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KKEEYYWWOORRDDSS                                  ABSTRACT 
 

 

In an increasing number of practical situations, the quality of a 

process or product can be effectively characterized and summarized by 

a profile. A profile is usually a functional relationship between a 

response variable and one or more explanatory variables which can be 

modeled frequently using linear or nonlinear regression models. In this 

paper, we study the effect of non-normality on profile monitoring in 

Phase II when within or between autocorrelation is present. Different 

levels of autocorrelation and skewed and heavy-tailed symmetric non-

normal distributions are used in our study to evaluate the performance 

of three existing monitoring schemes numerically. Simulation results 

indicate that the non-normality and autocorrelation can have a 

significant effect on the in-control performances of the considered 

schemes. Results also indicate that the out-of-control performances of 

the schemes are not very sensitive to low and moderate levels of 

autocorrelation in moderate and large shifts. 
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11..  IInnttrroodduuccttiioonn
∗∗∗∗
  

In some practical situations, the quality of a process or 

product can be characterized by a relationship between 

a response variable and one or more explanatory 

variables. This relationship is usually known to as 

profile. Many authors including Mestek et al. (1994), 

Stover and Brill (1998), Lawless et al. (1999), Kang 

and Albin (2000), Mahmoud and Woodall (2004), 

Wang and Tsung (2005), Gupta et al. (2006), 

Soleimani et al. (2009), and Jensen et al. (2009) 

discussed real world applications in which a linear 

profile could be considered to represent the status of a 

process or product effectively. Properties of linear 

profile in Phase I and Phase II has been studied many 

researchers including Mestek et al. (1994), Stover and 

Brill (1998), Kang and Albin (2000), Kim et al. (2003), 

Mahmoud and Woodall (2004), Noorossana et al. 
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(2004), Gupta et al. (2006), Zou et al. (2006), 

Mahmoud et al. (2007), Saghaei et al. (2009), and Zhu 

and Lin (2010). Sometimes status of a product or 

process can be well modeled by a nonlinear 

relationship. Several authors including Jin and Shi 

(1999), Walker and Wright (2002), Ding et al. (2006), 

Williams et al. (2007), Moguerza et al. (2007), and 

Vaghefi et al. (2009) have discussed monitoring of 

nonlinear profiles. Kazemzadeh et al. (2008) 

considered polynomial profiles and extended three 

phase I methods to monitoring such profiles. Another 

paper on profile monitoring is by  Zou et al. (2007) in 

which they proposed a multivariate exponentially 

weighted moving average (MEWMA) control chart for 

monitoring general linear profiles in Phase II. 

In all the above mentioned studies, it is implicitly 

assumed the error terms in the model are independent 

and identically distributed normal random variables 

with mean zero and fixed variance. However, in certain 

practical cases, these standard assumptions may be 

violated. Soleimani et al. (2009) presents an example 

of situation for which error terms within profiles are 

autocorrelated. They considered a first order 
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autoregressive model to account for the autocorrelation 

structure between observations in each linear profile 

and developed four methods to monitor them in Phase 

II. Jensen et al. (2008) proposed a linear mixed model 

to account for the autocorrelation within a linear profile 

in Phase I. Noorossana et al. (2008a) and Kazemzadeh 

et al. (2009) proposed different time series based 

methods for monitoring linear profiles where 

autocorrelation exists between profiles over time. 

However, a few studies have been done to investigate 

the effect of non-normality and autocorrelation on 

linear or nonlinear profile monitoring. Noorossana et 

al. (2008b) studied the effect of non-normality of the 

error terms using Gamma and t-distributions to model 

the behavior of observations. Noorossana et al. (2008a) 

and Soleimani et al. (2009) investigated the effect of 

between and within linear profile autocorrelation, 

respectively. 

In this paper, we study the effect of simultaneous 

violation of the normality and independency 

assumptions on the performances of three common 

methods of linear profile monitoring. To study the 

effect of non-normality and autocorrelation, we 

consider the use of both heavy tailed symmetric and 

skewed non-normal distributions with dependent error 

terms generated by a first order autocorrelation model. 

In addition, we consider an autoregressive model of 

order one to model the autocorrelation structure 

between error terms. Different autocorrelation values 

are considered in the numerical examples.  

Next section discusses three methods which have been 

proposed by Kang and Albin (2000) and Kim et al. 

(2003) to monitor linear profiles in phase II. Section 3 

covers some non-normality and autocorrelation issues 

related to linear profiles. The simultaneous effects of 

non-normality and autocorrelation on the performance 

of the three methods are evaluated in Section 4. Our 

concluding remarks are presented in the final section. 

 

2. Linear Profile Monitoring Methods 
As discussed in the introduction section, many 

researchers have contributed to the development of 

simple linear profile monitoring methods. One 

important reason is its simplicity and applicability to 

model real life problems. In this paper, we investigate 

the simultaneous effects of non-normality and 

autocorrelation on the performance of the control 

schemes developed by Kang and Albin (2000) and Kim 

et al. (2003). These are the common control schemes 

used in phase II analysis.  

