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Abstract: In this paper, we apply the stochastic dynamic programming to 
approximate the mean project completion time in dynamic Markov PERT networks. 
It is assumed that the activity durations are independent random variables with 
exponential distributions, but some social and economical problems influence the 
mean of activity durations. It is also assumed that the social problems evolve in 
accordance with the independent semi-Markov processes over the planning horizon. 
By using the stochastic dynamic programming, we find a dynamic path with 
maximum expected length from the source node to the sink node of the stochastic 
dynamic network. The expected value of such path can be considered as an 
approximation for the mean project completion time in the original dynamic PERT 
network.  

 
Keywords: Dynamic Programming, Stochastic Processes, Longest Path, Graph 
Theory  

 
1. Introduction1 

Project Scheduling has been a major objective of most 
models proposed to aid planning and management of 
projects. The most important method to schedule a 
project assuming deterministic durations is the well-
known CPM – Critical Path Method. However, most 
durations have the random natures and therefore, PERT 
was proposed to determine the distribution of the total 
duration, T. This method is based on the substitution of 
the network by the CPAD – critical path assuming that 
each activity has a fixed duration equal to its mean 
(critical path using average durations). The mean and 
the variance of the CPAD are given by the sum of the 
means and of the variances of its activities, 
respectively, and therefore these results considered the 
mean and the variance of the total duration of the 
network.  
This paper presents a new methodology to approximate 
the mean project completion time in dynamic Markov 
PERT networks. It is assumed that the activity 
durations are independent random variables with 
exponential distributions, but upon starting to do each 
activity, some social and economical problems like 
strike, war or inflation influence the mean of activity 
duration, and consequently its exponential 
distribution’s parameter. 
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It is also assumed that the social problems evolve in 
accordance with the independent continuous-time 
Markov processes over the planning horizon. 
By using the stochastic dynamic programming, we 
obtain the expected value of the dynamic longest path 
in the stochastic dynamic network, which would be 
approximately equal to the mean of project completion 
time in the original dynamic PERT network.  
Although we could not find any paper about the 
longest path analysis in dynamic PERT networks, there 
are several papers about analysis of project completion 
time in PERT networks. Charnes, Cooper and 
Thompson [1] developed a chance-constrained 
programming.  
They assumed exponential activity durations. For 
polynomial activity durations, Martin [2] provided a 
systematic way of analyzing the problem through 
series-parallel reductions. Kulkarni and Adlakha [3] 
developed an analytical procedure for PERT networks 
with independent and exponentially distributed activity 
durations.  They modeled such networks as finite-state, 
absorbing continuous-time Markov chains with upper 
triangular generator matrices. Then, they proved the 
time until absorption into this absorbing state is equal 
to the length of the longest path in the original network 
provided it starts from the initial state. Elmaghraby [4] 
provided lower bounds for the true expected project 
completion time. Fulkerson [5], Clingen [6], Robillard 
[7] and Perry and Creig [8] have done the similar 
works. The analytical and approximation methods 
above are all static, because they consider the activity 
durations as the independent random variables and 
ignore their dependence on the dynamic behavior of 
social problems.There are also a few papers about the 
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shortest path analysis in stochastic dynamic networks, 
see Hall [9], Bertsimas and Van Ryzin [10], Psaraftis 
and Tsitsiklis [11] and Azaron and Kianfar [12]. In this 
paper, we apply the model worked by Azaron and 
Kianfar [12] in order to find a dynamic path with 
maximum expected length in the dynamic Markov 
PERT network. The expected length of such path 
would be approximately equal to the mean project 
completion time in the dynamic PERT network. The 
true mean project completion time would be equal or 
greater than such estimate. Therefore, our 
approximation can be considered as a lower bound for 
the true expected project completion time. The 
remainder of this paper is organized in the following 
way. The analysis of Dynamic Markov PERT networks 
is illustrated in Section 2. In Section 3, the method is 
illustrated through solving a numerical example. 
Finally, we draw the conclusion of the paper in Section 
4. 
 

