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A GENETIC ALGORITHM AND A MODEL FOR THE
RESOURCE CONSTRAINED PROJECT SCHEDULING
PROBLEM WITH MULTIPLE CRUSHABLE MODES

S. M. Seyed-Hosselni, Majid Sabzehparvar, and Siamac Nouri

Abstract: This paper presents an exact model and a genetic algorithm for the
multi-mode resource constrained project scheduling problem with generalized
precedence relations in which the duration of an activity is determined by the mode
selection and the duration reduction (crashing) applied within the selected mode. All
resources considered are renewable. The objective is to determine a mode, the amount
of continuous crashing, and a start time for each activity so that all constraints are
obeyed and the project duration is minimized. Project scheduling of this type occursin
many fields; for instance, predicting the resources and duration of activities in
software development projects. A key feature of the model is that none of the typical
models can cope with the continuous resource constraints. Computational results with
a set of 100 generated instances have been reported and the efficiency of the proposed

model has been analyzed.

Keywords: Crashable modes; Multi-mode; Time/resource trade-off; Time windows.

1. Introduction
For many real-life applications of project scheduling, it
is possible to perform the individual activities in
alternative ways (modes). These modes are different in
processing time, time lags to other activities, and
resource requirements. They reflect time/cost,
time/resource and resource/resource trade-offs [10].
Such real-life projects can be modeled as instances of
the Multi-Mode  Resource-Constrained  Project
Scheduling Problem or briefly MRCPSP which is
denoted by MPS|prec|C, .. MRCPSP in the
situations involving minimum and maximum time lags
or Generalized Precedence Relations called MRCPSP-
GPR [7: Page 5121 and denoted by
MPS |temp | C,,, [16: Page 160, 9: Ch 6 Page 103].
MRCPSP is a generalized version of the standard well-
known Resource-Constrained Project Scheduling
Problem or briefly RCPSP (PS| prec |C,,, ) Which

is in GPR denoted by RCPSP-GPR or
PS|temp |C, ., [16, Page 22].

There is a general case of MRCPSP-GPR in which the
duration/cost of an activity is treated as a function of
both the resource requirements (mode selection) and
the amount of crashing (duration reduction), applied
within the selected mode. This complex case has been
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introduced by Ahn and Erenguc [1] and called
Resource-Constrained Project Scheduling Problem
with  Multiple Crash able Mode or briefly
RCPSPMCM. They provide this example: Activity i

can be done by "worker A using machine X (mode 1)"
or by "worker B using machine Y (mode 2)".
Assuming 8 hours of work per day, worker A, using
machine X can finish activity i in 10 working days at a
price of $400 and worker B using machine Y can
complete the activity in 8 working days at the price of
$500. Furthermore, workers A and B can shorten the
activity duration by working additional hours each day.
For example, worker A can finish the activity in 8 days
by working 10 hours a day. Duration reduction, i.e.
crashing, can be done in various ways. using overtime
or additional shift(s), or allocating more resources that
might be acquired easily by incurring additional
expenditures.

Their objective function involves the minimization of
the total project cost which is the sum of the activity
execution cost and the tardiness cost. In the absence of
resource constraints, the problem reduces to the
Time/Cost Trade-off Problem or briefly TCTP. In the
absence of crashing within a mode, the problem
reduces to the MRCPSP.

The complexity of the problem is increased when the
crashing applied within a selected mode is continuous
and minimum and maximum time lags (time windows)
between a pair of activities are considered. In such a
case denoted by RCPSPMCM-GPR, due to the
continuous crashing, no exact solution method has
been reported [1: Page 255].
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The problem is strongly NP-hard. Moreover, the
problem RCPSP-GPR is also NP-hard, and even the
guestion whether a problem instance has a feasible
solution is NP-complete in strong sense [3]. As a
generalization of the problem RCPSP-GPR, the
problem MRCPSP-GPR and its corresponding
feasibility problem belong to the same complexity
class. [9: Page 8, 16: Page 165].

The remainder of this paper is organized as follows: In
Section 2, we discuss the relevant literature review.
Section 3 gives a conceptual formulation based on the
previous works. A brief reason why this specific
formulation is tackled by the authors is discussed in
Section 4. New mathematical formulation for RCPSP-
GPR, MRCPSP-GPR, MRCPSP-GPR with Mode-
Dependent time lags and RCPSPMCM-GPR as the
contributions of this paper are presented in Subsections
5.1, 5.2, 5.3 and 5.4 respectively. Genetic algorithm
implementation as another contribution is discussed in
Section 6. Computational results are reported in
Section 7. Section 8 isreserved for our conclusions.