Kang and Albine (2000) proposed two control schemes 

for monitoring linear profiles in phase II. Their first 

method involves a bivariate T
2
 control chart to monitor 

the linear regression coefficients. Their second strategy 

is to use a combination of an exponentially weighted 

moving average (EWMA) and a range (R) chart to 

monitor the regression residuals obtained at each 

sample. The EWMA control chart and R control chart 

are used for monitoring the average and variation of 

the residuals, respectively. Kim et al. (2003) proposed 

a combination of three EWMA control charts to 

monitor intercept, slope, and process standard 

deviation, separately.  

In simple linear profiles, it is assumed that paired 

observations (xi, yij) for i=1,2,…,n and j=1,2,... are 

collected over time and the relationship between the 

paired observations is best represented by a linear 

profile, i.e.,  

 

,10 ijiij xAAy ε++=                                             (1) 

 

where εij’s are independent and identically distributed 

(i.i.d) normal random variables with mean zero and 

variance σ
2
. It is also assumed that the X-values are 

fixed and values of the parameters A0, A1, and σ
2
 are 

known. 

The first approach we describe in this section is the 

bivariate T
2
 control chart proposed by Kang and Albin 

(2000). To use this chart, it is assumed that the least 

squares estimators for intercept and slope follow a 

bivariate normal distribution. The mean vector and 

variance-covariance matrix for the bivariate normal 

distribution are defined as 

 

),( 10 AA=µ      and     
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For sample j, the sample statistic in the bivariate T
2
 

control chart is calculated using the following 

equation: 

 

)()(
12

µzΣµz −−= −
j

T

jjT                                (3) 

 

where µ and Σ are defined in Equation (2) and zj is the 

vector of sample least squares estimators. It is well-

known that 2
jT  follows a central chi-square distribution 

with 2 degrees of freedom when process is under 

statistical control. Therefore, upper control limit for 

this chart is 2
,2 UCL αχ= where 2

,2 αχ is the 100(1-α) 

percentile of the chi-square distribution with 2 degrees 

of freedom. As it was stated earlier, the second 

approach proposed by Kang and Albin (2000) is known 

as EWMA/R method. In this method, the regression 

residuals obtained at sample j using Equation (4) are 

monitored by a combination of EWMA control chart 

and R chart, respectively. 

 

nixaaye ijjijij ..., ,2 ,1   ,     10 =−−=           (4) 

 

EWMA control chart monitors average value of these 

residuals and R chart is used to detect shifts in 

variation. For the j
th

 sample, the EWMA control chart 

statistics are given by Equation (5). This statistic is a 
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weighted average of the j
th

 residual average and the 

previous residual averages.  

 

,)1( 1−−+= jjj eez θθ                                         (5) 

 

where je is the average of the residuals for sample j , θ 

(0 < θ <1) is the smoothing constant and 00 =z . This 

control chart signals as soon as the value of jz plots 

out of control limits. The control limits for the EWMA 

control chart are computed using Equation (6). 

 

n
LLCL

)2( θ
θσ
−

−=         and 

n
LUCL

)2( θ
θσ
−

=                                                 (6) 

 

where L (L > 0) is a constant selected to obtain a 

specified in-control ARL value. Kang and Albin
 
(2000) 

proposed the range control chart in conjunction with 

the EWMA chart. The statistic for the range control 

chart is )min()max( ijijj eeR −= . The control limits 

for the R chart are: 

 

)( 32 LddLCL −=σ     and      )( 32 LddUCL +=σ
   

 (7) 

 
respectively, where L (L > 0) is a constant chosen to 

obtain a specified in-control ARL value and the values 

of d2 and d3 are constants that depend on the sample 

size n. 

Kim et al. (2003) propose a control scheme consisting 

of three independent EWMA control charts to monitor 

intercept and slope coefficients of the model and 

standard deviation of the process separately. To 

construct three independent EWMA control charts, 

they first coded the X -values. After transforming the 

X-values by subtracting the sample average form each 

observation, i.e. )( XXX ii −=′ , an alternative form of 

the underlying linear profile is obtained as 

,10 ijiij XBBy ε+′+= ni ..., ,2 ,1= , where XAAB 100 +=  

and 11 AB = . The least squares estimator for the new 

intercept and slope coefficients are jj yb =0  and 

jj ab 11 = , respectively. For sample j, jy is the average 

of the observations and ja1  is the least squares 

estimator for A1. These estimators are independent 

normal random variables with means 0B  and 1B  and 

variances 
21σ−

n  and
21σ−

xxS , respectively. Since the 

covariance between jb0  and jb1  is zero now one can 

use two separate control charts for monitoring these 

coefficients. Kim et al. (2003) used three separate 

EWMA control charts to monitor the intercept, slope, 

and error variance, respectively.  

