جلد 21، شماره 4 - ( 9-1389 )                   جلد 21 شماره 4 صفحات 230-221 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:
Mendeley  
Zotero  
RefWorks

Noorossana R, Saghaei A, Dorri M. Linear Profile Monitoring in the Presence of Non-Normality and Autocorrelation. IJIEPR 2010; 21 (4) :221-230
URL: http://ijiepr.iust.ac.ir/article-1-239-fa.html
Linear Profile Monitoring in the Presence of Non-Normality and Autocorrelation. نشریه بین المللی مهندسی صنایع و تحقیقات تولید. 1389; 21 (4) :221-230

URL: http://ijiepr.iust.ac.ir/article-1-239-fa.html


چکیده:   (60629 مشاهده)

  In an increasing number of practical situations, the quality of a process or product can be effectively characterized and summarized by a profile. A profile is usually a functional relationship between a response variable and one or more explanatory variables which can be modeled frequently using linear or nonlinear regression models. In this paper, we study the effect of non-normality on profile monitoring in Phase II when within or between autocorrelation is present. Different levels of autocorrelation and skewed and heavy-tailed symmetric non-normal distributions are used in our study to evaluate the performance of three existing monitoring schemes numerically. Simulation results indicate that the non-normality and autocorrelation can have a significant effect on the in-control performances of the considered schemes. Results also indicate that the out-of-control performances of the schemes are not very sensitive to low and moderate levels of autocorrelation in moderate and large shifts .

     
نوع مطالعه: پژوهشي | موضوع مقاله: و موضوعات مربوط
دریافت: 1390/2/13 | انتشار: 1389/9/24

Cited by [1] [PDF 95 KB]  (550 دریافت)
ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.