2. Relevant Literature Review

MRCPSP without maximum time lag has been treated
by several authors since the early eighties [16, P. 160].
RCPSPMCM without GPR in which resource/resource,
time/resource and time/cost trade-off are considered,
has been introduced by Ahn and Erenguc [1]. They
have presented a heuristic procedure for RCPSPMCM
but no exact solution method has been reported. A
linear approximation of duration function has been
carried out by Deckro and Hebert [6] called modeling
diminishing returns but they have not considered
resource constraintsin their model.

Exact algorithms for the case of MRCPSP have
been reviewed and their performance has been tested
by Hartmann and Drexl| [12].

The most efficient method for solving MRCPSP known
thus far is the branch-and-bound algorithm of Sprecher
and Drexl [19]. The best heuristic procedure for
MRCPSP at present is a genetic algorithm published by
Hartmann [16: Page 160].

Since we are going to present a mathematical
formulation for RCPSPMCM, the focus of remaining
literature review will be on the exact procedures
especially mathematical formulations.

In order to be able to specify the resource constraintsin
the correct and solvable form, linear programming
based approaches for RCPSP (not MRCPSP) have been
presented by several authors[7].

In formulation by Pritsker et a. [17], the binary

decision variable X, is defined to be 1 if activity i
finishesat timeinstant t, and to be O otherwise.

For the MRCPSP without GPR (MPS| prec|C, ),
the best O—1programming model based on an
extension of the formulation by Pritsker et al., has been

presented by Tabot [20]. The model of Talbot have
been developed by Reyck and Herroelen [8] for the

case of GPR (MPS [temp |C,, )-

Since lower bound calculations play the most
important role in branch-and-bound procedures, it has
been addressed by recent papers[2].

The best known lower bound for RCPSP and MRCPSP
is currently based on the resolution of several large
linear programs [4, 13]. Computational experience by
Mothering et a. [16: Page 75] has shown that already
for medium-sized projects of RCPSP with 100
activities, the resulting linear program cannot be solved
in an acceptable amount of computational time. Broker
and Knits [4] strengthen one of this relaxation by
taking into account time windows for the activities and
use column generation to deal with the large number of
variables.

3. Conceptual Formulation for RCPSPMCM-

GPR

Let:
Vi binary decision variable; 1 if activity i is

performed in mode m, O otherwise.
s/t starting/finishing time of activity i
d, duration of activity i
S5, minlssj ™ minimal/maximal time lag between
start to start times of activities | and |

sf,"™"/f,™  minimal/maximal time lag between start
to . finish times of activities i and |
fgj"“”/ fsjmax minimal/maximal time lag between finish

to. start times of activities i and |

ffij”‘”‘/ f-fij"‘ﬁ'x minimal/maximal time lag between finish

to. finish times of activities i and |

SSim im min elements of transformed matrix of
LN ]

minimal . time lags, if activities i

and | are performed in

modes M and m; respectively

R, availability or the maximum number of

the K" resource type

limk resource requirement of type K for
activity 1in mode m

K number of resource types required for

the. project

T upper bound on the shortest project

duration . where T > €S, ,; (earliest start)

D project due date


http://ijiepr.iust.ac.ir/article-1-25-en.html

[ Downloaded from ijiepr.iust.ac.ir on 2024-12-11 ]

S. M. Seyed-Hosseini, Majid Sabzehparvar, & Siamac Nouri

P per period penalty cost incurred if the
project is delayed beyond D

Cim marginal crashing cost of activity i
using mode M

d._/d rashed (minimum) / normal (maximum)

im im
duration of activity i in mode m

Crm /Ciy  Crashed (maximum) / normal (minimum)
cost of activity i in mode m,

Assuming an AoN network N(v) in standardized form
with minimal start to start precedence relations using
the transformation rules [3], the problem can be
modeled conceptually as a mathematical programming
model in the following way [1, 16] :

Min 373 en + 6 x(@, ~d)}xv, +Pmad0s,, -0} D
i=1 m

Subject to:
i‘ v. -1 i=1..n 2

M\ J . . . . -
S-S2) D sV Ny <D (1, ]) € E g (©)

m=1 m=1 m=1
4

M\

D Vi SR k=1..,K,05t<T (5)
ieA(sty)m=l
=0 (6)
$=0 (7
Vi €{01}  (ieV, m =1., M)) 8

Eqg. (1) minimizes the project cost including crashing
cost within each mode and penalty cost incurred if the
project is delayed beyond tardiness of the project,

computed as max{0,s,,, —D}. § ands,, are the
starting times of the non-real first and end activities
respectively and S, d, and Vi, are decision variables
to be determined. Eq. (2) ensures that only one of the
modes is selected. Eq. (3) denotes the GPRs in

standardized form.
The duration variable of the activity, is bounded

between d,,, and d,, by Eq. (4) if activity i is

performed in M. Eq. (5) which is a conceptual
statement of the resource constraints expresses that at

no time instant of t, during the project horizon

between O and T the resource availability may be
violated. Moreover, we define:

A(st,v)={i eV|s <t<s +d},(t>0) )

which is the set of real activitiesin progress at time t,
depending on starting time S and assignment V.