The EWMA control chart for 0B uses the statistic 

defined by Equation (8), where the first value of this 

statistic is equal to 0,0 0
Bz b = . 

 

00 ,10, )1( bjjbj zbz −−+= θθ , ... ,2 ,1=j        (8) 

 
The upper and lower control limits of this chart are: 

 

n
LB b

)2(
LCL

00 θ
θσ
−

−=               and 

n
LB b

)2(
UCL

00 θ
θσ
−

+=                                  (9) 

 

The slope parameter 1B  can also be monitored by using 

EWMA statistic computed by Equation (10). It is also 

assumed that the value of 
1,0 bz is equal to 1,0 1

Bz b = . 

 

11 ,11, )1( bjjbj zbz −−+= θθ , ... ,2 ,1=j          (10) 

 

Control limits for the EWMA control chart are given 

by: 

xx

b
S

LB
)2(

LCL
11 θ

θσ
−

−=                and  

xx

b
S

LB
)2(

UCL
11 θ

θσ
−

+=                            (11) 

 
where 

0bL and 
1bL are multiples chosen to obtain a 

specified in-control ARL. Finally to monitor the 

process variability, Kim et al. (2003) considered the 

EWMA control chart for monitoring the error variance 

σ
2
 using the method proposed by Crowder and 

Hamilton (1992). The statistic for this EWMA control 

chart is given by Equation (12). 
 

{ })ln( ,)1()(ln max 2

0,1, σθθ MSEjjMSEj zMSEz −−+= ,  

... ,2 ,1=j                                                               (12) 

 

where )ln( 2
,0 σ=MSEz . The EWMA control chart signals 

an out-of-control condition when the value of MSEjz , is 

greater than the upper control limit calculated using: 
 

]var[ln(
)2(

UCL j

xx

MSE MSE
S

L
θ
θσ

−
=              (13) 

 

where
5321 )2)(15/16()2)(3/4()2(2)2(2]var[ln( −−−− −+−+−+−≅ nnnnMSEj
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)10( ≤< θθ
 
is a smoothing parameter, and MSEL  is a 

multiple chosen to obtain a specified in-control ARL, 

respectively. A signal from any of these EWMA 

control charts leads to an out-of-control condition. 

 
3. Non-Normality and Autocorrelation 

Normality and independency of error terms are critical 

assumptions in linear profile monitoring. In certain 

situations, these assumptions, due to process nature, 

could be violated leading to misleading results. In this 

paper, we consider t-distribution as a heavy-tailed 

symmetric non-normal distribution and gamma 

distribution as a skewed distribution to study the effect 

of non-normality on the performance of linear profile 

monitoring methods.  

Student t-distribution is symmetric about its mean but 

has more probability in its tails than the standard 

normal distribution. In fact, the t-distribution differs 

from normality in the fourth and higher moments that 

can affect the shape of a distribution while the third or 

the lower moments are equal to a normal distribution. 

The gamma distribution is far from normality. It is 

different from a normal distribution in the third and 

higher moments that can significantly affect the shape 

of a distribution while mean and variance are equal to a 

normal distribution. On the other hand, the mean value 

of a common gamma distribution is positive.  

However, the mean of error terms in profile monitoring 

is often assumed equal to zero. Hence, the common 

gamma distribution is not suitable to use as a error term 

distribution. We propose the use of a generalized 

gamma distribution which allows us to generate both 

positive and negative values for error terms. The 

probability density function of generalized gamma 

distribution is given below.  

 

{ } γβγ
ββ

γ
α

α

>−−
Γ

−
=

−

xx
x

xf      /)( exp
)(

)(
)(

1

      (14) 

 
where γ (γ > 0) is the location parameter, α (α > 0) is 

the shape parameter, and β (β > 0) is the scale 

parameter, respectively. The generalized gamma 

distribution is often denoted as Gam (α, β, γ). The 

mean and variance of this distribution is given by 

αβγµ +=  and
22 αβσ = , respectively. 

In linear profile monitoring, it is also assumed that 

error terms are independent. Under certain 

circumstances, this assumption could be also violated. 

Independence assumption could be failed due to 

between profiles autocorrelation or within profile 

autocorrelation. 

In the between profiles autocorrelation case, it is 

assumed that error terms between successive linear 

profiles can be modeled using the following first order 

autoregressive model:  
 

ijjiij

ijiij

a

xAAy

+=

++=

− )1(

10

φεε

ε
                                          (15) 

 

where ijε ’s are the correlated error terms and aij’s are 

independent and identically distributed normal random 

variables with mean zero and variance σ
2
.  

For the case of within profile autocorrelation, it is 

assumed that error terms within each profile can be 

modeled according to a first order autoregressive 

model. For this situation, it is assumed that paired 

observations (xi, yij) are collected over time and the 

relationship between the paired observations can be 

modeled using the following relationship:  

 

ijjiij

ijiij

a

xAAy

+=

++=

− )1(

10

ρεε

ε
                                          (16) 

 
where ijε ’s are the correlated error terms and aij’s are 

independently and identically distributed normal 

random variables with mean zero and variance σ
2
.  

