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ABSTRACT 

Cognitive processes can be effectively communicated through linguistic variables (LVs), offering a 

robust framework for conveying uncertain and incomplete data in multiple attribute decision-making 

(MADM) problems. This method surpasses conventional techniques in handling such complexities. 

Recognizing decision experts' (DEs) bounded rationality, particularly their cognitive limitations leading 

to potential losses, underscores the need for innovative cognitive decision-making strategies in MADM. 

This study introduces LVs to encapsulate uncertain and hesitant cognitive elements, followed by a 

mathematical programming approach to tackle MADM problems where attributes or cognitive 

preferences exhibit interdependence. To enhance this approach within an interval-valued neutrosophic 

numbers (IVNN) environment, an IVNN multi-attribute group decision-making problem is modeled as a 

nonlinear programming model. Through variable transformation and aggregation operator application, 

this model is refined into an equivalent nonlinear programming model. The proposed method empowers 

decision-makers (DMs) to identify optimal alternatives without relying solely on their expertise, as 

demonstrated by its successful application in resolving two real-world problems. 

 
KEYWORDS: Multiple attribute group decision making (MAGDM); Interval-valued neutrosophic number (IVNN); 

Non-Linear programming; Variable transformation; Aggregation operators.  
 

1. Introduction1 

Today's highly competitive business landscape 

demands practical and strategic decision-making, 

often requiring the consideration of diverse and 
sometimes contradictory evaluation criteria. As a 

result, many complex decision-making problems 

can be categorized as multiple attribute decision-
making (MADM) [1] problems, particularly when 

dealing with a finite set of alternatives, each with 

distinct and potentially conflicting attributes. 
Attributes can be categorized using two distinct 

methods. The first method involves grouping 

attributes into three types: subjective (qualitative 

and intangible), objective (quantitative and 
tangible), and critical (those necessary for further 

processing). The second approach classifies 

attributes as either benefit-type (where higher 
values are preferable) or cost-type (where lower 

values are desirable). 

MADM's key strength lies in its ability to offer 
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multiple dimensions, enabling decision-makers to 
thoroughly assess relevant factors and explore 

various alternatives across different criteria. 

Furthermore, to enhance democracy and rational 
decision-making, many real-world processes 

occur within group settings. Multiple attribute 

group decision-making (MAGDM) [2] plays a 

crucial role in this group decision-making. It is one 
of the most significant and commonly encountered 

processes across various important fields such as 

engineering, economics, management, medicine, 
and military affairs 

Furthermore, in practical group decision-making, 

owing to the complexity and subjectivity inherent 
in decision systems, combined with the uncertain 

nature of human judgment, outputs from decision 

experts are often not precise numbers. Instead, 

they may take the form of linguistic terms or 
represent labels of fuzzy sets [3]. Quantifying 

uncertain information, especially for qualitative 
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attributes, presents significant challenges. This has 

led to the development of fuzzy methods of 
multiple attribute group decision-making 

(FMAGDM) [4] designed to address imprecise, 

vague, and uncertain data, whether qualitative or 
quantitative. Bakar and Ghani [5] provide a 

systematic literature review exploring how fuzzy 

analytic (FA), and multi-criteria decision-making 

(MCDM) methods contribute to classroom 
assessment. 

In numerous practical FMAGDM problems, 

hesitation can arise during the evaluation phase or 
when determining attribute preferences. The 

intuitionistic fuzzy set (IFS) [6] ) proves to be 

more effective and adaptable in handling the 
fuzziness and uncertainty that stem from 

ambiguous information or hesitations. The IFS 

theory is valuable for addressing the imprecision 

in human cognitive processes because it 
incorporates both supporting and opposing 

information in the decision-making procedure. 

This theory has been effectively combined with 
MADM and MAGDM methods [7-10]. Genç et al. 

[11] explored the challenges related to 

consistency, missing values, and the derivation of 
priority vectors in interval fuzzy preference 

relations. Boran and Akay [12] introduced a bi-

parametric similarity measure for intuitionistic 

fuzzy sets, applying it to pattern recognition. Shen 
et al. [13] introduced a novel outranking sorting 

technique for group decision-making utilizing 

IFSs. Wan et al. [14] created a fresh approach to 
address MAGDM problems with Atanassov's 

interval-valued intuitionistic fuzzy values and 

incomplete attribute weight details. As the 

decision environment grows more intricate, 
numerous new expression forms of IFSs are 

regularly being developed in research. 

In addition to extending existing models, new 
methods have been introduced for solving IVIF 

MADM problems. Li [15] introduced a nonlinear 

programming approach based on TOPSIS to 
address MADM problems by considering ratings 

of alternatives on attributes and weights of 

attributes represented. Li [16] introduced relative 

closeness coefficients and developed two non-
linear fractional programming models that were 

converted into two simpler auxiliary linear 

programming models to determine the relative 
closeness coefficient of alternatives to the IVIF 

positive ideal solution. This method was used to 

establish the ranking order of alternatives. Arshi et 

al. [17] proposed a novel approach for solving 
multiple attribute group decision-making 

(MAGDM) problems using interval-valued 

intuitionistic fuzzy sets (IVIFS). They solved the 

MAGDM problems with a non-linear model.  

Fadhil and Habibnejad [18] conceptualized the 
problem of determining optimal robot trajectories 

as a trajectory optimization problem. They 

developed an iterative linear programming (ILP) 
method to obtain a numerical solution for this 

nonlinear trajectory. In recent times, supply chain 

management (SCM) has become a fascinating 

problem that has captured the interest of numerous 
researchers. One crucial aspect of SCM is 

transportation network design. Khezeli et al. [19] 

introduced a mixed integer nonlinear 
programming model (MINLP) aimed at reducing 

both the transportation time and cost of products  

The theory of Intuitionistic Fuzzy Sets (IFS) 
excels in managing incomplete information in 

various real-world scenarios but falls short in 

tackling all forms of uncertainty, particularly 

indeterminate information. To address this 
limitation, Smarandache [20] introduced 

neutrosophic sets (NSs), which approach 

imprecise, incomplete, and uncertain information 
from a philosophical perspective. Neutrosophic 

sets are a broadening of crisp sets, fuzzy sets 

(FSs), and IFSs. They form part of neutrosophy, 
which explores the origins, nature, and scope of 

neutrality and its links to different ideational 

spectra, Smarandache [21]. Smarandache [20,21] 

introduced a concept with three independent 
components: the truth membership function 

(TMF), the indeterminacy membership function 

(IMF), and the falsity membership function 
(FMF). ). Subsequently, the single-valued 

neutrosophic set (SVNS) was developed, as 

referenced in works by Smarandache [20, 21, 22], 

Deli and Subas [23], Abdel-Basset and Mohamed 
[24], and Edalatpanah [25]. Additionally, there 

have been several generalizations of neutrosophic 

sets, such as interval neutrosophic sets referenced 
by Garg [26], Liu and Shi [27], bipolar 

neutrosophic sets discussed by Deli et al [28], and 

Ulucay et al. [29], and multi-valued neutrosophic 
sets explored by Ji, Zhang, Wang [30], Peng, 

Wang, and Yang [31]. These also include 

simplified neutrosophic sets (Edalatpanah and 

Smarandache [32]; Peng et al. [33]) have been 
presented. Edalatpanah [34] introduced a novel 

concept in neutrosophic sets called the 

neutrosophic structured element (NSE) and 
proposed a decision-making method for multi-

attribute decision-making (MADM) problems 

using NSE information.  

