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ABSTRACT 

Maintenance plan efficacy traditionally prioritizes long-term predicted maintenance cost rates, 

emphasizing performance-centric approaches. However, such criteria often neglect the fluctuation in 

maintenance costs over renewal cycles, posing challenges from a risk management perspective. This 

study challenges conventional solutions by integrating both performance and robustness considerations 

to offer more suitable maintenance options. 

The study evaluates two representative maintenance approaches: a block replacement strategy and a 

periodic inspection and replacement strategy. It introduces novel metrics to assess these approaches, 

including long-term expected maintenance cost rate as a performance metric and variance of 

maintenance cost per renewal cycle as a robustness metric. 

Mathematical models based on the homogeneous Gamma degradation process and probability theory 

are employed to quantify these strategies. Comparative analysis reveals that while higher-performing 

strategies may demonstrate cost efficiency over the long term, they also entail greater risk due to 

potential cost variability across renewal cycles. 

The study underscores the necessity for a comprehensive evaluation that balances performance and 

resilience in maintenance decision-making. By leveraging the Monte Carlo Method, this research offers 

a critical appraisal of maintenance strategies, aiming to enhance decision-making frameworks with 

insights that integrate performance and robustness considerations. 

 
KEYWORDS: Maintenance Planning; Robustness; Block Replacement Strategy; Periodic Inspection and 

Replacement Strategy; Monte Carlo Method.  

 

1. Introduction1 
Over time, maintenance strategies have evolved 

significantly. Initially, maintenance was reactive, 
focusing on fixing equipment only when it broke 

down (breakdown maintenance) [1]. 

Subsequently, time-based maintenance (TBM) 
emerged, where maintenance tasks are scheduled 

at predetermined intervals regardless of equipment 

condition [1]. More recently, condition-based 

maintenance (CBM) has gained prominence [2]. 
CBM relies on real-time monitoring and 

diagnostics to schedule maintenance activities 

based on the actual condition of the equipment [2]. 

 
*

Corresponding author: Khamiss Cheikh 

khamiss_cheikh@um5.ac.ma 

 

1. Department of Mechanical Engineering, Energetic team, 

Mechanical and Industrial Systems (EMISys), Mohammadia 

School of Engineers, Mohammed V University, Rabat, 

Morocco. 

2. Department of Mechanical Engineering, Energetic team, 

Mechanical and Industrial Systems (EMISys), Mohammadia 

A common metric used to assess maintenance 

efficacy is the long-term predicted maintenance 

cost rate [3]. This metric quantifies the average 

maintenance cost per unit time over an extended 
period. However, traditional approaches often 

overlook the variability in maintenance costs that 

occur from cycle to cycle [3]. This variability can 
pose challenges for budgeting and risk 

management, particularly when maintenance costs 

fluctuate unpredictably [4]. 
While CBM techniques have demonstrated 

potential cost savings and improved performance 

compared to TBM strategies [5], their robustness 

in managing cost variability remains 

School of Engineers, Mohammed V University, Rabat, 

Morocco. 

3. Department of Physics (LPM-ERM), Faculty of Sciences and 

Techniques, Sultan Moulay Sliman University, B.P.523, 

23000 Beni-Mellal, Morocco. 

4. Department of Physics, Laboratory of Electronics, 

Instrumentation and Energetics, Faculty of Sciences, 

Chouaib Doukkali University, El Jadida, Morocco. 

RESEARCH PAPER 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ie
pr

.iu
st

.a
c.

ir
 o

n 
20

25
-0

7-
17

 ]
 

                             1 / 19

http://dx.doi.org/10.22068/ijiepr.27.4.321
https://ijiepr.iust.ac.ir/article-1-1994-en.html


2 Development and Optimization of Maintenance Using the Monte Carlo Method 
 

International Journal of Industrial Engineering & Production Research, September 2024, Vol. 35, No. 3  

underexplored [6]. Robustness here refers to the 
ability of a maintenance strategy to maintain stable 

cost outcomes across different renewal cycles, 

thereby reducing financial uncertainty and 
enhancing overall resilience [6, 7]. 

Despite the economic advantages of CBM, the 

existing literature lacks a comprehensive 
evaluation framework that considers both 

economic performance and robustness in 

maintenance strategies [8]. Most studies focus 

primarily on minimizing long-term predicted costs 
without adequately addressing the variability and 

risk associated with maintenance expenditures 

over time. 
This study seeks to bridge this gap by introducing 

a novel criterion termed maintenance cost per 

renewal cycle (MCPRC). Unlike traditional 

metrics, which assess long-term cost averages, the 
MCPRC evaluates the variability of maintenance 

costs within each renewal cycle [9]. This criterion 

provides a more holistic assessment of 
maintenance strategy effectiveness by integrating 

both cost efficiency and resilience considerations. 