In the next section, we consider the case where the 

assumptions of non-normality and independency of 

error terms no longer holds. Non-normality violation in 

linear profile monitoring is investigated under within 

and between profiles autocorrelation.  

 
4. Performance Comparisons 

Performance of a control chart is commonly evaluated 

by how fast the chart detects sustained shifts after they 

occur. Detecting these shifts quickly and with few false 

alarms are worthwhile features for a control chart. The 

ability of a control chart to detect process changes can 

be measured by average run length (ARL) which is 

defined as the number of subgroups expected to be 

inspected before a signal is generated by the control 

chart.  

In this section, the in-control and out-of-control 

average run length values denoted by ARL(0) and 

ARL(1), respectively, are compared to a normal 

distribution, a t-distribution, and a Gamma distribution 

in the presence of between and within profile 

autocorrelations. If a control chart is insensitive or less 

sensitive to changes in these critical assumptions then 

the chart is said to be robust with respect to the 

violation of normality and independence assumptions. 

Performance of the control schemes described in 

Section 2 under simultaneous violation of normality 

and independence assumptions are evaluated 

numerically using 10,000 simulation runs to estimate 

the in-control and out-of-control ARL values. The 

underlying in-control reference model is assumed to be 

ijiij xy ε++= 23  with 2, 4, 6, and 8 as X -values. By 

coding the x-values, the alternative model 
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ijiij xy ε+′+= 213  is obtained where X'-values are -3, -

1, 1, and 3.  

For normal distribution, it is assumed that error terms 

are i.i.d. normal random variables with mean µ = 0 and 

variance 
3
52 =σ . Degrees of freedom for the t-

distribution is chosen as ν = 5. In this case, error terms 

are i.i.d. random variables with mean 0 and 

variance
3
52 =σ . For the gamma distribution, we set    

α = 
3

5 , β = 1, and γ = 
3
5−  which lead to error terms 

having a gamma distribution with mean 0 and 

variance
3
52 =σ . Such t and gamma distributions are 

far enough from normality to show the effect of non-

normality on performance of control schemes. Of 

course, one could consider different values for the 

parameters of the distributions.  

All control chart schemes were designed to have the 

same overall in-control ARL of 200. The smoothing 

constants θ in all of the EWMA control charts were set 

equal to 0.2. In order to investigate the effect of 

between or within profiles autocorrelation on the 

performance of the control schemes we used various 

values of φ and ρ.  

For T
2
 control chart, the upper control limit is given by 

10.59653UCL 2
005.0,2 == χ  yielding an in-control ARL 

of roughly 200. The EWMA/R approach uses a 

combination of the smoothing parameter θ and the 

multipliers, LEWMA and LR yielding an overall in-control 

ARL value approximately equal to 200. The value of 

multiplier LEWMA is chosen as 2.8851 corresponding to 

smoothing parameter value of θ = 0.2, yielding an in-

control ARL of 400. Notice that for the R chart, a value 

of 3.308 is considered for the multiplier yielding an in-

control ARL of approximately 400. Therefore, the 

combination of the two charts has an overall in-control 

ARL of approximately 200. Finally, for EWMA3 

approach, the multipliers
0bL ,

1bL , and MSEL  are 

designed to yield an overall in-control ARL value of 

roughly 200.  

For monitoring the Y-intercepts, 
0bL and for 

monitoring the slopes, 
1bL  are both set equal to 3.1144 

leading to an in-control ARL of 800. The combination 

of these two EWMA control charts yields an overall in-

control ARL of approximately 400. Besides, the 

multiplier MSEL  is chosen as 1.3016 yielding an in-

control ARL of roughly 400. As a result, the overall in-

control ARL for EWMA3 approach is approximately 

equal to 200.  

 
4.1. In-Control Performance Comparison  

In this section, we compare the effect of non-normality 

and autocorrelation on the in-control performance of 

linear profile monitoring methods. As mentioned 

before, we use a heavy-tailed t-distribution and a 

skewed gamma distribution for the violation of 

normality assumption and simultaneously induce 

autocorrelation in the error terms. Table 1 contains the 

values of ARL(0) when error terms follow normal, t, or 

gamma distribution in the presence of different levels 

of  autocorrelation between profiles over time. It can be 

shown that non-normality and autocorrelation between 

profiles seriously affect the EWMA/R approach more 

than other schemes. It is also obvious that all control 

schemes are sensitive to normality and independence 

assumption especially when autocorrelation 

coefficients are large. 