Biswas et.al. [35] developed a value and 
ambiguity-based ranking approach for trapezoidal 

neutrosophic numbers (TrNNs) and outlined a 

multi-criteria decision-making (MCDM) strategy. 
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Liang and team [36] defined score, accuracy, and 
certainty functions for single-valued trapezoidal 

neutrosophic numbers (SVTrNN) using the center 

of gravity (COG) concept. Edalatpanah [37] also 

devised a new algorithm for addressing the single-
valued neutrosophic linear programming problem. 

Elsayed [38] proposed a Multi-Criteria Decision 

Making (MCDM) framework to evaluate and rank 
green fuel alternatives aimed at reducing 

greenhouse gas emissions. This method 

incorporates the Removal Effects of Criteria 
(MEREC) to determine criteria weights and uses 

the TODIM method to rank alternatives, 

employing triangular neutrosophic numbers. 

Satyanarayana and Baji [39] introduced the 
concept of interval-valued neutrosophic N-d ideal, 

applying it to the d-ideal of algebraic structure d-

algebra. Jdid and Smarandache [40] converted 
several zero-one neutrosophic nonlinear 

programming problems into linear ones. Khalifa 

[41] presented a multi-objective assignment 
(NMOAS) problem utilizing single-valued 

trapezoidal neutrosophic numbers in cost matrix 

elements.  

Building on the capabilities of interval-valued 
neutrosophic numbers for describing uncertainty 

and vague data in decision-making problems, this 

paper aims to develop a formulation for multi-
attribute group decision-making (MAGDM) 

problems. The MAGDM problem is formulated as 

a nonlinear programming problem, and an 

innovative approach is proposed to address it. The 
contributions of this study are outlined as follows: 

The decision-making process is fraught with 

challenges. Typically, individuals face choices 
where the direction is not well-defined. A 

significant amount of time and effort is needed to 

analyze various actions using systematic 
techniques. However, the area of constrained 

decision-making problems involving interval-

valued neutrosophic numbers (IVNN) has not 

been fully explored. Since individuals often 
struggle to quantify their opinions in the context of 

incomplete fuzzy decision-making problems, 

IVNNs offer a more effective solution, which is 
why our focus centers on them; thus, we focus on 

IVNNs. FSs are limited to handling membership 

functions and do not contribute to non-
membership functions, making them inadequate 

for addressing haziness and non-deterministic 

situations. To address this limitation, we have 

enhanced the current methodology in the NS 
environment by employing IVNNs. This allows us 

to manage incomplete information and ambiguous 

or vague conditions. Consequently, we have 
structured the MAGDM problem as a nonlinear 

programming issue and proposed an innovative 
approach to solve it. 

A limitation of the proposed method is its need to 

solve distinct models for each alternative, which 

can become cumbersome as alternatives increase. 
However, various objective functions, as 

previously noted, can alleviate this difficulty. The 

absence of a global IVIF scale for MAGDM 
problems makes it challenging for experts to 

express their judgments, though this is a common 

issue across many proposed MAGDM methods. 
Future research might extend this methodology to 

other types of neutrosophic numbers. For 

example, an extension can be explored in the 

presence of an SVTrNN. Additionally, within the 
context of this paper, future studies could 

formulate the LP model using IVNNs. The 

application of IVNNs could also be investigated to 
determine the utility function of decision-makers 

in multi-attribute utility theory 

The present study is set as follows. Section 2 deals 
with an overview of NSs and needed concepts. 

Section 3 deals with the definite problem and its 

formulations. Section 4 clarifies the presented 

approach to solve the problem. The proposed 
technique’s applicability is provided by two 

numerical examples in section 5. Ultimately, in 

Section 6, some conclusions are made. 

 

2. Neutrosophic Sets 
In this section, some basic definitions and 

calculations for neutrosophic numbers are 

presented [43,44].  

 
Definition 1. Let X be the space of points (objects) 

whose common element X is denoted by x. A 

neutrosophic set A in X is characterized by a truth-

membership function 𝑇𝐴(𝑥)  , an indeterminacy 

membership function 𝐼𝐴(𝑥) , and a falsity-

membership function 𝐹𝐴(𝑥). If the function 𝑇𝐴(𝑥), 
𝐼𝐴(𝑥)  and 𝐹𝐴(𝑥)  are singleton 
subintervals/subsets in the real standard [0,1], that 

is 𝑇𝐴(𝑥): 𝑋 → [0,1], 𝐼𝐴(𝑥): 𝑋 → [0,1]  and 

𝐹𝐴(𝑥): 𝑋 → [0,1] . Therefore, a single-valued 

neutrosophic set A is defined by 𝐴 =

{(𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)│𝑥 ∈ 𝑋}  which is called 

an SVNS. Also, SVNS satisfies the condition 0 ≤
𝑇𝐴(𝑥) +  𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 3. (Ye [45]) 

 

Definition 2. For SVNSs C and D, 𝐶 ⊆ 𝐷 if and 

only if 𝑇𝐶(𝑥) ≤ 𝑇𝐷(𝑥), 𝐼𝐶(𝑥) ≥ 𝐼𝐷(𝑥) , and 

𝐹𝐶(𝑥) ≥ 𝐹𝐷(𝑥) for every x in X. (Ye [45]) 

 

Definition 3. An IVNS (interval-valued 

neutrosophic set) �̃� on universal set X is defined 
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as: 

 
�̃�

= {〈
𝜀, ([𝑇𝐴𝐿(𝜀), 𝑇𝐴𝑈(𝜀)], [ 𝐼𝐴𝐿(𝜀), 𝐼𝐴𝑈(𝜀)],

[ 𝐹𝐴𝐿(𝜀), 𝐹𝐴𝑈(𝜀)] 
〉 : 𝜀

∈ 𝑋}                                                                                  (1) 

 

With the condition 0 ≤ 𝑇𝐴(𝜀) + 𝐼𝐴(𝜀) + 𝐹𝐴(𝜀) ≤ 3 
Pramanik and Mondal [46]). 

 

Definition 4. Here are some of the arithmetic 
operations in IVNNs: 

Here, we consider two IVNS of �̃� =

〈[𝑇𝐴𝐿(𝜀), 𝑇𝐴𝑈(𝜀)], [ 𝐼𝐴𝐿(𝜀), 𝐼𝐴𝑈(𝜀)], [ 𝐹𝐴𝐿(𝜀),𝐹𝐴𝑈(𝜀)]〉  and 
�̃� = 〈[𝑇�̃�𝐿(𝜀), 𝑇�̃�𝑈(𝜀)], [ 𝐼�̃�𝐿(𝜀), 𝐼�̃�𝑈(𝜀)], [ 𝐹�̃�𝐿(𝜀),𝐹�̃�𝑈(𝜀)]〉 

can be defined as follows (Ye [47 ]): 

 
(i) �̃�⨁ �̃� = 〈[𝑇𝐴𝐿(𝜀) + 𝑇�̃�𝐿(𝜀) −
𝑇𝐴𝐿(𝜀). 𝑇�̃�𝐿(𝜀), 𝑇𝐴𝑈(𝜀) + 𝑇�̃�𝑈(𝜀) −
  𝑇𝐴𝑈(𝜀). 𝑇�̃�𝑈(𝜀)][𝐼𝐴𝐿(𝜀). 𝐼�̃�𝐿(𝜀), 𝐼𝐴𝑈(𝜀). 𝐼�̃�𝑈(𝜀)],

