the individual's fitness.  
The wheel is spun Pop_Size times, where Pop_Size is 
the number of individuals in the population. On each 
spin, the individual under the wheel's marker is 
selected to be in the pool of parents for the next 
generation. This method can be performed as follows: 
 
a. Let CF be the sum of the Cost Function of all 

solutions in the current population as follows: 

∑
=

=
SizePop

p
pcfCF

_

1

)(                                                           (45) 

  

b. Where pcf  is the cost function or fitness values of 
solution p and Pop_Size is equal to the number of 
chromosomes in the population.  

 
c. Let pρ  be the relative probability related to 

chromosome p as follows: 

CF
cf p

p =ρ  SizePopp _,...,1=                  (46) 

d. Let pP  be the cumulative probability related to 
chromosome p as follows: 

,

≤≤

1
∑
=

=
p

j
jpP ρ  SizePopp _,...,1=                        (47) 

e. Generate a random number, say r, in the range of 
[0, 1]. If 1Pr < , then the first chromosome is 
selected. Otherwise, the pth chromosome is 
selected where,  

   

pp PrP <<−1 ,  2                  (48) SizePopp _

The fitness of each solution is directly obtained by Eq. 
(42). The initial population is randomly created in 
terms of a continuous uniform distribution.  
 
6.4. Stoppage Conditions 
We use three criteria for stopping the proposed GA as 
follows: 1) the maximum number of the established 
generation, 2) an arbitrary minimum value of variance 
of the last generation, and 3) the maximum run time. 
The algorithm is finished if one of the three mentioned 
criteria satisfied.  
The variance of each generation can be calculated as 
follow: 

∑
=

−=
SizePop

p
ggpg FCCF

SizePop

_

1

22 )(
_
1σ                            (49) 

where  is the fitness of pth chromosome in 
generation g. 

gpCF

gFC is average fitness of all 
chromosomes in generation g that is calculated as 
follow:   

∑
=

=
SizePop

p
gpg CF

SizePop
FC

_

1_
1                                         (50) 

 
7. Computational Results 

In order to show that the model serves to solve 
instances of practical size, ProGen/max [14] is used to 
generate 100 RCPSPMCM-GPR instances in 20 
categories. Table 4 shows the control parameters used 
for ProGen/max to generate instances of the MRCPSP-
GPR and Table 5 gives the necessary adaptations for 
obtaining instances of RCPSPMCM-GPR. 
The Order Strength OS is a [0, 1]-normalized measure 
defined as the number of precedence relations, which is 
minimum for parallel and maximum for series digraphs 
[14]. The Resource Factor RF reflects the average 
portion of resources requested by each activity [14].  
Setting RF at 1 leads to the most complex resource-
constrained project scheduling problem instances. The 
Resource Strength RS measures the scarcity of the 
resource availability to the respective requirements 
[14]. 
 
 Table 4. The parameter settings for instances of  

MRCPSP-GPR  
 Symbol Important Control Parameter  
 

N number of non-dummy activities   10,20,30,40,50 
 

 
 
 

iM  number of Modes per activity          2, 3 
  

 
iimd  duration of each mode                              [5, 10] 

 number of initial and terminal activities  [2, 3] 
 maximum number of predecessors  and                  
.              successors                                         3 
 
OS order strength             0.5 
               percentage of backward arcs  

 
 
 
 
 
 
 

               (maximal time lags)                                   20%  
               degree of redundency                                0.0  
               number of cycle structures                        [1, 3]  
               number of activities per cycle structure    [1, 5]  
               coefficient of cycle structure density        0.3 
               deviations of minimal time lags from  

 
 

               duration                                                      0.5  
               tightness of maximal time lags                  0.5  
               slack factor                                                 0.0  
K       number of renewable resource types       2, 3, 4, 6  

 renewable resource demand                       [1, 5] kimi
r 

 

Value 
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The degree of redundancy is computed by dividing the 
number of redundant arcs in the network by their 
theoretical maximal value.  
The coefficient of cycle structure density is a measure 
of the amount of precedence relations in a cycle 
structure. The tightness of maximal time lags 
determines how the values of the maximal time lags 
relate to their theoretical minimal value which results 
in time- and resource feasibility.  
The slack factor determines how the minimal time lags 
depend on the activity modes [14]. Upper bound for 
resource demand of type k can be obtained using the 
following equation:  

ikimkim ranrr
ii
+=                                                      (58) 

In order to find 
iimd , Let:  be the amount of total 

work required to complete activity in mode  and 
can be stated in the following form when Microsoft 
office Project is used [15]. 

iimw
i im

 

∑
=

=
m

iii

K

k
kimimim rdw

1

                                                      (59) 

Assume is a fixed constant obtained by replacing 

and  with 
iimw

iimd kimi
r

iimd  and 
iimr respectively. 

Accordingly, 
iimd  can be calculated by the following 

equation replacing  with  kimi
r kimi

r .  