 
Tab. 1. In-control ARL values for different distributions and different levels of autocorrelation between profiles 

φ  T2                EWMA/R       EWMA3 

  N t gam  N t gam  N t gam 

0.0  200.0 59.3 49.2  200.4 55.9 57.9  199.7 119.2 111.4 

0.1  189.2 58.8 48.4  141.9 49.8 54.2  126.7 89.9 89.0 

0.3  125.8 52.8 45.0  58.2 36.0 36.8  41.7 40.0 40.0 

0.5  60.0 39.6 37.5  24.9 20.9 20.5  15.8 17.2 16.6 

0.7  23.8 23.0 24.9  11.5 11.4 11.2  7.9 8.6 8.2 

0.9  10.3 11.0 10.9  6.3 6.5 6.4  5.1 5.4 5.2 

 
Table 2 also shows the effect of non-normality and 

autocorrelation on the performance of T
2
, EWMA/R, 

and EWMA3 control schemes while the process is in 

control. In this comparison, we consider different 

levels of within profile autocorrelation when non-

normality is present. It can be shown that the 

performance of T
2
 control chart is seriously affected by 

non-normality and autocorrelation. The results of this 

study show that simultaneous violation of normality 

and independence assumptions affects the performance 

of all three control schemes. Small values of ARL (0) 

lead to large number of false alarms while process is in 

control.   
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Tab. 2. In-control ARL values for different distributions and different levels of autocorrelation between profiles 

ρ  T2   EWMA/R    EWMA3 

  N t gam  N t gam  N t gam 

0.0  200.0 59.3 49.2  200.4 55.9 57.9  199.7 119.2 111.4 

0.1  107.8 44.1 38.1  140.1 53.9 58.2  186.9 116.3 117.3 

0.3  33.6 23.6 23.3  56.5 38.8 41.0  75.8 66.2 70.6 

0.5  13.7 13.0 14.8  26.7 23.9 24.2  33.3 32.9 34.8 

0.7  7.0 7.5 8.3  14.7 14.2 14.1  17.5 18.1 18.4 

0.9  4.3 4.8 5.0  8.9 9.1 8.8  10.2 11.1 10.8 

 
Figure 1 shows the effect of autocorrelation values 

(either autocorrelation between profiles (φ) or 

autocorrelation within profile (ρ)) on the in control 

ARL performance of the control methods under 

different error distribution. It can be shown that 

EWMA3 method by Kim et al. (2003) is less sensitive 

to the departure from normality and independence 

assumptions especially for small values of 

autocorrelation coefficient.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. ARL(0) values for various autocorrelation coefficients and distributions 

 
4.2. Out-of-Control Performance Comparison 

In this section, we investigate the simultaneous effects 

of non-normality and autocorrelation on the out-of-

control performance of the schemes. Out-of-control 

ARL performance evaluation of the schemes is 

conducted using 10,000 simulation runs and different 

values of autocorrelation coefficient allowing shifts in 

the intercept, slop, and error standard deviation. First, 

we consider the case when error terms between 

successive profiles are not independent.  

The results are summarized in Tables 3, 4, and 5 using 

autocorrelation coefficient values of ρ = 0.1, 0.3, and 

0.9. In these tables, λ, β, and γ define shifts in the 

intercept, slope, and standard deviation, respectively. 

The results show that the non-normality and 

autocorrelation affects the out-of-control ARL 

performance significantly and as the value of 

autocorrelation coefficient gets larger out-of-control 

performance deteriorates. This impact is small in large 

shifts. 

The last three tables show the in-control and out-of-

control ARL values. Here, it is assumed that the error 

terms which follow non-normal distributions are 

correlated in each profile. The simulation results in 
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Tables 6, 7, and 8 show the significant effect of non-

normality and autocorrelation on the out-of-control 

performance of the schemes. When shift size becomes 

larger, the effect of non-normality for smaller values of 

autocorrelation coefficient is minimal. 

 

Tab. 3. Comparison of ARL (1) with normal, t, and gamma distributions for different values of between profiles 

autocorrelation under  Y-intercept shift from A0 to A0 + λσ 
  λ 

 0.2 0.6 1.0 1.4 1.8 

 
φ 

T2 EWMAR EWMA3 T2 EWMAR EWMA3 T2 EWMAR EWMA3 T2 EWMAR EWMA3 T2 EWMAR EWMA3 

0.0 139.2 51.5 66.9 27.9 7.3 8.4 6.9 3.6 4.0 2.6 2.5 2.7 1.5 2.0 2.1 

0.1 131.8 43.6 52.6 28.2 7.4 8.4 7.0 3.7 4.0 2.6 2.5 2.7 1.4 2.0 2.1 

0.5 50.1 19.4 14.0 19.1 7.8 7.5 7.2 4.0 4.3 3.1 2.7 2.9 1.6 2.1 2.2 N
o

rm
a
l

 