[𝐹𝐴𝐿(𝜀).𝐹�̃�𝐿(𝜀),𝐹𝐴𝑈(𝜀). 𝐹�̃�𝑈(𝜀) ] 〉                           (2) 
(ii) �̃�⨂�̃� =
 〈[𝑇𝐴𝐿(𝜀). 𝑇�̃�𝐿(𝜀), 𝑇𝐴𝑈(𝜀). 𝑇�̃�𝑈(𝜀)  ], [𝐼𝐴𝐿(𝜀) + 𝐼�̃�𝐿(𝜀) −
𝐼𝐴𝐿(𝜀). 𝐼�̃�𝐿(𝜀), 𝐼𝐴𝑈(𝜀) + 𝐼�̃�𝑈(𝜀) −
𝐼𝐴𝑈(𝜀). 𝐼�̃�𝑈(𝜀) ], [ 𝐹𝐴𝐿(𝜀) + 𝐹�̃�𝐿(𝜀) −
𝐹𝐴𝐿(𝜀).𝐹�̃�𝐿(𝜀),𝐹𝐴𝑈(𝜀) + 𝐹�̃�𝑈(𝜀) − 𝐹𝐴𝑈(𝜀).𝐹�̃�𝑈(𝜀)]〉  

(iii)                                                               (3) 

(iv) 𝜆�̃� = 〈[1− (1 − 𝑇𝐴𝐿(𝜀))
𝜆
, 1 − (1 − 𝑇𝐴𝑈(𝜀))

𝜆
] ,

[(𝐼𝐴𝐿(𝜀))
𝜆
, (𝐼𝐴𝑈(𝜀))

𝜆
] , [(𝐹𝐴𝐿(𝜀)

𝜆, (𝐹𝐴𝑈(𝜀))
𝜆
]〉   𝜆 > 0 

                                                                           (4) 

(v)  �̃�𝜆 = 〈[(𝑇𝐴𝐿(𝜀) )
𝜆, (𝑇𝐴𝑈(𝜀) )

𝜆], [1 − (1 −

 𝐼𝐴𝐿(𝜀) )
𝜆, 1 − (1− 𝐼𝐴𝑈(𝜀) )

𝜆], [1 − (1 − FÃL(ε) )
𝜆, 1 −

(1 − 𝐹𝐴𝑈(𝜀) )
𝜆] 〉 𝜆 > 0                         (5)  

 

Definition 5. Let  
�̃� = 〈𝜀, [𝑇𝐴𝐿(𝜀), 𝑇𝐴𝑈(𝜀)], [ 𝐼𝐴𝐿(𝜀), 𝐼𝐴𝑈(𝜀)], [ 𝐹𝐴𝐿(𝜀),𝐹𝐴𝑈(𝜀)]〉 

be an IVNN, then we define the score function and 

accuracy function as follows: 
 

𝑆(�̃�) =
1

2
([𝑇𝐴𝐿(𝜀), 𝑇𝐴𝑈(𝜀)] + (1− [ 𝐼𝐴𝐿(𝜀), 𝐼𝐴𝑈(𝜀)]) + (1 −

[ 𝐹𝐴𝐿(𝜀),𝐹𝐴𝑈(𝜀)])                                           (6) 

accuracy ( �̃� )= 
1

2
([𝑇𝐴𝐿(𝜀), 𝑇𝐴𝑈(𝜀)] − (1 −

[ 𝐼𝐴𝐿(𝜀), 𝐼𝐴𝑈(𝜀)]) − (1 − [ 𝐹𝐴𝐿(𝜀),𝐹𝐴𝑈(𝜀)]                    (7) 

Let �̃� =

〈[𝑇𝐴𝐿(𝜀), 𝑇𝐴𝑈(𝜀)], [ 𝐼𝐴𝐿(𝜀), 𝐼𝐴𝑈(𝜀)], [ 𝐹𝐴𝐿(𝜀),𝐹𝐴𝑈(𝜀)]〉  and 
�̃� = 〈[𝑇�̃�𝐿(𝜀), 𝑇�̃�𝑈(𝜀)], [ 𝐼�̃�𝐿(𝜀), 𝐼�̃�𝑈(𝜀)], [ 𝐹�̃�𝐿(𝜀),𝐹�̃�𝑈(𝜀)]〉  

 

be two arbitrary IVNN, the ranking of  �̃� and �̃� by 

score function is defined as follows: 

- If  𝑆(�̃�)< 𝑆(�̃�) then �̃�< �̃� 

- If  𝑆(�̃�)= 𝑆(�̃�) and if 

       accuracy (�̃�)< accuracy (�̃�) then �̃�< �̃� 

       accuracy (�̃�)> accuracy (�̃�) then �̃�> �̃� 

       accuracy (�̃�)= accuracy (�̃�) then �̃�= �̃� 

 

Definition 6. Let  𝐴�̃� =

〈[𝑇
𝐴�̃�
𝐿(𝜀), 𝑇

𝐴�̃�
𝑈(𝜀)] , [ 𝐼

𝐴�̃�
𝐿(𝜀), 𝐼

𝐴�̃�
𝑈(𝜀)] ,

[ 𝐹
𝐴�̃�
𝐿(𝜀), 𝐹

𝐴�̃�
𝑈(𝜀)]〉 (𝑗 = 1, …𝑛)  be an IVNN. The 

arithmetic average operator is as follows: 

 

IVNAA= ∑ 𝑤𝑗𝐴𝑗  
𝑛
𝑗=1                                                    (8) 

 

Where 𝑊 = (𝑤1, … , 𝑤𝑛) is the weight vector of 

𝐴�̃�, 𝑤𝑗 ∈ [0,1] and ∑ 𝑤𝑗 = 1
𝑛
𝑗=1 . 

 

Definition 7. For the IVNN weighted arithmetic 
average operator (IVNNWAA), the aggregated 

result is as follows: 

IVNNWA (�̃�1 .… . �̃�𝑛) = 〈[1 −∏ ( 1 −𝑛
𝑗=1

𝑇
𝐴�̃�

𝐿(𝜀))

𝑤𝑗

. 1 − ∏ ( 1 − 𝑇
𝐴�̃�

𝑈(𝜀))

𝑤𝑖

].𝑛
𝑗=1

[∏  (𝐼
𝐴�̃�

𝐿(𝜀))𝑤𝑗 .∏  (𝐼
𝐴�̃�

𝑈(𝜀))𝑤𝑗].𝑛
𝑗=1

𝑛
𝑗=1

[∏  ( 𝐹
𝐴�̃�

𝐿(𝜀))𝑤𝑗 .∏  (𝐹
𝐴�̃�

𝑈(𝜀))𝑤𝑗] 𝑛
𝑗=1  𝑛

𝑗=1   〉                     (9) 

 

3. MAGDM Problem Formulation 
Supposing a group of K decision-makers apprising 
the alternative set  A={A1, A2, …, An} regard to 

criteria set C={C1, C2, …, Cn}. the evaluations are 

individually made by each decision maker along 

with an individual decision matrix Dk=[�̃�𝑖𝑗
𝑘 ]. The 

�̃�𝑖𝑗
𝑘  elements of Dk are expressed in the form of an 

IVNN 𝑥𝑖𝑗
𝑘 = [(𝑇𝑖𝑗,

𝑘 𝑇𝑖𝑗
𝑘
) , (𝐼𝑖𝑗

𝑘 , 𝐼𝑖𝑗
𝑘
) , (𝐹𝑖𝑗

𝑘, 𝐹𝑖𝑗
𝑘
)]  , 𝑖 =

1,2, … ,𝑚 ; 𝑗 = 1,2, … , 𝑛. The problem is aimed at 

deciding on ranking or rating alternatives to allow 

decision-makers to decide on their ultimate 
alternative(s) or ranking. 