4, Difficulties of Modeling Resour ce
Constraints
The mathematical program above cannot be solved
directly because it is necessary to trandate the set
A(st,v), that is used in Eg. (5) into the solvable
constraints. Hence 0-1 programming formulations have
to be used in order to be able to specify the resource
constraints in the correct and solvable form [7: P 208].
In formulation by Talbot [20] which is for the case of

MRCPSP, the binary decision variable V., is defined

to be 1 if activity i is performed in mode m and

started at time t, and to be O otherwise. Thus the Eq.
(5) can be stated as follows:

min{t-11s }

S0 Vo <R k=12..K; t=12..T (10

i=lm=1 s=max{t—d;,,es }

The variable V;; can only be defined over the interval

between the earliest (€S ) and latest (1S) starting time

of the activity in question. The difficulty increases
when dealing with different and smaller duration units
(eg., hour, minute, second) is necessary.
Consequently, the number of decision variables will be
increased exponentially.

5. New M athematical Formulation
The formulation which is presented here has been
inspired by one of the rectangle packing problems
models[5].

5.1. Mathematical Formulation for RCPSP-GPR
5.1.1. Main ldea

In RCPSP-GPR we have asingle mode so M must be

omitted from the notations defined above. For
visualizing the problem in three dimensions, imagine
the number of resource types required for the project
aretwo (K=2).

It can, however, be beyond the confines of two, i.e. any
integer value (K=1, 2, 3, ...). Moreover, it must be
noted that the geometrical model is applicable in the
situation involving the uniformly distributed resource
needs over processing times which is not the case
about nonrenewable resources. Thus renewable
resources which usualy have this property are
considered.

In such a case, there is a certain correspondence
between boxes to be packed, and activities to be
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scheduled. Each box would correspond to an activity,
with a duration equal to the length and a resource
request of type k (k=1, 2) equal to width and height
respectively.

An empty box B, of width W, equa to time
horizonT , length L, equa toR, the resource
capacity

available of type 1 and height H, equal to R,, the
resource capacity available of type 2 is given. There is
a series of boxes B, (or ActivitiesA) (i =1,...,n),
of width w =d;, length |, =r, and height

1
h =r, tobe packedinwhich m has been omitted
fromboth d;, and I,

Furthermore, the constraint that activity preemption is
not allowed corresponds to the natural requirement that
boxes must be packed as awhole.

The bottom |eft behind corner of the big empty box B,
is supposed to be at point (p0,0) SO the top right front
corneris (T,R,R,) . Let:

for the case of single mode.

(x,Y,2)" The bottom left behind

coordinates of activity 1 ,

(x +d.,y, +r,,zZ +r,): The top right front
coordinates of activity i .

5.1.2. GPRs Constraints
The x-coordinate of the bottom left behind corner of
activity | isgiven by the activity starting time:

X =5 n=12,..,n (11)

and is the most important decision variable to be
determined. Thus, GPRs can be formulated as follows:

min

X + SS; SXJSXi+$jmax () eEg> (12)

x +sf,™<x +d, <x +sf,™  (i,j)eEy> (13)

i ij =
X +d +fs™<x <x+d+f5™ (e, (14

x +d + " <x +d, <x +d + ™ G0, )yeE,» (19)

in which f =x +d and f,=x +d are the
finishing time of activity i and | respectively.

5.1.3. Constraint of Makespan

The finishing time of end activities f, = x, + d, should

not be exceeded from T, i.e,,
T-x —d >0. icendactivities (16)

5.1.4. The Objective Function

The minimization of makespan for RCPSP-GPR
which is linear and the most popular objective in the
project scheduling problems can be used as follows:

Minimize T. a7

5.1.5. No Overlapping Constraints

The constraints for packing boxes are as follows [5]:

1. Since the activity boxes may not be rotated, each
edge of an activity box should be parallel to a specific

edge of the main box B, .

2. There should be no overlapping for any two small
boxes, i.e., the overlapping areais zero.

In the situations involving single type renewable
resources in project (K=1), the problem can be
formulated as the same as rectangle packing problem.
The difficulties start when the number of resource
types are two or more(K > 2). In this case which is

one of the contributions of this paper, the problem must
be formulated totally different from packing problem.
In packing problem, boxes must be packed to a
container in which no overlapping between a pair of
boxes coordinates is permitted, i.e., one of y-z, x-z or
X-y overlapping is alowed at atime.

The no overlapping constraints for project scheduling
must be changed as: There should be no overlapping
for any two boxes between x- and y-coordinates as
well as x- and z-coordinates, i.e., it is not important to
have overlapping between y- and z-coordinates.