0.9 10.2 6.2 5.1 8.9 5.3 4.6 6.6 4.2 3.9 4.1 3.1 3.1 2.2 2.3 2.4 

0.0 53.2 33.7 58.2 23.4 7.0 8.4 7.6 3.5 4.0 2.7 2.4 2.7 1.4 2.0 2.1 

0.1 51.3 30.2 46.9 23.4 7.0 8.4 7.8 3.6 4.0 2.8 2.5 2.7 1.5 2.0 2.1 

0.5 35.6 17.0 15.0 18.6 7.3 7.6 7.8 3.9 4.3 3.4 2.6 2.8 1.7 2.0 2.2 

t
 

0.9 10.9 6.4 5.3 9.4 5.6 4.8 7.1 4.2 3.9 4.3 3.0 3.0 2.1 2.3 2.3 

0.0 33.8 33.7 52.5 14.6 7.4 8.8 6.3 3.6 4.0 2.9 2.5 2.7 1.6 2.0 2.1 

0.1 34.1 30.7 44.8 15.1 7.7 8.9 6.6 3.7 4.1 3.0 2.5 2.7 1.6 2.0 2.1 

0.5 28.1 19.2 16.6 14.4 8.3 8.8 7.1 4.2 4.6 3.6 2.7 2.9 1.9 2.1 2.2 G
a

m
m

a
 

0.9 10.9 6.6 5.4 9.8 6.2 5.2 7.7 4.9 4.4 5.0 3.4 3.4 2.7 2.3 2.4 

 

Tab. 4. Comparison of ARL (1) with normal, t, and gamma distributions for different values of between profiles 

autocorrelation under slope shift from A1 to A1 + βσ 
  β 

 0.025 0.075 0.125 0.175 0.225 

 
φ 

T2 EWMAR EWMA3 T2 EWMAR EWMA3 T2 EWMAR EWMA3 T2 EWMAR EWMA3 T2 EWMAR EWMA3 

0.0 168.0 97.4 111.9 60.7 16.2 18.8 19.9 6.8 7.6 7.8 4.2 4.6 3.7 3.1 3.4 

0.1 159.2 75.9 79.6 60.4 15.8 17.4 19.9 6.9 7.5 7.9 4.3 4.7 3.8 3.2 3.4 

0.5 54.6 22.3 15.2 31.4 12.8 10.4 15.6 7.3 6.7 8.0 4.7 4.7 4.5 3.4 3.6 N
o

rm
a
l

 

0.9 10.6 6.2 5.1 9.7 5.7 4.9 8.6 5.2 4.5 6.8 4.4 4.0 5.3 3.7 3.4 

0.0 55.8 45.6 84.6 36.8 14.4 18.7 19.3 6.5 7.6 8.9 4.1 4.6 4.2 3.0 3.4 

0.1 55.6 40.2 65.3 36.7 14.1 17.6 19.1 6.6 7.5 8.9 4.2 4.6 4.2 3.1 3.4 

0.5 38.1 18.9 16.0 27.3 11.6 10.8 15.7 6.8 6.9 8.5 4.6 4.7 4.7 3.3 3.5 

t
 

0.9 11.0 6.5 5.4 10.3 6.1 5.1 9.1 5.4 4.6 7.4 4.6 4.1 5.4 3.7 3.4 

0.0 38.2 43.9 73.4 22.5 15.3 19.2 12.7 7.0 8.1 7.1 4.3 4.8 4.1 3.1 3.5 

0.1 37.9 40.7 60.4 23.0 15.4 18.2 12.9 7.1 8.0 7.3 4.4 4.8 4.2 3.2 3.5 

0.5 30.8 20.8 16.8 20.1 13.5 12.1 12.8 7.8 7.7 7.8 5.0 5.1 4.9 3.5 3.7 G
a

m
m

a
 

0.9 11.0 6.5 5.3 10.5 6.4 5.3 9.5 6.0 5.0 7.9 5.2 4.5 6.0 4.3 3.9 

 
Tab. 5. Comparison of ARL (1) with normal, t, and gamma distributions for different values of between profiles 

autocorrelation under slope shift from σ to γσ 
  γ 

 1.2 1.6 2.0 2.4 2.8 

 
φ 

T2 EWMAR EWMA3 T2 EWMAR EWMA3 T2 EWMAR EWMA3 T2 EWMAR EWMA3 T2 EWMAR EWMA3 

0.0 39.2 38.0 31.6 7.9 6.7 7.0 3.8 3.0 3.9 2.5 2.0 2.8 2.0 1.6 2.2 

0.1 38.0 32.5 26.1 7.9 6.4 6.6 3.7 3.0 3.7 2.5 2.0 2.7 1.9 1.6 2.2 

0.5 19.2 11.3 8.5 6.0 4.3 4.4 3.4 2.5 3.1 2.4 1.9 2.4 1.9 1.5 2.1 N
o

rm
a
l

 