2. Analysis of Dynamic Markov PERT 
Networks 

In this section, we present an approximation method to 
obtain the mean project completion time in Dynamic 
Markov PERT networks. Let G=(V,A) be a PERT 
network, in which V and A represent the set of nodes 
and  activities of G, respectively. The number of 
effective social and economical problems, which 
influence the mean of activity durations, is equal to N. 
Duration of activity  is an exponential random 
variable with parameter 

Ajl ∈),(

ljλ . This parameter is a 

function of  or the state vector of 
system in node l, which means the states of the social 
problems upon starting to do the activities originating 
from node l. The social problems evolve in accordance 
with the independent continuous-time Markov 
processes over the planning horizon. Clearly, the state 
vector of system is known only at the source node of 
the network, because, at the beginning of project, we 
know the initial states of the social problems. The other 
assumptions are as follows: 

),...,,( 21 Nsss

1. The number of states of ith social problem is equal 
to Ni (these states are in this order: , ,…, ), and 

 represents the probability of transition of this 

social problem from state  to state . 
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2.  represents the transition time of the ith social 

problem from state  to state . Each  is a 
random variable with exponential density function 

, because it was assumed that each social 
problem evolves in accordance with a continuous-time 
Markov process. Then, if we consider  as the 

staying time of the ith social problem in state , its 

density function or (t) would be 
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3. All imbedded Markov processes corresponding to 
the indicated continuous-time Markov processes have 
the ergodic property. 
4.  represents the conditional probability that ith 

social problem moves to state , given that at time 

zero, it was in state .  

)(ti
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How can a process that started by entering state  at 

time zero be in state  at time t. One way this can is 

for  and  to be the same state and for the 

process never to have left state  throughout the 
period (0,t). This requires that the process make its first 
transition after time t. Every other way to get from 
state  to state  in the interval (0,t) requires that 
the process make at least one transition during that 
interval. For example, the process could have made its 
first transition from state  to some state  at a 
time 
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τ , t<<τ0 , and then by some succession of 

transitions have made its way to state  at time t. 
These considerations lead us to Eq. (2) for computing 
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Certainly, we cannot directly compute  from 
Eq. (2), but since the second integral of Eq. (2) is a 
convolution of two functions, we can compute 

 by the Laplace transform. Let  

represent the Laplace transform of  and 

 represent the Laplace transform of , 
which is computed from Eq. (3). 
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Now, we can compute  by getting the inverse 

Laplace of , see Howard [13] for more details.  

)(ti
km ii

φ

)(sie
km ii

φ

Let 
ljik

mmm
i

NP ...21  represent the conditional probability 
that after doing the activity (l,j), the state of ith social 
problem changes to , given that upon starting to do 
this activity, the state of ith social problem and the 

i
ki
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state vector of system have been  and 

, respectively. 
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Lemma 1. 
ljik

mmm
i

NP ...21  is given by: 
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Proof. 
ljik

mmm
i

NP ...21  is computed by conditioning on the 
duration of activity (l,j). The probability of transition 
the ith social problem from state  to state  after 
a time t, upon finishing the activity (l,j), given that the 
duration of activity (l,j) is equal to t, would be , 
because the continuous-time Markov process 
corresponding to the transitions of ith social problem is 
memoryless. Since, the activity duration (l,j) has 
exponential distribution with parameter 
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sss , then, Lemma 1 is proved.   
Let A(l) be the set of forward adjacent nodes of node l, 
and  represent the maximum 
expected length form node l to the sink node of the 
dynamic PERT network, if the state vector of system in 
node l, which includes the states of all social and 
economical problems upon starting to do the activities 
(l,j), , is . 
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Theorem 1.  for  and 

  is given by 
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Proof. The expected length of arc (l,j) is 
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, because the duration of activity 