For RCPSP-GPR with single type renewable resource
in which no precedence relation of type

fs,™" > Obetween two activities i and | exists, one of
the following constraints must be held:

(X; 2x; +d))v (X 2X; +d;)v

(18)
(v, 2y +6)v (Y 2y, +r)
Let:
t.: 01 integer variable; O if activity i to be

xij
located at the left hand side of activity |
(activity 1 precedes activity | ) without any
overlapping between them, 1 otherwise.

b 0-1 integer variable; O if activity | to be
located at the left hand side of activity |
(activity | precedes activity 1) without any
overlapping between them, 1 otherwise.

We use the same definitions for notations t,; and t,;

toward y-coordinate, t,; and t,; toward z-coordinate.
Using the binary decision variables above, these
congtraints can be stated as follows:

X, =% -0 +M*t, >0i<j,i=1..,n-1
j=2,...,n (29)
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X=X —d;+M*t, >0i<j,i=1..,n-1

Xji

j=2...n (20)
Yy, =Y - +M*t, >0i<ji=1..,n-1
j=2...n (21)
Y-y, —rp+M*t, >0i<j,i=1..,n-1
j=2...n (22)

U+ +1; +ty =3,i<j,i=1..,n-1,
j=2,...,n (23

where M is a big constant. Equations above ensure that
there should be no overlapping for any two boxes,
between x- and y-coordinates. No overlapping
constraints for x- and z-coordinates which are
applicable in double types of renewable resources, are
defined asfollows:

Z,-z-r,+M*t; 20i<j,i=1..n-1

J

j=2,...,n (24)
Z -7 I, + M *tZii >0i<j,i=1..,n=-1,
j=2,...,n (25)
Ly +h; +t +1; =3, i<, i=L..,n-1

j=2...,n (26)

The same equations as (24), (25) and (26) can be
developed in situations involvingK > 2.

5.1.6. Resour ce Constraints
The y- and z-coordinates of activities should not

exceed from R, and R, respectively. This can be
stated in the form of constraints as follows:

R-y,-r,20 i=1...n (27)
R,-z-r,>0 i=1..,n
(28)

5.2. Mathematical Formulation for MRCPSP-GPR

In the case of MRCPSP-GPR individual activities can
be executed in aternative ways (modes). Activity
i (i=1..,n) when  peformed in  mode

m (m =1..,M,) has a duration d,, and requires

r a constant amount of resource K over duration.

imk

To describe the mathematical formulation, Let:
M; i

d = Zdim Vi i=1..n (29)
m=1
M, .

'y :Zrimk'vim i=1..,n k=1..,K (30)
m=1

MRCPSP-GPR can be formulated by replacing Eqg.
(29), (30) and (2) into the RCPSP-GPR model.

11

5.4. Mathematical Formulation for RCPSPMCM-
GPR

The RCPSPMCM-GPR involves MRCPSP-GPR plus
the continuous crashing in each mode.

I;(ertn number of resources types required for each
mode different from other modes

iy (g 12e-o1 i, ) dluration of activity i in mode m
a a function of resources
requirements

Limk ! Timi lower/upper bound on resource
requirement of type K for activity i
in mode M,

ALy resource increment of type K above the
lower bound in mode M for
Activity |

C, procurement cost per unit of resource of
type K

B regression coefficient

All other notations remain as previously defined.
Asillustrated in Fig. 1, an approximation of an activity
duration in each mode is made by the function defined
over the range of possible values of the upper and
lower bounds on the resources requirements of any
typein that mode as follows:

<r

dim = dim (rim11""rime) Fimk = Timk RS

Pk Fime > 0 (33)

So Jim and d im @€ constants and can be calculated
by Egs. (32) and (33) respectively.
(iim = dim (£im11---|£irqu) (34)

gim =dim (riml""'Fime) (35)

The duration reduction (crashing) for each activity
between aim and d,, is dlowed by increasing the

amount of resources committed to it. d, . (K, i)

may be a constant, a linear expression, or a non-linear
function such as hyperbolic function and can be
different from activity to activity.

Eqg. (33) can be replaced by Eq. (36) asfollows:

Ay =y (Cigy F Al e F i AT ) T=10

m =1...M, (36)
where:

Fink = Limic + Al i=1...,n m =1..,M,
k=1..,K,_ (37)
O<Ar ., <T roi=L..nm=21.,M,

imk imk — —imk

k=1..K, (39)
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Cost/Res;ourcsL
éiZB riZB
= - Mode 2 using worker B
Gia Tia
Cis lios \ Mode 1 using worker A
gilA £i1A

d, d, Duration

di; d,

Fig 1. Continuoustime/resour ce trade-off in each mode

of an activitv

dirr] ([im1+Arin'|l1'"l[imK+Arime) may be a “near or a
non-linear function and can be obtained by regression
asfollows:

Ay =iy + (=B AT i=L..,nm=1.,M,
kem (39)

In which ﬂim, is the non-positive slope of the linear

approximation of activity duration i in mode m , for

resource type K and can be calculated simply in the
following form as well.

d. —d .
' =H. i=1...,n
fimk — Limk

kem (40)

In the situation involving two types resources different
from the other types in each mode (k, = 2), multiple

regression with two independent variables can be used
in the following form:

dim :aim +(_ﬂim1)Ariml+(_ﬁim2)Arim2’ (41)
in which g, and g ,can be found easily using

m =1..,M,

MATLAB and having enough observations.