0.9 6.8 4.6 4.2 4.0 2.9 3.1 2.8 2.1 2.6 2.2 1.7 2.2 1.8 1.5 1.9 

0.0 24.6 21.9 37.9 13.1 12.0 18.0 10.6 9.4 14.0 9.6 8.6 12.2 9.1 7.9 11.6 

0.1 24.2 20.6 33.0 13.2 11.6 16.4 10.7 9.0 12.8 9.6 8.3 11.3 9.1 7.8 10.7 

0.5 18.9 12.0 11.0 11.1 8.1 7.9 9.2 6.8 7.0 8.3 6.4 6.5 8.0 6.1 6.2 

t
 

0.9 8.4 5.4 4.8 6.5 4.5 4.2 5.8 4.2 4.0 5.5 4.0 3.8 5.3 3.9 3.8 

0.0 25.4 24.3 32.5 8.8 6.7 7.6 4.1 3.2 4.0 2.6 2.0 2.8 2.0 1.6 2.2 

0.1 25.8 21.9 27.2 8.8 6.5 7.1 4.0 3.1 3.9 2.6 2.0 2.7 2.0 1.6 2.2 

0.5 19.2 10.7 9.0 6.4 4.4 4.4 3.6 2.6 3.1 2.4 1.9 2.5 2.0 1.5 2.1 G
a

m
m

a
 

0.9 7.2 4.7 4.2 4.2 3.0 3.2 2.9 2.2 2.5 2.2 1.8 2.2 1.9 1.5 2.0 
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Tab. 6. Comparison of ARL (1) with normal, t, and gamma distributions for different values of within profiles 

autocorrelation under Y-intercept shift from A0 to A0 + λσ 
  λ 

 0.2 0.6 1.0 1.4 1.8 

 
φ 

T2 EWMAR EWMA3 T2 EWMAR EWMA3 T2 EWMAR EWMA3 T2 EWMAR EWMA3 T2 EWMAR EWMA3 

0.0 139.2 51.5 66.9 27.9 7.3 8.4 6.9 3.6 4.0 2.6 2.5 2.7 1.5 2.0 2.1 

0.1 77.5 42.7 55.2 19.8 7.2 8.3 6.0 3.6 4.0 2.5 2.5 2.7 1.5 2.0 2.1 

0.5 12.3 18.5 22.2 7.1 6.7 7.5 3.8 3.7 4.0 2.3 2.6 2.8 1.6 2.0 2.2 N
o

rm
a
l

 

0.9 4.2 8.2 9.5 3.6 5.4 6.1 2.7 3.6 4.0 2.1 2.7 2.9 1.7 2.1 2.2 

0.0 53.2 33.7 58.2 23.4 7.0 8.4 7.6 3.5 4.0 2.7 2.4 2.7 1.4 2.0 2.1 

0.1 39.9 30.2 50.3 18.2 6.9 8.2 6.4 3.6 4.0 2.6 2.5 2.7 1.5 2.0 2.1 

0.5 12.0 17.2 22.5 7.5 6.5 7.5 4.0 3.6 4.0 2.4 2.6 2.8 1.6 2.0 2.1 

t
 

0.9 4.7 8.3 10.0 3.8 5.5 6.2 2.9 3.6 4.0 2.2 2.6 2.9 1.7 2.1 2.2 

0.0 33.8 33.7 52.5 14.6 7.4 8.8 6.3 3.6 4.0 2.9 2.5 2.7 1.6 2.0 2.1 

0.1 27.0 30.6 45.2 12.4 7.5 8.5 5.8 3.7 4.1 2.9 2.5 2.7 1.6 2.0 2.1 

0.5 11.6 18.7 23.3 6.9 7.1 7.9 4.1 3.8 4.2 2.6 2.6 2.8 1.8 2.1 2.2 G
a

m
m

a
 

0.9 5.1 9.1 10.9 4.5 6.3 7.1 3.4 4.0 4.4 2.5 2.8 3.0 1.9 2.2 2.3 

 

Tab. 7. Comparison of ARL (1) with normal, t, and gamma distributions for different values of within profiles 

autocorrelation under slope shift from A1 to A1 + βσ 
  β 

 0.025 0.075 0.125 0.175 0.225 

 
φ 

T2 EWMAR EWMA3 T2 EWMAR EWMA3 T2 EWMAR EWMA3 T2 EWMAR EWMA3 T2 EWMAR EWMA3 

0.0 168.0 97.4 111.9 60.7 16.2 18.8 19.9 6.8 7.6 7.8 4.2 4.6 3.7 3.1 3.4 

0.1 90.6 73.5 92.7 38.5 15.2 17.5 15.0 6.8 7.4 6.6 4.3 4.6 3.5 3.1 3.4 

0.5 13.3 22.4 27.5 9.5 11.1 12.5 6.1 6.4 6.8 4.0 4.3 4.6 2.8 3.2 3.5 N
o

rm
a
l

 