An aggregated decision matrix D is first created 

through IVNNWAA (when a predetermined 
weight is assigned to different experts). The 

aggregated decision matrix will be acquired as 

D=[�̃�𝑖𝑗] where,  

 

�̃�𝑖𝑗 =IVNNWA (�̃�𝑖𝑗
1 . �̃�𝑖𝑗

2 . … . �̃�𝑖𝑗
𝑘 )                (10) 

 

The prolonged type of aggregated matrix D can be 

represented as: 
 

D= [
�̃�11 ⋯ �̃�1𝑛
⋮ ⋱ ⋮
�̃�𝑚1 ⋯ �̃�𝑚𝑛

]                                         (11) 

 
When the problem ranks alternatives of set A, the 

flowing formulation is considered for the 

MAGDM problem: 
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𝑀𝑎𝑥 ∑𝑤𝑗�̃�𝑖𝑗

𝑛

𝑗=1

 

s.t.   ∑ (𝑤𝑗�̃�𝑖𝑗)
2𝑛

𝑗=1 = 1̃    𝑖 = 1,… ,𝑚            (i) 

𝑤𝑗 ≥ 0                   𝑗 = 1,… , 𝑛            (ii)            (12) 

 

in which �̃� represents an IVNN, like [(0.9, 0.95), 

(0.01, 0.05), (0.02,0.06)], and 𝐰𝐣  , j= 1,2,…,n 

denotes the criterion j importance weight. This 

data envelopment-based model is initially 

proposed by Hadi-Vencheh [42] as a weighted 
nonlinear optimization model for multi-criteria 

inventory classification problems. Here, the 

overall score of each alternative I is maximized by 
the objective function as the criteria’s linear 

function. The total scores of the alternatives are 

restricted by constraint (i) equal to 1, with weights 

similar to that of alternative i. Constraint (ii) 
denotes that all the criteria' weights must be 

positive. Solving this model is repeatedly 

performed for every alternative and ranked based 
on their scores’ descending order. 

 

4. Solving Azzpproach 
The MAGDM problems (Eq. (12)) may be 

regarded as an NLP problem under IVIF 
information. 

An optimization problem is mathematically for 

finding the supremum or infimum of a certain real-

valued function f over a specified set G of a 
universal set X, i.e. 

 

𝛼 = inf{ 𝑓(𝑥) ∶ 𝑥 ∈ 𝐺 } ,   𝐺 ⊆ 𝑋                   (13) 
 

In the optimization problems, obtaining the value 

of  𝛼 or equally, an 𝑥0 ∈ 𝐺  that 𝑓(𝑥0) = 𝛼 

(Ponstein [48]) is included. A matrix presentation 
of NLP is found in Eq. (13). 

 

𝑀𝑎𝑥 𝐶𝑋 
s.t. 

(𝐴𝑋)2 (
≤
=
≥
)𝑏 ,   𝑋 ≥ 0                                               (14) 

 

in which X represents the decision variables’ 

(𝑛 × 1) column vector, A represents the (𝑚 × 𝑛) 

technological matrix, C shows the (1 ×𝑚) row 

vector of cost (profit) coefficients and b shows the 

( 𝑚 × 1 ) right-hand side vector or resources. 

Considering the certainty axiom, matrix A’s all 
elements, as well as vectors b and C, are 

determined as deterministic numbers. 

Here, a novel technique is evolved to resolve the 
NLP problems, for which the parameters are 

described as IVNN. Consider a nonlinear 

programming with IVN information whose 
parameters C, A, and b are defined as IVNNs. 

 

𝑀𝑎𝑥 �̃�𝑋 

s.t. 

(�̃�𝑋)2 = �̃� 

𝑋 ≥ 0                                                                    (15) 

 

In an extended form, IVNN-NLP in Eq. (15), can 
be stated as: 

max∑�̃�𝑗𝑥𝑗

𝑛

𝑗=1

 

s.t. 

∑(�̃�𝑖𝑗𝑥𝑗)
2 = �̃�𝑖                𝑖 = 1,2, … ,𝑚

𝑛

𝑗=1

 

𝑥𝑗 ≥ 0                               𝑗 = 1,2, … , 𝑛           (16) 

 

The considered parameters in Eq. (16), are a set of 

IVNNs as follows: 

�̃�𝑗 = [(𝑐1𝑗, 𝑐2𝑗), (𝑐3𝑗, 𝑐4𝑗), (𝑐5𝑗, 𝑐6𝑗)] , 𝑗 =

1,2, … , 𝑛 where (𝑐1𝑗 , 𝑐2𝑗) is truth membership and 

(𝑐3𝑗 , 𝑐4𝑗)  is indeterminacy membership, and 

(𝑐5𝑗 , 𝑐6𝑗) is falsity membership intervals. 

�̃�𝑖𝑗 = [(𝑎1𝑖𝑗, 𝑎2𝑖𝑗), (𝑎3𝑖𝑗, 𝑎4𝑖𝑗), (𝑎5𝑖𝑗, 𝑎6𝑖𝑗) ], 𝑖 =

1,… ,𝑚; 𝑗 = 1,… , 𝑛  where (𝑎1𝑖𝑗, 𝑎2𝑖𝑗)  is truth 

membership and (𝑎3𝑖𝑗, 𝑎4𝑖𝑗)  is indeterminacy 

membership, and (𝑎5𝑖𝑗, 𝑎6𝑖𝑗)  is falsity 

membership intervals. 

�̃�𝑖 = [(𝑏1𝑖 , 𝑏2𝑖), (𝑏3𝑖 , 𝑏4𝑖), (𝑏5𝑖 , 𝑏6𝑖) ], 𝑖 =
1,2, … ,𝑚 where (𝑏1𝑖 , 𝑏2𝑖) is truth membership and 

( 𝑏3𝑖 , 𝑏4𝑖 ) is indeterminacy membership, and 
(𝑏5𝑖 , 𝑏6𝑖) is falsity membership intervals. 

Now, take into account the objective function 
∑ �̃�𝑛
𝑗=1 𝑥𝑗 . For the reason that objective function 

coefficients �̃�𝑗, 𝑗 = 1,… , 𝑛 are IVNNs; hence, the 

objective function is denoted as these IVNNs’ 

linear combination by the non-negative 

coefficients 𝑥𝑗 ≥ 0, 𝑗 = 1,… , 𝑛. The results of this 

linear combination may be yielded via interactive 

using the multiplication and summation operators, 
as described respectively in Eqs. (2) and (4). This 

induction procedure includes n scalar 

multiplication plus (n-1) IVN summation 
operation, entirely encompassing (2n-1) 

operations. The simple variable transformation 

can be utilized to prevent the number of 
operations. The variable t is defined as: 

 

𝑡

=  
1

𝑥1 + 𝑥2 +⋯+ 𝑥𝑛
                                            (17) 
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Now, the objective function ∑ �̃�𝑗𝑥𝑗
𝑛
𝑗=1  is 

multiplied by t. Determining the variable  𝑡𝑥𝑗 =

𝑦𝑗, 𝑗 = 1,… , 𝑛, the objective function is converted 

into: 

 
∑ �̃�𝑗𝑦𝑗
𝑛
𝑗=1                                                                          (18) 

 

Since ∑ 𝑦𝑗 = 1
𝑛
𝑗=1  and 𝑦𝑗 ≥ 0, 𝑗 = 1,… , 𝑛 , Eq. 