5.4.3. The Objective Function
The objective function can be stated in detail by

incorporating concerning items as follows:

n M
Minimize  >'>{>" GIm +CAL} x Y, +Pmax{0,T - D} (42)
i=1 m kem
where
Cim = ch[imk ' (43)
kem
ZCkArimk =Gy X (aqu -d)- (44)

kem

In which Eg. (1) has been modified by replacing the
duration costs with the resource requirements costs. As
aspecia case, when ¢, =D =0 and P =1, Eq. (42) is

converted to Eg. (17). The model is a non-linear
programming due to AT Vi but in the absence of
discrete multi-mode, and using linear regressions such
as Egs. (39) and (41), the problem is converted to a
linear programming. In the absence of crashing within
a mode the problem reduces to the MRCPSP-GPR and
the linear model aswell.

5.4.4. An Example

Fig.2 shows an example in the form of an AoN network
for a project with eight real activities, each of which
can be executed in two discrete mode and a single type
of resources required for each mode. Crashing in each
mode can be performed using Eq. (39) by increasing
Arimk .

fs""(+0.125

fs™ (+1.5)
ss™™N0.25

fsmin (O)
Fig. 2. An examplein theform of an AON network

ss™(+2.5)

Relevant data of Fig. 2 are shown in Tables 1 and 2.

Table 1. Relevant data of Fig. 2 for mode land resourcetype K =1

Acti\{ity My Ty Resource Resource infrement L dy Linear appioximati on

I required [, O<Any, <Fyy =l di, (Ary,) = diyy — BaAG,
A 5 1+ Ary, 0<Ary, <4 9 4 9-1.25Ar,,,

B 2 1+ Arg, 0<Arg, <1 4 24 4 —1.60Arg,,

c 1 1 1+ Argy, Are;; =0 3 3 3-0.00Arc,,

D 1 3 1+ Argy, 0<Ar,,<2 4 2 4 -1.00Ary,,

E 1 3 1+ Arg, O0<Arg, <2 9 1 9-4.00Arg,,

F 1 2 1+Ar., 0<Ar,; <1 4 3 4—1.00Arg,,

G 1 2 1+ Argy, 0<Arg, <1 4 1 4 — 3.00Arg,,

H 1 6 1+ Ar,., 0<Ar,., <5 9 15 9 -1.50Ar,,,,
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Table 2. Relevant data of Fig. 2 for mode 2 and resourcetype K = 2

Activity r Resource Resource increment Linear approximation

! T required 5, 0= Alip < Tz ~ iz e d,(Ar,) =diy, = B,Ar,
A 1 3 1+ Ar,,, 0<Ar,,<2 6 2.45 6—-1.78Ar,,,

B 05 15 0.5+ Arg,, 0<Arg, <1 2 1 2—-1.00Ar;,,

C 075 2 0.75+Ar.,, 0<Ar,,, <125 4 15 4 —2.00Ar,,

D 1 325 1+Ary, 0<Ary, <225 6 1.85 6—-1.85Ar,,,

E 025 175 0.25+Arg,, O0<Ar.,,<15 12 171 12-6.85Ar.,,

F 15 2 1.5+ Arg,, 0<Ar.,, <05 25 2 2.5-1.00Arg,,

G 1 15 1+Arg, 0<Arg,, <05 5 3.83 5—2.34Arg,,

H 1 325 1+Ar,, 0<Ar,,, <225 5 1.54 5-1.54Ar,,,

shows one resource will be working half-time addition to 5
full-time. Moreover, assume C, =C,=1,D=0 and

P =1000.The problem has been solved using LINGO 8.
Table 3 shows the amount of important decision variables.

Assume the availability of the renewable resource of type 1
and2are R, =5.5 and R, = 3.25 respectively, in which

decimal part of the number, means the level of part-time
effort as a percentage that this resource will be working on
the project in aday. Accordingly, 0.50 or 50% (out of 5.5)

Table 3. Optimum solution of example 1

Activity I v Vi X d, Yi iy Al Z li2 Arip
A 0 1 0.0000 2.4500 0.0000 3.0000 2.0000
B 1 0 24500 3.0769 3.9230 1.5769 0.5769
C 1 0 25269 3.0000 2.9230 1.0000 0.0000
D 1 0 24500 2.0769 0.0000 2.9230 1.9230
E 0 1 5.6519 2.2907 15842 1.6657 1.4157
F 0 1 55269 2.4157 0.0000 1.5842 0.0842
G 1 0 45269 1.0000 0.9230 2.0000 1.0000
H 0 1 7.9427 1.5400 0.0000 3.2500 2.2500

T =948

6. Genetic Algorithm Implementation A B C D E F G H
6.1. Chromosome Representation 1 1 2 2 1 1 2 2
5
2

The first step in the proposed GA is to consider a

chromosome representation or solution structure as 25 03 0 12 2 05 07
shown in Figure 3. This structure is severely depends 2 1 07 2 05 03 04
on nature of model decision variable(s) and constraints.