∑
=

=
m

iii

K

k
kimimim rwd

1

                                                      (60) 

For the instances of 1=mK , 
iimβ is calculated simply 

by Eq. (40). In the situations involving  which 
mandate more than two observations, the Sufficient 
observations can be obtained by generating a few 
random numbers for , between 

2≥mK

kimi
r

iimr and kimi
r , and 

then calculate by Eq. (60). At this time a software 
such as MINITAB or MATLAB can be used to obtain 
the relevant regression equations. In this paper we have 
used Eq. (41) for 

iimd

2=mK . 
Since the CPU time for solving a mathematical model 
depends on the number of constraints and variables, to 
reduce the size of the experiment, we report only on 
important parameters influencing solution time.  
We fixed the other parameters which usually influence 
on the feasible area of the model at specific values 
rather than varying them over the entire range of 
complexity. Consequently, the instances are 
categorized according to the combinations of 
N ={10,20,30,40,50} and ={(2,1,2), 
(3,1,3), (2,2,4), (3,2,6)}.  

),,( KKM mi

Table 5. Adaptations of the data to obtain 
instances of RCPSPMCM-GPR

Symbol      Important Control Parameter Value 

mK             number of resources types required for  
                   each mode different                                           1, 2 For each category (out of 20), 5 instances have been 

generated for a total of 100. The proposed GA has been 
coded in the MATLAB using fmincon(…) and ga(…) 
functions.  

                   from other modes  
 

= d     normal/maximum duration of each mode      [5, 10] 
iimd

iim

 In order to have some benchmarks, the instances have 
been optimally solved by the Lingo 8.0 software using 
branch-and-bound (B&B) method as well. Each 
problem is allowed a maximum of 1000 seconds of 
CPU time. All the computational experiments have 
been carried out on an intel® Celeron® mobile 1.3 
GHz Personal Computer with 512 Mb RAM. Tables 6 
and 7 summarize our findings as average CPU times 
for B&B and GA. 

kimi
r =   lower bound renewable resource demand      [1, 5] kimi

r
 

iran            a random real number for range between  
                    lower and upper bound of resource  
                    demand                                                            [0, 3] 
 
D               due date of project for instances                          0 
 

 P               per period penalty cost of project                     100    
 
 

 

 

 

 

 

 

Table 6. The average CPU time for solving five instances in each category 

Activities           B&B           GA          O.F. Gap %             B&B             GA          O.F. Gap %     

Number of            ( )2,1,2 === KKM mi ==                         ( )3,1,3= KKM mi     

       10             59.75           17.21        13%                       76.95            18.91             19% 
       20           385.14           51.82          11%                    435.38            50.24              23%       
       30           >1000          167.60          --                     >1000           196.32              -- 
       40             >1000          383.04          --                        >1000            372.75             -- 
       50             >1000          925.22          --                        >1000            951.30             -- 
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 Table 7. The average CPU time for solving five instances in each category  

 

 
 
 
    

 

The values below the columns of B&B and GA are the 
CPU time in second.  The quality of GA in compare to 
B&B has been measured by O.F. Gap% which is the 
difference between objective functions of two methods. 
By increasing the number of activities, B&B can not 
reach to the optimal solution in an acceptable amount 
of time. The proposed GA could reach to near optimal 
solutions in shorter time respect to B&B method. As 
indicated in Tables 6 and 7, the solution time of 
proposed model is very sensitive to ,K and N.  mK
 

8. Conclusions 
In this paper we considered the multi-mode resource 
constrained project scheduling problem with 
generalized precedence relations in which the duration 
of an activity is determined by a discrete mode 
selection and a continuous function of the resource 
requirements within the selected mode. This problem 
called RCPSPMCM-GPR is general case of the 
problem MRCPSP-GPR.  In the absence of discrete 
multi-mode, the problem reduces to the continuous 
Time/Cost or Time/Resource Trade-off Problem. In the 
absence of crashing within a mode, the problem 
reduces to the MRCPSP-GPR. 
Although, considering real numbers for durations and 
resources increases the complexity of the problem, it 
allows flexibility to achieve an active pattern of 
resource usage over time as well as a shorter make 
span. Firstly, we presented an exact model for the 
RCPSP-GPR and MRCPSP-GPR. Secondly, the model 
was developed for optimally solving the problem 
RCPSPMCM-GPR. Thirdly, the genetic algorithm was 
used to solve the proposed nonlinear model. We 
modified the objective function by replacing the 
duration costs with the resource requirements costs.  
The proposed model has no need for a feasible solution 
to startup with. No formulation as an exact solution has 
been reported for the RCPSPMCM-GPR except the one 
presented in this paper. Furthermore, time horizon can 
be continuous in this model thus dealing with different 
processing time units (e.g., hours, days, weeks, and so 
on), is possible.  
Future efforts will be devoted to the application of the 
other meta heuristic approaches for solving the 
nonlinear model in the situations involving instances of 
practical size (more than 100 activities) in a reasonable 
amount of time. 
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