(18) can be inferred as IVNWA of a set of IVNNs 

�̃�𝑗, 𝑗 = 1,… , 𝑛. According to Eq. (9), Eq. (18) is 

converted as : 

 
([(1 − ∏ (1 − 𝑐1𝑗)

𝑦𝑗𝑛
𝑗=1 ), (1 − ∏ (1 −𝑛

𝑗=1

𝑐2𝑗)
𝑦𝑗)], [∏ 𝑐

3𝑗

𝑦𝑗𝑛
𝑗=1 , ∏ 𝑐

4𝑗

𝑦𝑗
], [∏ 𝑐

5𝑗

𝑦𝑗𝑛
𝑗=1 , ∏ 𝑐

6𝑗

𝑦𝑗
]𝑛

𝑗=1 )𝑛
𝑗=1        (19) 

 

In fact, the application of the variable 

transformation in Eq. (17) simplicities obtaining a 
closed form for the objective functions. Primarily 

regarding score functions explanation, Eq. (6), an 

IVNN is maximized by increasing its truth 
membership degree; however, its indeterminacy 

and falsity membership degree is reduced. Also, 

an IVNN will be minimized when its truth 
membership degree is decreased while its 

indeterminacy and falsity membership degrees are 

increased. Suppose two interval numbers 𝐴 =

[𝑎, 𝑎] and 𝐵 = [𝑏, 𝑏] . Then, 𝐴 ≥ 𝐵  if 𝑎 ≥ 𝑏  and 

𝑎 ≥ 𝑏  ( Vahdani, Haji Karim Jabbari, 

Roshanaei,& Zandieh, [47]), thus, Eq. (19) will be 

maximized if  (1 − ∏ (1 − 𝑐1𝑗)
𝑦𝑗𝑛

𝑗=1 )  and (1 −

∏ (1 − 𝑐2𝑗)
𝑦𝑗)𝑛

𝑗=1  are maximized while ∏ 𝑐
3𝑗

𝑦𝑗𝑛
𝑗=1  

, ∏ 𝑐
4𝑗

𝑦𝑗𝑛
𝑗=1   , ∏ 𝑐

5𝑗

𝑦𝑗𝑛
𝑗=1  and ∏ 𝑐

6𝑗

𝑦𝑗]𝑛
𝑗=1  are 

minimized. These conditions are satisfied when: 
∏ (1 − 𝑐1𝑗)

𝑦𝑗𝑛
𝑗=1   and ∏ (1 − 𝑐2𝑗)

𝑦𝑗𝑛
𝑗=1  are 

minimized, and simultaneously, 

∏ 𝑐
3𝑗

𝑦𝑗𝑛
𝑗=1  , ∏ 𝑐

4𝑗

𝑦𝑗𝑛
𝑗=1   and ∏ 𝑐

5𝑗

𝑦𝑗𝑛
𝑗=1  , ∏ 𝑐

6𝑗

𝑦𝑗]𝑛
𝑗=1   

are minimized. 

Subsequently, the single objective function of 
IVNN-NLP problem is converted as: 

 
𝑀𝑖𝑛 (∏ (1 − 𝑐1𝑗)

𝑦𝑗 , ∏ (1 −𝑛
𝑗=1

𝑛
𝑗=1

𝑐2𝑗)
𝑦𝑗 , ∏ 𝑐

3𝑗

𝑦𝑗 ,∏ 𝑐
4𝑗

𝑦𝑗 , ∏ 𝑐
5𝑗

𝑦𝑗 ,∏ 𝑐
6𝑗

𝑦𝑗𝑛
𝑗=1

𝑛
𝑗=1 )𝑛

𝑗=1
𝑛
𝑗=1       (20) 

 

Taking into account Ln (logarithm neperien) as an 
increasing function, minimization of the above 

IVNN elements is equal to "minimization" of the 

Ln of its elements, as: 
 
𝑀𝑖𝑛 (∑ 𝑦𝑗 . 𝐿𝑛 (1 − 𝑐1𝑗), ∑ 𝑦𝑗 . 𝐿𝑛 (1 − 𝑐2𝑗), ∑ 𝑦𝑗 . 𝐿𝑛 (𝑐3𝑗),

𝑛
𝑗=1

𝑛
𝑗=1

𝑛
𝑗=1

∑ 𝑦𝑗 . 𝐿𝑛 (𝑐4𝑗), ∑ 𝑦𝑗 . 𝐿𝑛 (𝑐5𝑗), ∑ 𝑦𝑗 . 𝐿𝑛 (𝑐6𝑗)
𝑛
𝑗=1  𝑛

𝑗=1 )𝑛
𝑗=1        (21) 

 

Since all the elements of the above normalized 
elements number in [0,1] interval, minimizing it 

corresponds to "minimization" of the elements 

summation, 
 

𝑀𝑖𝑛 ∑ 𝑦𝑗 . 𝐿𝑛 ((1 − 𝑐1𝑗)(1− 𝑐2𝑗)𝑐3𝑗𝑐4𝑗
𝑛
𝑗=1 𝑐5𝑗𝑐6𝑗       (22) 

 

Now, consider ith constraint ∑ (�̃�𝑖𝑗𝑥𝑗)
2 =𝑛

𝑗=1 �̃�𝑖 , 

for a given value 𝑖, 𝑖 = 1,… ,𝑚, in Eq. (16). For 

handling this constraint, their both sides are 

multiplied by  𝑡2 , Eq. (17). Hence, the initial 

constraint is transformed into ∑ (�̃�𝑖𝑗𝑦𝑗)
2 =𝑛

𝑗=1

𝑡2�̃�𝑖. Taking into account the constraint’s left side, 

it is an IVNNWA operator of a set of IVNNs 

�̃�𝑖𝑗, 𝑗 = 1,2, … , 𝑛. This IVNNWA can be shown as 

follows: 

 

([(1 − ∏ (1 − 𝑎1𝑖𝑗)
𝑦𝑗
2
), (1 −∏ (1 −𝑛

𝑗=1
𝑛
𝑗=1

𝑎2𝑖𝑗)
𝑦𝑗
2

)], [∏ 𝑎
3𝑖𝑗

𝑦𝑗
2

,∏ 𝑎
4𝑖𝑗

𝑦𝑗
2

], [∏ 𝑎
5𝑖𝑗

𝑦𝑗
2

,∏ 𝑎
6𝑖𝑗

𝑦𝑗
2

])𝑛
𝑗=1

𝑛
𝑗=1

𝑛
𝑗=1

𝑛
𝑗=1   

                                                                         (23) 

 

The product 𝑡2�̃� can be handled on the right side, 

in terms of the scalar multiplication in Eq. (4), as: 

 

([1 − (1 − 𝑏1)
𝑡2 , 1 − (1 −

𝑏2)
𝑡2], [𝑏3

𝑡2 , 𝑏4
𝑡2], [𝑏5

𝑡2 , 𝑏6
𝑡2])                         (24) 

 

For equality-type constraints, the right side must 

be equal to the left constraints.  
 