[ Downloaded from ijiepr.iust.ac.ir on 2024-12-11 ]

According to the proposed model, each solution is
represented by a matrix of size (K +1)xn, wherenis
number of activities. The associated chromosome for
the example project is shown in Figure 4. For example,
activity "E" must be down by mode 1 and Ar_, =2.

Therefore, the activity duration "E" isequal to 1.

1 2 3 n

Mode, M m, m, m, m,
rim lorAriml rlmll r2m21 r3n131 rnmnl
limi O Al | Tk | Tom | Tamk |77 | Tamk

Fig. 3. Chromosome r epresentation

Fig. 4. A typical Chromosome for example project given
in Figure2

6.2. Genetic Operators

For exploring of solution space, we use the single and
double point crossovers and two specialized versions
of mutation named 'Mode Mutation' (MM) and
'Resource Mutation' (RM). Mutation operators enable
the proposed GA to explore the search space which can
not be reachable by the crossover operators [11].

6.2.1. Single Point Crossover

It is the same classical crossover in which two selected
parents are recombined by a single cross point. An
instance of single point crossover implementation for
the example of Figure 2 is shown in Figure 5. The bold
lineis cross point.
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6.2.2. Double Points Crossover point crossover implementation in which offspring 1
It is an extended version of single point crossover in and 2 are created when information related to activities
which two selected parents are recombined by two "D","E", and "F" is swapped between parents 1 and 2.

cross points. Figure 6 shows an instance of double

A|B|C|D]|E F|] G| H A|B|C]D|E F| G| H
Parent | 1 1] 2] 2 1 1| 2] 2 |Offspring| 1 1| 2 1] 2| 2 1
1 25|03 0 12| 2 jO5)07| 5 1 25(03| O 2 (15| 1 03| 3
2 1|07 2 |05]03]04] 2 2 1071151104 |0.2]0.7
A|B|C]D]|E F|G|H A|B|]C]D|E F|G|H
Parent | 2 | 2 | 21 1} 2 )2 | 1] 1 |Offspring| 2| 2| 12| 1]|21|2]|2
2 4 1 0 2 115] 1 J03| 3 2 4 1 0fJ12) 2 |05|07]| 5
15{05(12115|11|04|02]|0.7 150512} 2 |05|03|04| 2
Fig 5. Implementing single point crossover
A B D E F H A B|C]|D E H
Parent| 1 | 1 ) 2] 21| 1|22 |Offsoringj 1 | 1]2f1)2]2]2]2
1 25|03 12| 2 |o5]07| 5 1 25]/03| 0] 2 |15 1 J07| 5
2 1|07 2 |05]03})04] 2 2 1107115110404 2
A|B|C]D]|E F]J]G|H B|C]JD|E G| H
Parent | 2 2 1 1 2 2 1 1 | Offspring | 2 2 1 2 1 1 1
2 4| 1)0)2|15| 1]03]| 3 2 4| 1)0])12| 2 |05]03]| 3
15{05(12115|11|04])02]0.7 15/{05(12) 2 |05|03])0.2]| 0.7

Fig 6. Implementing double point cr ossover

6.2.3. Mode M utation 6.2.4. Resour ce M utation

It isimplemented on the first row of chromosome as follows: It is implemented on the other rows of chromosome as
an activity is randomly selected then the current mode is follows: an activity is randomly selected then AT in the
randomly changed into other mode (i.e, 1,...,M,). InFigure . . oojution s randomly  changed  between

7, the mode assigned to activity "D" ischanged into 2. O<Ar. ., <T r In Figure 7, Ar,, and Ar,,,ae

imk = limk — Limk " D22
changed.