(l,j) has exponential distribution with parameter 
ljλ ),...,,( 21
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N
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sss .  
The probability that the state vector of system changes 
from  in node l to , 
after doing the activity (l,j), would be 
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21 ... , because the continuous-
time Markov processes corresponding to the transitions 
of the social problems are independent. If the arc (l,j) 
belongs to the path with maximum expected length, 
which approximately considered as the longest path, 
then, the state vector of system in node j actually 

changes to  with the indicated 
probability. Finally, by conditioning on the state vector 
of system in node j, Theorem 1 is proved. 
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Without losing the generality, we assume that the 
nodes of the network are numbered from 1 to n, in 
which there should be no directed path from node j to 
node l for j>l. The following algorithm can be used to 
approximate the mean project completion time in 
dynamic Markov PERT networks. 

 
Algorithm 

Step 1. Begin from node l=n. It is clear that 
 for , . 0),...,,( 21

21
=N

mmmn N
sssV ii Nm ,...,2,1= Ni ,...,2,1=

 

Step 2. Set l=n-1. Then, compute  

for 
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1 21

N
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ii Nm ,...,2,1= , Ni ,...,2,1= , from the recursive 
function (5). In this case, the second term of (5) would 
be equal to 0, because . nnA =− )1(
 

Step 3. Compute  for , )(ti
km ii

φ ii Nm ,...,2,1=

ii Nk ,...,2,1= , Ni ,...,2,1= , by getting the inverse 

Laplace of  in Eq. (3). )(sie
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Step 4.  Set l=l-1. Then, compute 
ljik
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i

NP ...21  for 

ii Nm ,...,2,1= , ,  and ii Nk ,...,2,1= Ni ,...,2,1=
)(lAj∈ , except for j=n, from Eq. (4).  

 

Step 5. Compute  for , ),...,,( 21
21

N
mmml N

sssV ii Nm ,...,2,1=
Ni ,...,2,1= , from the recursive function (5). 

 

Step 6. If l>1, then, go to 4. Otherwise, go to 7. 
 

Step 7. Stop. The approximation of mean project 
completion time would be equal to 

.  ),...,,( 21
1 21

N
mmm N

sssV
In the worst case, assume that we have a complete 
stochastic network, in which for each l, 
A(l)={l+1,l+2,…,n}. In this case, the time complexity 
of the algorithm in steps 2 and 3 would be clearly 

 and , respectively. The time 

complexity of the algorithm in step 4 is 
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With the same reason, the time complexity of the  
algorithm in step 5 would be 
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Therefore, in the worst case, the time complexity of the 
algorithm in step 3 is polynomial, but the time 
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complexity of the algorithm in steps 2, 4 and 5 would 
be exponential. In practice, the stoshatic network is not 
complete, and there is also a limited number of 
effective social and economical problems in real world 
problems. Therefore, this algorithm would be efficient 
for approximating the mean project completion time in 
dynamic Markov PERT networks.   
 

3. Numerical Example 
Consider the dynamic PERT network depicted in Fig. 
1. Strike and inflation rate are two social and 
economical problems, which influence the activity 
durations. These problems evolve in accordance with 
two independent continuous-time Markov processes 
over the planning horizon. Strike has two states, in 
which  refers to existing and  refers to non-
existing the strike, in the society. Inflation rate has also 
two states, in which  refers to high inflation rate and 

 refers to low inflation rate. The activity durations 
are independent random variable with exponential 
distributions, but the social and econimical problems 
infulence their parameters, upon starting to do these 
activities. These parameters can be estimated from the 
previous data related to the similar activities, which 
have done before in similar conditions. Table 1 shows 
the values of these parameters (time unit is in year). 
The objective is to approximate the mean project 
completion time in this dynamic Markov PERT 
network.  

1
1s 1

2s

2
1s

2
2s

 
 
 
  
                   
                                                                                   
                                                                                    
                                                                     
                                                                                                
 
 

Fig 1. The Dynamic Markov PERT Network 
 
The transition matrices are 
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⎦
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⎢
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⎡
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6.04.0
101P      

 

⎥
⎦

⎤
⎢
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⎡
=

7.03.0
2.08.02P .      