{
 
 
 
 

 
 
 
 1 −∏ (1 − 𝑎1𝑖𝑗)

𝑦𝑗
2
= 1 − (1 − 𝑏1)

𝑡2𝑛
𝑗=1

1 −∏ (1 − 𝑎2𝑖𝑗)
𝑦𝑗
2
= 1 − (1 − 𝑏2)

𝑡2𝑛
𝑗=1

∏ (𝑎3𝑖𝑗)
𝑦𝑗
2
= (𝑏3)

𝑡2𝑛
𝑗=1

∏ (𝑎4𝑖𝑗)
𝑦𝑗
2
= (𝑏4)

𝑡2𝑛
𝑗=1

∏ (𝑎5𝑖𝑗)
𝑦𝑗
2
= (𝑏5)

𝑡2𝑛
𝑗=1

∏ (𝑎6𝑖𝑗)
𝑦𝑗
2
= (𝑏6)

𝑡2𝑛
𝑗=1

    (25) 

 

The set of constraints in Eq. (25) is transformed 
into the non-linear form by applying the logarithm 

Neperien function: 

 

{
 
 
 
 

 
 
 
 

 
∑ 𝑦𝑗

2𝐿𝑛(1 − 𝑎1𝑖𝑗) = 𝑡
2𝐿𝑛(1 − 𝑏1)

𝑛
𝑗=1

∑ 𝑦𝑗
2𝐿𝑛(1 − 𝑎2𝑖𝑗) = 𝑡

2𝐿𝑛(1 − 𝑏2)
𝑛
𝑗=1

∑ 𝑦𝑗
2𝐿𝑛(𝑎3𝑖𝑗) = 𝑡

2𝐿𝑛(𝑏3)
𝑛
𝑗=1

∑ 𝑦𝑗
2𝐿𝑛(𝑎4𝑖𝑗) = 𝑡

2𝐿𝑛(𝑏4)
𝑛
𝑗=1

∑ 𝑦𝑗
2𝐿𝑛(𝑎5𝑖𝑗) = 𝑡

2𝐿𝑛(𝑏5)
𝑛
𝑗=1

∑ 𝑦𝑗
2𝐿𝑛(𝑎6𝑖𝑗) = 𝑡

2𝐿𝑛(𝑏6)
𝑛
𝑗=1

         (26)  

 

Finally, the IVNN-NLP problem in Eq. (16) is 

transformed into an equivalent NLP problem, as 
illustrated in Eq. (27). When this problem is 
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solved, the optimum values of t* and     𝑦𝑗
∗ ,   𝑗 =

1,2, … , 𝑛  are defined. Using an opposite 

transformation based on Eq. (17), the optimal 

values of the original variables 𝑥𝑗
∗, 𝑗 = 1,… , 𝑛 are 

found. 
 

𝑀𝑖𝑛 ∑𝑦𝑗.  𝐿𝑛((1 − 𝑐1𝑗)(1− 𝑐2𝑗)𝑐3𝑗𝑐4𝑗𝑐5𝑗𝑐6𝑗)

𝑛

𝑗=1

 

s.t.      

 

{
 
 
 
 

 
 
 
 

 
∑ 𝑦𝑗

2𝐿𝑛(1 − 𝑎1𝑖𝑗) = 𝑡
2𝐿𝑛(1− 𝑏1)

𝑛
𝑗=1

∑ 𝑦𝑗
2𝐿𝑛(1− 𝑎2𝑖𝑗) = 𝑡

2𝐿𝑛(1− 𝑏2)
𝑛
𝑗=1

∑ 𝑦𝑗
2𝐿𝑛(𝑎3𝑖𝑗) = 𝑡

2𝐿𝑛(𝑏3)
𝑛
𝑗=1

∑ 𝑦𝑗
2𝐿𝑛(𝑎4𝑖𝑗) = 𝑡

2𝐿𝑛(𝑏4)
𝑛
𝑗=1

∑ 𝑦𝑗
2𝐿𝑛(𝑎5𝑖𝑗) = 𝑡

2𝐿𝑛(𝑏5)
𝑛
𝑗=1

∑ 𝑦𝑗
2𝐿𝑛(𝑎6𝑖𝑗) = 𝑡

2𝐿𝑛(𝑏6)
𝑛
𝑗=1

   𝑦𝑗 ≥ 0,𝑡 ≥ 0 

                                                                         (27) 

 

The problem in Eq. (27) is a new nonlinear 
programming problem that ordinal methods can 

solve. Such a process can be carried out to resolve 

the MAGDM problems in Eq. (12). 

Remark: In the case that the score and accuracy 
functions cannot rank the neutrosophic triplets of 

intervals, one can use the certainty function [47]. 

 

4.1. Algorithm of the proposed method  
In the previous sections, the MAGDM problem 
was formulated as an IVNN nonlinear 

programming model. Then, a method is proposed 

to solve this problem. The MAGDM algorithm 
based on the proposed method is shown in Figure 

1. This algorithm consists of three steps. The first 

step is to prepare the decision-making team and 

solve the problem. In the second step, the problem 
is analyzed. Finally, the problem of decision was 

solved by the results of the second round. 

 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ie
pr

.iu
st

.a
c.

ir
 o

n 
20

25
-0

7-
18

 ]
 

                             7 / 15

https://ijiepr.iust.ac.ir/article-1-2094-en.html


8 A Nonlinear Model to Solve Multiple Attribute Decision-Making Problems with 

Interval-Valued Neutrosophic Numbers 
 

International Journal of Industrial Engineering & Production Research, December 2024, Vol. 35, No. 4 

 
 

5. Numerical Example 
In this section, two numerical examples have been 

solved using the proposed method to illustrate its 

applicability and efficiency. 

Example 1: Suppose 3 DMs as d1, d2, d3, and 4 
students (x1, x2, x3, x4) are screened as finalists 

using the pre-screening method. Using all DMs, it 

is agreed that these candidates will be assessed on 

Form the decision-making group 

Identify decision alternatives 

Define decision making criteria 

Perform individual evaluation of alternatives 

based on criteria 

Aggregate decision matrices using Eq. (9) 

Construct MAGDM model (12) for each 

alternative 

Solve the MAGDM model by constructing the 

equivalent model in Eq. (27) 

Rank the alternatives based on their obtained 

scores from MAGDM model 

Start 

End 

P
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p
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n
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ta
g
e 

A
n
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four educational information competencies, A1. 
A2 level university English test; Ability to work in 

a group, A3; and potential studies, A4. Here, it is 

assumed that there is consensus among the group 

in the evaluation of qualitative features in five 
linguistic terms. Table 1 also shows the conversion 

measure between IVNN and linguistic terms. It 

should be noted that the methodology presented 
here is insensitive to the scale of the IVNN used to 

represent decision-makers. So, any arbitrary scale 

is possible. Decision-makers can use the scale 
presented in Table 1 to express their uniqueness. 

For subjective features, the above scale or any 

other one is utilized. Regarding objective 

(quantitative) features, a technique will be needed 
to convert the precise quantitative values into 

IVNNs. It is supposed that an objective attribute is 
assessed as (100,150,120,90,80,70) for a set of 

four alternatives.  

The values of such attribute vectors are divided to 

normalize their values to the highest value of 150. 
The obtained normalized vector was 

(0.7,1,0.8,0.6,0.5,0.4). Then, these values' 

desirability can be determined by DM based on the 
linguistic scale. 

The IVNN assessments of DM on alternative 

performances regarding different criteria are 
shown in Table 1. 

Taking into account the alternative x1, in terms of 

Eq. (12), the formulation of the MAGDM model 

is: 

  

𝑀𝑎𝑥 ([0.1,0.2], [0.2,0.3], [0.4,0.5])𝑤1 + ([0.2,0.4], [0.3,0.5], [0.1,0.2])𝑤2
+ ([0.3,0.4], [0.1,0.2], [0.3,0.5])𝑤3 + ([0.1,0.3], [0.3,0.4], [0.2,0.3])𝑤4 

S.t. 