A|lB]|C E G| H A|lB|C|DJ|E]|F H
Mode 1122|121 ]2]2 . 11211} 1]|2]|2

. Offspring
Mutation | 25 03| 0 |12 2 [05]07| 5 25|03 0 |12] 2 |05|07| 5
2] 1|07 2 |05[03|04] 2 2] 1|07| 2]05[03|04) 2
C|D|E|F|G]|H A C| D G| H
Resource| 2 | 2 ) 1 ) 1|2 |2 |1]|1 . 212111} 2)2|1]1

_ Offspring
Mutation | 4 | 1 | 0 | 2 |15 1 [03]| 3 4 1110|115 1]03| 3

15)05(12|15|11)04] 02|07 15|05({12)15|11)01|02]|0.7

Fig 7. Implementing mutation
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6.3. Selection Strategy

The selection strategy means that how to choose the
individuals in the current population that will create
offspring for the next generation. Generally, it is better
that best solutions in the current generation selected as
parents for creating offspring. The most common
method for the selection mechanism is the "roulette
wheel" sampling, in which each individua is assigned
adice of acircular "roulette wheel" and the size of the
diceis proportional to the individual's fitness.

The wheel is spun Pop_Sze times, where Pop_Sze is
the number of individuals in the population. On each
spin, the individual under the wheel's marker is
selected to be in the pool of parents for the next
generation. This method can be performed as follows:

a Let CF be the sum of the Cost Function of al
solutionsin the current population as follows:

CF = Popfzecfp) (45)

b. Where cf b is the cost function or fitness values of

solution p and Pop_Sze is equal to the number of
chromosomes in the popul ation.

c. Let p, be the relative probability related to
chromosome p as follows:

cf
Py :cT:P p=1..Pop_Sze (46)

d. Let F’p be the cumulative probability related to
chromosome p as follows:

P
P,=Yp;, p=1..Pop_Sze (47)
i1

e. Generate a random number, say r, in the range of
[0, 1]. If r <P, then the first chromosome is

selected. Otherwise, the p" chromosome is
selected where,

P<r<P, 2< p<Pop_Sz (48)
The fitness of each solution is directly obtained by Eq.
(42). The initial population is randomly created in
terms of a continuous uniform distribution.

6.4. Stoppage Conditions

We use three criteria for stopping the proposed GA as
follows: 1) the maximum number of the established
generation, 2) an arbitrary minimum value of variance
of the last generation, and 3) the maximum run time.
The algorithm is finished if one of the three mentioned
criteria satisfied.

The variance of each generation can be calculated as
follow:

15

2 1 Pop_Size — (49)
-— = Y(cF,-CF
%o Pop_Sze ;( o o)

where CF,, is the fitness of p™ chromosome in
generation g. éﬁgis average fitness of al

chromosomes in generation g that is calculated as
follow:

Pop_Size
CE-— ' Scr (50)
 Pop_Sze &= *

7. Computational Results
In order to show that the model serves to solve
instances of practical size, ProGen/max [14] is used to
generate 100 RCPSPMCM-GPR instances in 20
categories. Table 4 shows the control parameters used
for ProGen/max to generate instances of the MRCPSP-
GPR and Table 5 gives the necessary adaptations for
obtaining instances of RCPSPMCM-GPR.
The Order Srength OSis a [0, 1]-normalized measure
defined as the number of precedence relations, which is
minimum for parallel and maximum for series digraphs
[14]. The Resource Factor RF reflects the average
portion of resources requested by each activity [14].
Setting RF at 1 leads to the most complex resource-
constrained project scheduling problem instances. The
Resource Strength RS measures the scarcity of the
resource availability to the respective requirements
[14].

Table4. The parameter settingsfor instances of

MRCPSP-GPR
Symbol Important Control Parameter Value
N number of non-dummy activities 10,20,30,40,50
M, number of Modes per activity 2,3
dim duration of each mode [5, 10]
number of initial and terminal activities [2, 3]
maximum number of predecessors and
successors 3
(O] order strength 0.5
percentage of backward arcs
(maximal time lags) 20%
degree of redundency 0.0
number of cycle structures [1, 3]
number of activities per cycle structure [1, 5]
coefficient of cycle structure density 0.3
deviations of minimal time lags from
duration 05
tightness of maximal time lags 05
slack factor 0.0
K number of renewable resourcetypes 2, 3,4,6
(. renewabl e resource demand [1, 5]
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The degree of redundancy is computed by dividing the
number of redundant arcs in the network by their
theoretical maximal value.

The coefficient of cycle structure density is a measure
of the amount of precedence relations in a cycle
structure. The tightness of maximal time lags
determines how the values of the maximal time lags
relate to their theoretical minimal value which results
in time- and resource feasibility.

The slack factor determines how the minimal time lags
depend on the activity modes [14]. Upper bound for
resource demand of type K can be obtained using the
following eguation:

limk = Limi T 1AN, (58)
In order to find d;, ,
work required to complete activity i in mode m and

can be stated in the following form when Microsoft
office Project is used [15].

Let: W, betheamount of total

K
\Nim = dim ; rirr]k (59)

Table 5. Adaptations of the data to obtain
ingtances of RCPSPMCM-GPR

Assume Wi, is a fixed constant obtained by replacing

dim and T

Accordingly, d im Can be calculated by the following

with d,,, and I, respectively.

equation replacing fi,, with f, .