0.9 4.2 8.5 10.0 4.0 6.9 8.0 3.4 5.4 5.9 2.8 4.0 4.5 2.4 3.3 3.5 

0.0 55.8 45.6 84.6 36.8 14.4 18.7 19.3 6.5 7.6 8.9 4.1 4.6 4.2 3.0 3.4 

0.1 41.7 42.6 75.6 28.6 13.7 17.5 14.9 6.5 7.5 7.3 4.1 4.7 3.7 3.1 3.4 

0.5 12.4 20.7 27.5 9.6 10.8 12.6 6.5 6.2 6.9 4.2 4.2 4.7 2.9 3.2 3.5 

t
 

0.9 4.8 8.9 10.4 4.3 7.1 8.3 3.7 5.3 6.0 3.0 4.1 4.4 2.4 3.3 3.5 

0.0 38.2 43.9 73.4 22.5 15.3 19.2 12.7 7.0 8.1 7.1 4.3 4.8 4.1 3.1 3.5 

0.1 30.7 42.0 66.7 18.3 14.7 17.9 10.8 7.0 7.7 6.3 4.4 4.8 3.8 3.2 3.5 

0.5 12.5 21.9 28.7 8.7 11.6 13.4 6.3 6.6 7.3 4.4 4.5 4.9 3.2 3.3 3.6 G
a

m
m

a
 

0.9 5.1 9.1 11.1 4.9 8.1 9.3 4.2 6.1 6.6 3.5 4.5 4.9 2.9 3.5 3.8 

 
Tab. 8. Comparison of ARL (1) with normal, t, and gamma distributions for different values of within profiles 

autocorrelation under slope shift from σ to γσ 
  γ 

 1.2 1.6 2.0 2.4 2.8 

 
φ 

T2 EWMAR EWMA3 T2 EWMAR EWMA3 T2 EWMAR EWMA3 T2 EWMAR EWMA3 T2 EWMAR EWMA3 

0.0 39.2 38.0 31.6 7.9 6.7 7.0 3.8 3.0 3.9 2.5 2.0 2.8 2.0 1.6 2.2 

0.1 26.7 35.7 36.2 6.4 6.9 7.6 3.3 3.1 4.0 2.3 2.0 2.8 1.8 1.6 2.3 

0.5 6.4 13.8 16.4 3.0 5.3 6.9 2.0 2.9 3.9 1.6 2.0 2.7 1.5 1.6 2.1 N
o

rm
a
l

 

0.9 3.0 5.8 6.8 2.0 3.3 3.9 1.6 2.2 2.8 1.4 1.7 2.1 1.3 1.5 1.8 

0.0 24.6 21.9 37.9 13.1 12.0 18.0 10.6 9.4 14.0 9.6 8.6 12.2 9.1 7.9 11.6 

0.1 19.7 22.0 39.8 11.5 11.9 19.2 9.0 9.8 14.6 8.4 8.7 12.9 7.9 8.3 11.9 

0.5 8.1 13.9 19.2 5.7 9.2 12.3 5.0 7.6 10.3 4.7 7.0 9.3 4.6 6.7 8.9 

t
 

0.9 3.8 6.9 8.3 3.2 5.2 6.4 3.0 4.8 5.7 2.9 4.5 5.5 2.8 4.4 5.2 

0.0 25.4 24.3 32.5 8.8 6.7 7.6 4.1 3.2 4.0 2.6 2.0 2.8 2.0 1.6 2.2 

0.1 20.7 24.3 36.2 7.1 7.0 8.2 3.4 3.3 4.2 2.3 2.1 2.9 1.9 1.6 2.3 

0.5 7.6 12.5 17.1 3.2 5.4 6.9 2.1 3.0 3.9 1.7 2.0 2.7 1.4 1.6 2.1 G
a

m
m

a
 

0.9 3.2 5.9 7.1 2.0 3.3 4.0 1.6 2.3 2.8 1.4 1.8 2.2 1.3 1.5 1.8 

 

5. Conclusions 
In this paper, simultaneous effect of non-normality and 

autocorrelation on the performance of three common 

methods proposed in the literature for linear profile 

monitoring was investigated. Student t and gamma 

distributions under the assumption of within and 

between profiles autocorrelation were considered to 

perform the analyses. In-control and out-of-control 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ie
pr

.iu
st

.a
c.

ir
 o

n 
20

24
-1

1-
24

 ]
 

                             8 / 10

http://ijiepr.iust.ac.ir/article-1-239-en.html


Rassoul Noorossana, Abbas Saghaei & Mehdi Dorri             Linear Profile Monitoring in the Presence ……                         229  

 

IInntteerrnnaattiioonnaall  JJoouurrnnaall  ooff  IInndduussttrriiaall  EEnnggiinneeeerriinngg  &&  PPrroodduuccttiioonn  RReesseeaarrcchh,,  DDeecceemmbbeerr  22001100,,  VVooll..  2211,,  NNoo..  44  

ARL results show that violation of these common 

assumptions affects the performance of T
2
, EWMA/R, 

and EWMA3 approaches and could lead to serious 

misjudgment of process status by operators or process 

engineer. Among the methods considered in our study, 

EWMA3 is relatively less sensitive to the violation of 

the assumptions than the other schemes. 
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