 

It is also assumed that for mi=1,2, ki=1,2, 
i=1,2, are as follows: 

)(tf i
km ii

 
tetftftftf −==== )()()()( 1
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11     t>0    
 

)(2
11 tf = 4e-4t     t>0    

 

)(2
12 tf = 2e-2t     t>0    

 

)(2
21 tf = 3e-3t     t>0    

 

)(2
22 tf = e-t         t>0     

Table 1. Parameters of activity durations 
 12λ  13λ  

23λ  
24λ  

34λ  35λ  
45λ  

),( 2
1

1
1 ss 1 2 3 5 1 3 4 

),( 2
2

1
1 ss 2 3 4 6 4 4 6 

),( 2
1

1
2 ss 4 4 7 7 3 5 8 

),( 2
2

1
2 ss 6 5 9 10 7 8 10 

 
According to step 1 of the proposed algorithm, 

 for , . Then, we go 

to step 2, set l=4, and compute  for 

, 

0),( 21
5 21

=mm ssV 2,1=im 2,1=i

),( 21
4 21 mm ssV

2,1=im 2,1=i , from (5). Then, we go to step 3 and 

compute  for , , )(ti
km ii

φ 2,1=im 2,1=ik 2,1=i , by 

getting the inverse Laplace of  in (3). The 
results are as follows: 
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km ii
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11 tφ =0.29+0.71e-1.4t, =1-     )(1

12 tφ )(1
11 tφ

)(1
21 tφ =0.29-0.29e-1.4t, =1-         )(1

22 tφ )(1
21 tφ
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11 tφ =0.36+0.73e-0.89t-0.09e-2.81t, =1-  )(2

12 tφ )(2
11 tφ

)(2
21 tφ =0.36-0.06e-0.89t-0.3e-2.81t, =1-  )(2

22 tφ )(2
21 tφ

Then, we go to step 4, set l=3, and compute 
ljik

mmm
i

NP ...21  for 2,1=im , ,  and 2,1=ik 2,1=i 4=j , 
from (4). Taking into account the results, we go to step 
5 and compute  for , ),( 21

3 21 mm ssV 2,1=im 2,1=i , 
from (5).  
This process continuous until l=1. In this stage, the 
state vector of system is actually known and assumed 
to be ),( 21

2ss2 , and 597.0),( 21
2 =ss21V . So, the 

approximation of mean project completion time in the 
dynamic Markov PERT network of Fig. 1 is equal to 
0.597 year.  

 
4. Conclusion 

In this paper, we developed an algorithm based on 
semi-Markovian decision processes and network flows 
theory to find a dynamic path with maximum expected 
length from the source node to the sink node of 
dynamic Markov PERT networks. The expected length 
of such path is approximately equal to the mean project 
completion time in the dynamic PERT network.  
Unfortunately, our method has the same disadvantages 
of the classical PERT method, and the true mean 
project completion time would be equal or greater than 
such estimate. Therefore, our approximation can be 
considered as a good lower bound for the true mean 
project completion time. Another limitation of this 
model is that the time complexity of some steps of the 
proposed algorithm, in the worst case examples, would 
be exponential. In practice, there is a limited number of 
effective social and economical problems. Therefore, 
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our algorithm would be an efficient algorithm for 
approximating the mean project completion time in 
real situation PERT networks.  
Our methodology can be extended to general PERT 
networks. We can also consider the choice of 
temporary stopping the activities originating from a 
node, when the situation of social problems in that 
node is not good and therefore these activities would 
have the long durations. In this case, it might be better 
to stop doing these activities until the next transitions 
of the social problems, for encountering more 
favorable conditions. This new model can be easily 
developed, by extending the model of Azaron and 
Kianfar [12].   
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