([0.1,0.2], [0.2,0.3], [0.4,0.5]𝑤1 + ([0.2,0.4], [0.3,0.5], [0.1,0.2])𝑤2 + ([0.3,0.4], [0.1,0.2], [0.3,0.5])𝑤3
+ ([0.1,0.3], [0.3,0.4], [0.2,0.3])𝑤4)

2 = ([0.9,0.95], [0.01,0.05], [0.02,0.06]) 
(([0.2,0.3], [0.2,0.5], [0.4,0.5])𝑤1 + ([0.2,0.3], [0.2,0.6], [0.4,0.7])𝑤2 + ([0.3,0.6], [0.1,0.2], [0.1,0.4])𝑤3

+ ([0.5,0.6], [0.4,0.5], [0.1,0.3])𝑤4)
2 = ([0.9,0.95], [0.01,0.05], [0.02,0.06]) 

(([0.5,0.7], [0.2,0.3], [0.1,0.2])𝑤1 + ([0.6,0.7], [0.3,0.4], [0.1,0.3])𝑤2 + ([0.5,0.6], [0.3,0.4], [0.1,0.3])𝑤3
+ ([0.2,0.5], [0.1,0.2], [0.4,0.5])𝑤4)

2 = ([0.9,0.95], [0.01,0.05], [0.02,0.06]) 
(([0.2,0.3], [0.1,0.5], [0.4,0.6])𝑤1 + ([0,0.1], [0.4,0.6], [0.5,0.7])𝑤2 + ([0.8,0.9], [0.3,0.4], [0.1,0.2])𝑤3

+ ([0.4,0.5], [0.3,0.7], [0.2,0.6])𝑤4)
2 = ([0.9,0.95], [0.01,0.05], [0.02,0.06]) 

𝒘𝒋 ≥ 𝟎, 𝒋 = 𝟏, 𝟐, 𝟑, 𝟒 

 

Tab. 1. IVNN scale used to assess alternative 

Linguistic terms IVNNs 

Very good (VG) ([0.8,0.9],[0.02,0.05],[0.1,0.3]) 

Good(G) ([0.7,0.75],[0.2,0.25],[0.5,0.6]) 

Fair(F) ([0.5,0.55],[0.4,0.45],[0.1,0.3]) 

Poor(P) ([0.2,0.25],[0.7,0.75],[0.5,0.57]) 

Very poor(VP) ([0.02,0.05],[0.9,0.95],[0.7,0.8]) 

 

Tab. 2. Aggregated decision matrix 

  A1  A2  A3  A4 

 x1 ([0.1,0.2],[0.2,0.3],[0.4,0.5])  ([0.2,0.4],[0.3,0.5],[0.1,0.2])  ([0.3,0.4],[0.1,0.2],[0.3,0.5]) ([0.1,0.3],[0. 3,0.4],[0.2,0.3]) 

 x2  ([0. 2,0.3],[0.2,0.5],[0.4,0.5])  ([0.2,0.3],[0.2,0.6],[0.4,0.7])  ([0.3,0.6],[0.1,0.2],[0.1,0.4])  ([0.5,0.6],[0.4,0. 50],[0.1,0.3[) 

 x3  ([0.50.7],[0.2,0.3],[0.1,0.2])  ([0.6,0.7],[0.3,0.4],[0.1,0.3])  ([0.5,0.6],[0.3,0.4],[0.1,0.3])  ([0.2,0. 5],[0.10.2],[0.4,0.5]) 

 x4  ([0.2,0.3],[0.1,0.5],[0.4,0.6])  ([0,0.1],[0.4,0.6],[0.5,0.7])  ([0.8,0.9],[0.3,0.4],[0.1,0,2])  ([0.4,0.5],[0.3,0.7],[0.2,0.6]) 

 

This problem is an IVIF linear programming problem, which can be simply solved by converting it into the 
corresponding Eq. (27) model.  

 

𝑀𝑖𝑛 − 4.75𝑦1 − 6.54𝑦2 − 6.67𝑦3 − 5.39𝑦4 

.S.t 

−0.1𝑦1
2 − 0.22𝑦2

2 − 0.35𝑦3
2 − 0.14𝑦4

2 = −2.30𝑡2 

−0.22𝑦1
2 − 0.51𝑦2

2 − 0.51𝑦3
2 − 0.35𝑦4

2 = −2.99𝑡2 

−1.6𝑦1
2 − 1.2𝑦2

2 − 2.3𝑦3
2 − 1.2𝑦4

2 = −4.6𝑡2 
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−1.2𝑦1
2 − 0.69𝑦2

2 − 1.6𝑦3
2 − 0.91𝑦4

2 = −2.99𝑡2 
−0.91𝑦1

2 − 2.3𝑦2
2 − 1.2𝑦3

2 − 1.6𝑦4
2 = −3.91𝑡2 

−0.69𝑦1
2 − 1.6𝑦2

2 − 0.69𝑦3
2 − 1.2𝑦4

2 = −2.81𝑡2 

−0.22𝑦1
2 − 0.22𝑦2

2 − 0.35𝑦3
2 − 0.69𝑦4

2 = −2.3𝑡2 

−0.35𝑦1
2 − 0.35𝑦2

2 − 0.91𝑦3
2 − 0.91𝑦4

2 = −2.99𝑡2 

−1.6𝑦1
2 − 1.6𝑦2

2 − 2.3𝑦3
2 − 0.91𝑦4

2 = −4.6𝑡2 

−0.69𝑦1
2 − 0.35𝑦2

2 − 1.6𝑦3
2 − 0.69𝑦4

2 = −2.99𝑡2 

−0.91𝑦1
2 − 0.91𝑦2

2 − 2.3𝑦3
2 − 2.3𝑦4

2 = −3.91𝑡2 

−0.69𝑦1
2 − 0.51𝑦2

2 − 0.91𝑦3
2 − 1.2𝑦4

2 = −2.81𝑡2 

−0.69𝑦1
2 − 0.91𝑦2

2 − 0.69𝑦3
2 − 0.22𝑦4

2 = −2.30𝑡2 

−1.2𝑦1
2 − 1.2𝑦2

2 − 0.91𝑦3
2 − 0.69𝑦4

2 = −2.99𝑡2 

−0.95𝑦1
2 − 0.88𝑦2

2 − 1.15𝑦3
2 − 0.92𝑦4

2 = −4.61𝑡2 

−1.2𝑦1
2 − 0.91𝑦2

2 − 0.91𝑦3
2 − 1.6𝑦4

2 = −2.99𝑡2 

−2.3𝑦1
2 − 2.3𝑦2

2 − 2.3𝑦3
2 − 0.91𝑦4

2 = −3.91𝑡2 

−1.6𝑦1
2 − 1.2𝑦2

2 − 1.2𝑦3
2 − 0.69𝑦4

2 = −2.81𝑡2 

−1.2𝑦1
2 − 0.91𝑦2

2 − 0.91𝑦3
2 − 1.6𝑦4

2 = −2.99𝑡2 

−3.5𝑦1
2 − 0.1𝑦2

2 − 2.3𝑦3
2 − 0.69𝑦4

2 = −2.99𝑡2 

−2.3𝑦1
2 − 0.91𝑦2

2 − 1.2𝑦3
2 − 1.2𝑦4

2 = −4.6𝑡2 

−0.69𝑦1
2 − 0.51𝑦2

2 − 0.91𝑦3
2 − 0.35𝑦4

2 = −2.99𝑡2 

−0.91𝑦1
2 − 0.69𝑦2

2 − 2.3𝑦3
2 − 1.6𝑦4

2 = −3.91𝑡2 

−0.51𝑦1
2 − 3.5𝑦2

2 − 1.6𝑦3
2 − 0.51𝑦4

2 = −2.81𝑡2 

𝑦1, 𝑦2, 𝑦3, 𝑦4 ≥ 0, t≥ 0 
 

By solving this model for each of the alternatives, their ranking is determined as 𝑥3 > 𝑥4 > 𝑥1 > 𝑥2. Table 

3 presents the results obtained from the solving model (27). 