K,

9 60
dim :\Nim kZ:;rimk ( )

For theinstancesof K =1, ﬂim' is calculated simply
by Eg. (40). In the situations involvingK > 2 which

mandate more than two observations, the Sufficient
observations can be obtained by generating a few

random numbers forf; ., , between I, and T, , and

then calculate dim by Eqg. (60). At this time a software

such as MINITAB or MATLAB can be used to obtain
the relevant regression equations. In this paper we have
used Eq. (41) for K _=2.

Since the CPU time for solving a mathematical model
depends on the number of constraints and variables, to
reduce the size of the experiment, we report only on
important parameters influencing solution time.

We fixed the other parameters which usualy influence
on the feasible area of the model at specific values
rather than varying them over the entire range of

complexity. Consequently, the instances are
Symbol Important Control Parameter Value categorized according to the combinations of
: N ={10,20,30,40,50} and (M,,K_,K)={(2,1,2),
K, number of resources types required for teem
each mode different 1,2 (3.1,3), (224), (3,2,6)}. .
from other modes ’ For each category (out of 20), 5 instances have been
generated for atotal of 100. The proposed GA has been
d_=d_ normal/maximum duration of each mode  [5, 10] coded in the MATLAB using fmincon(...) and ga(...)
moom functions.
In order to have some benchmarks, the instances have
Timk = Timic 1OWer bound renewable resource demand  [1, 9] been optimally solved by the Lingo 8.0 software using
branch-and-bound (B&B) method as well. Each
ran, arandom real number for range between problem is alowed a maximum of 1000 seconds of
lower and upper bound of resource CPU time. All the computational experiments have
demand [0, 3] been carried out on an intel® Celeron® mobile 1.3
GHz Personal Computer with 512 Mb RAM. Tables 6
D due date of project for instances 0 and 7 summarize our findings as average CPU times
for B&B and GA.
P per period penalty cost of project 100
Table 6. The average CPU timefor solving five instancesin each category
Number of (M. =2,K_ =1LK=2) (M, =3K,=1LK=3)
Activities B&B GA O.F. Gap % B&B GA O.F. Gap %
10 59.75 17.21 13% 76.95 18.91 19%
20 385.14 51.82 11% 435.38 50.24 23%
30 >1000 167.60 - >1000 196.32 --
40 >1000 383.04 - >1000 372.75 -
50 >1000 925.22 - >1000 951.30 -
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Table 7. The average CPU timefor solving fiveinstancesin each category

Number of (Mi:Z,Km:Z,K:4) (Mi=3,Km:2,K:6)

Activities B&B GA O.F. Gap % B&B GA O.F. Gap %
10 143.19 26.76 17% 311.45 31.08 28%
20 >1000 98.91 -- >1000 123.31 -
30 >1000 268.04 -- >1000 259.70 --
40 >1000 681.38 -- >1000 701.15 --
50 >1000 >1000 -- >1000 >1000 --

The values below the columns of B&B and GA are the References

CPU time in second. The quality of GA in compare to
B&B has been measured by O.F. Gap% which is the
difference between objective functions of two methods.
By increasing the number of activities, B&B can not
reach to the optimal solution in an acceptable amount
of time. The proposed GA could reach to near optimal
solutions in shorter time respect to B&B method. As
indicated in Tables 6 and 7, the solution time of

proposed model is very sensitiveto K | K and N.

8. Conclusions
In this paper we considered the multi-mode resource
constrained project scheduling problem  with
generalized precedence relations in which the duration
of an activity is determined by a discrete mode
selection and a continuous function of the resource
requirements within the selected mode. This problem
cadled RCPSPMCM-GPR is general case of the
problem MRCPSP-GPR. In the absence of discrete
multi-mode, the problem reduces to the continuous
Time/Cost or Time/Resource Trade-off Problem. In the
absence of crashing within a mode, the problem
reduces to the MRCPSP-GPR.
Although, considering real numbers for durations and
resources increases the complexity of the problem, it
allows flexibility to achieve an active pattern of
resource usage over time as well as a shorter make
span. Firstly, we presented an exact model for the
RCPSP-GPR and MRCPSP-GPR. Secondly, the model
was developed for optimally solving the problem
RCPSPMCM-GPR. Thirdly, the genetic algorithm was
used to solve the proposed nonlinear model. We
modified the objective function by replacing the
duration costs with the resource requirements costs.
The proposed model has no need for afeasible solution
to startup with. No formulation as an exact solution has
been reported for the RCPSPMCM-GPR except the one
presented in this paper. Furthermore, time horizon can
be continuous in this model thus dealing with different
processing time units (e.g., hours, days, weeks, and so
on), ispossible.
Future efforts will be devoted to the application of the
other meta heuristic approaches for solving the
nonlinear model in the situations involving instances of
practical size (more than 100 activities) in a reasonable
amount of time.
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