 

Tab. 3. Objective values for alternatives 

x1 -0.821 

x2 -0.837 

x3 -0.106 

x4 -0.795 

 

Example 2: Due to its harmful effects, air 

pollution has become one of the most visible and 
serious environmental problems. Tehran is the 

largest city and capital of Iran with a population of 

about 8 million people and an area of about 730 

square kilometer. Tehran is one of the most 
polluted cities in the world. The most important 

thing about him. Risk of heart and lung disease and 

increased levels of O3, CO and suspended 
particulate matter. In Tehran, air pollution 

shortens the life of Tehran residents by an average 

of 5 years. Here, we analyzed air pollution for 
three consecutive days in Tehran in 2017, and the 

data was obtained from different parts of the city. 

These stations measure particulate matter 

(PM2.5), PM10, O3 and CO pollution. We 
considered these locations as DM, 3 consecutive 

days as options (x1, x2, and x3), and facility and 

pollutant elimination as options. 

 

Tab. 4. Aggregated decision matrix 
 PM2.5  PM10  O3 CO 

 x1 ([0.10,0.2],[0.2,0.4,[0.2,0.3])  ([0.2,0.3],[0.2,0.3],[0.2,0.3])  ([0.1,0.2],[0.1,0.2],[0.1,0.1]) ([0.1,0.2],[0. 1,0.2],[0.1,0.2]) 

 x2  ([0. 2,0.2],[0.2,0.3],[0.4,0.2])  ([0.2,0.3],[0.1,0.6],[0.2,0.7])  ([0.3,0.4],[0.1,0.2],[0.1,0.2])  ([0.2,0.4],[0.1,0. 30],[0.2,0.3[) 

 x3  ([0.50.7],[0.1,0.2],[0.2,0.3])  ([0.3,0.7],[0.3,0.4],[0.1,0.3])  ([0.2,0.6],[0.1,0.2],[0.1,0.3])  ([0.2,0. 5],[0.10.2],[0.3,0.5]) 

 
Consider the alternative x1, according to Eq. (27), where the MAGDM model is developed as follows: 

 

𝑀𝑖𝑛 − 5.68𝑦1 − 6.21𝑦2 − 8.87𝑦3 − 8.18𝑦4 
s.t. 

−0.1𝑦1
2 − 0.22𝑦2

2 − 0.10𝑦3
2 − 0.10𝑦4

2 = −2.30𝑡2 

−0.22𝑦1
2 − 0.21𝑦2

2 − 0.35𝑦3
2 − 0.22𝑦4

2 = −2.30𝑡2 
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−0.69𝑦1
2 − 0.35𝑦2

2 − 0.22𝑦3
2 − 0.22𝑦4

2 = −2.30𝑡2 

−0.22𝑦1
2 − 0.35𝑦2

2 − 0.22𝑦3
2 − 0.22𝑦4

2 = −2.99𝑡2 
−0.22𝑦1

2 − 0.35𝑦2
2 − 0.51𝑦3

2 − 0.51𝑦4
2 = −2.99𝑡2 

−1.20𝑦1
2 − 1.20𝑦2

2 − 0.91𝑦3
2 − 0.69𝑦4

2 = −2.99𝑡2 

−1.60𝑦1
2 − 1.60𝑦2

2 − 2.30𝑦3
2 − 2.30𝑦4

2 = −4.60𝑡2 

−1.60𝑦1
2 − 2.30𝑦2

2 − 2.30𝑦3
2 − 2.30𝑦4

2 = −4.60𝑡2 

−2.30𝑦1
2 − 1.20𝑦2

2 − 2.3𝑦3
2 − 2.30𝑦4

2 = −4.6𝑡2 

−0.91𝑦1
2 − 1.20𝑦2

2 − 1.60𝑦3
2 − 1.60𝑦4

2 = −2.99𝑡2 

−1.20𝑦1
2 − 0.51𝑦2

2 − 1.60𝑦3
2 − 1.20𝑦4

2 = −2.99𝑡2 

−1.60𝑦1
2 − 0.91𝑦2

2 − 1.60𝑦3
2 − 1.60𝑦4

2 = −2.99𝑡2 

−1.60𝑦1
2 − 1.60𝑦2

2 − 2.30𝑦3
2 − 2.30𝑦4

2 = −3.91𝑡2 

−0.91𝑦1
2 − 1.60𝑦2

2 − 2.30𝑦3
2 − 1.60𝑦4

2 = −3.91𝑡2 

−1.60𝑦1
2 − 2.30𝑦2

2 − 2.30𝑦3
2 − 1.20𝑦4

2 = −3.91𝑡2 

−1.2𝑦1
2 − 1.20𝑦2

2 − 2.30𝑦3
2 − 1.60𝑦4

2 = −2.81𝑡2 

−1.60𝑦1
2 − 0.35𝑦2

2 − 1.60𝑦3
2 − 1.20𝑦4

2 = −2.81𝑡2 

−1.20𝑦1
2 − 1.20𝑦2

2 − 1.20𝑦3
2 − 0.69𝑦4

2 = −2.81𝑡2 

𝑦1, 𝑦2, 𝑦3, 𝑦4 ≥ 0, t≥ 0 
 

By solving this model for each of the alternatives, their ranking is determined as 𝑥1 > 𝑥3 > 𝑥2. Table 5 

presents the results obtained from solving model (27). 

 

Tab. 5. Objective values for alternatives 

x1 -0.10 

x2 -0.95 

x3 -0.11 

 

6. Conclusion 
In the field of MCDM problems, many practical 

problems can be formulated in various 

administrative, social, economic and engineering 

fields. Vincke [50] believes that the main problem 
with these problems is that the facts are not well 

defined and there is no clear solution to them. This 

difficulty is compounded by the fact that the 
concept of uncertainty is an inevitable part of 

these. Considering the uncertainty of decision-

making problems and the ability of interval-valued 
neutrosophic numbers to describe uncertain data, 

in this paper we propose a new model based on 

nonlinear programming to solve the MAGDM 

problem using IVNN. Motivating from DEA, a 
robust logical context is traced by the presented 

formulation. In this model, some models were 

iteratively solved and an ultimate score was 
calculated for each alternative. These scores are 

utilized for ranking and to comparing some 

alternatives. To compare some m alternatives, the 

proposed technique solves m models, one for 
every alternative Though, after formulation of the 

problem for the first alternative, the objective 

functions were adjusted based on various 
alternatives as well as the remained unchangeable 

feasible space. Thus, it is essential to formulate m 

various objective functions with the similar set of 
constraints. Since the proposed model is a 

nonlinear programming problem with IVNN 

parameters, an approach is designed to solve this 
problem.  

The main advantage of the proposed method can 

be summarized as follows: imprimis, there are 
increasing intends to apply mathematical 

optimization models in the context of MAGDM 

problems. Considering this fact, the proposed 

method provides a basis for deciding the 
implementation of solutions. Second, the ideas 

behind the development of the proposed method 

are simple and acceptable. Increasing the weighted 
average of each alternative and restricting the 

score to one method is similar to the concept of 

DEA, which is a well-known method. 
Third: The information requirement of the model 

is smaller than other methods, because the value 

of the features does not need to be defined and the 

model itself defines them. . However, FS cannot 
identify problems, uncertainties and inaccuracies 

in the details of actual problems. In this case, some 

information may be uncertain, uncertain and 
urgent. Considering the membership functions in 

truth, error, and uncertainty for each piece of data 

in a neutrosophic sequence helps in the decision-

making process. Ultimately, there is narrow 
attention paid to mathematical programming with 

IVNN information. The proposed method can be 

generalized to solve nonlinear programming problems 
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with IVNN parameters. 
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