Moreover, the study systematically compares two 
representative maintenance strategies — periodic 

inspection and replacement (PIR) versus quantile-

based inspection and replacement (QIR) — using 

the MCPRC criterion [10]. These strategies are 
evaluated within the context of a single-unit 

degrading system modelled using a homogeneous 

Gamma process, where failure occurs upon 
reaching a critical degradation threshold [11]. 

By developing and analysing cost models based on 

this new criterion, the study aims to provide 
actionable insights into the comparative 

performance of PIR and QIR strategies [12]. 

Specifically, it examines how these strategies 

manage cost variability and maintain cost-
effective operations over time. 

The subsequent sections of this paper are 

structured as follows: Section 2 provides a brief 
overview of the deterioration and failure model 

used in the study. Section 3 outlines the 

assumptions and cost models for both the PIR and 

QIR strategies. Section 4 discusses the 
inadequacies of traditional long-term predicted 

maintenance cost rates and introduces the MCPRC 

criterion as a more relevant alternative. Section 5 
presents the comparative analysis of PIR and QIR 

strategies using the MCPRC criterion. Section 6  

provides Managerial Insights. Section 7 presents a 
Comparison of This Study with Previous 

Research. Finally, Section 8 concludes the study 

and outlines avenues for future research in this 

critical area of maintenance management. 
 

 

2. Degradation and Failure Model 
Consider a hypothetical situation in which we 

have a single-unit degrading system. This system 
might consist of either a single component or a 

collection of linked components, all of which are 

prone to deterioration from a maintenance 

standpoint. The deterioration of this system 
develops naturally over time and might result in 

unanticipated breakdowns. These failures may be 

related to numerous physical degradation 
processes such as cumulative wear, fracture 

propagation, erosion, corrosion, fatigue, and other 

similar causes [13]. 
Alternatively, this degradation process might also 

be a fake portrayal of how the system's health and 

performance deteriorate as it matures and 

experiences frequent use [14], [15]. In such 
instances, the system's functioning steadily 

deteriorates, leading to a drop in its overall 

performance and efficiency. 
To adequately predict the deterioration of these 

systems, Hameed and Proschan [16] advise 

adopting time-dependent stochastic processes. 

This method enables a more thorough and detailed 
description of the system's behaviour across time. 

By applying time-dependent stochastic processes, 

we may acquire insights into the system's 
deterioration trends and, subsequently, create 

more accurate forecasts about its failure time [17]. 

Let's describe 𝑋𝑡 as a scalar random variable that 
reflects the cumulative deterioration of the system 

at every given period 𝑡 ≥ 0. Initially, when no 

maintenance activities have been conducted on the 

system, we define 𝑋0 as 0, signifying the system's 
pristine condition when it was new. 

Moreover, assuming that the degradation 

increment between two-time points, 𝑡 and 𝑠 

(where 𝑡 ≤ 𝑠), denoted as 𝑋𝑠 − 𝑋𝑡, is independent 

of the degradation levels before 𝑡, we can employ 

any monotonic stochastic process from the Lévy 

family [18] to model the evolution of the system's 
degradation. The Lévy family of stochastic 

processes gives a large variety of alternatives to 

represent the degrading behaviour of the system 
properly. 

By applying this technique, we may better 

understand how the system's deterioration 

advances over time, allowing us to make educated 
judgments about maintenance interventions and 

anticipate the system's failure time more 

accurately. This extensive deterioration modeling 
enables us to monitor the system's health condition 

and take proactive changes to maximize its 

performance and lifetime. 

In this research study, we intentionally chose to 
select the well-established homogeneous Gamma 

process, defined by a shape parameter 𝛼 and a 
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scale parameter 𝛽, as our degradation modeling 

framework. This option has been widely defended 

and validated by a variety of practical applications 

spanning numerous fields. Notably, the Gamma 
approach has proved its usefulness in capturing 

degradation processes in corrosion damage 

mechanisms [19], deterioration of carbon-film 
resistors [20], SiC MOSFET threshold voltage 

degradation [21], fatigue crack propagation [22], 

and performance loss in actuators [23]. These real-
world applications offer empirical proof of the 

applicability and usefulness of the Gamma process 

in simulating varied degradation processes. 

Furthermore, the implementation of the Gamma 
process provides various benefits, notably in terms 

of mathematical formulation and analysis. The 

Gamma distribution, derived from the Gamma 
process, is well-known for its versatility in 

capturing a broad variety of deterioration patterns. 

It offers a robust probabilistic framework that 

permits the characterization of deterioration 
increments across time. In our particular case, for 

each given time interval 𝑡 < 𝑠, the degradation 

increment 𝑋𝑠 − 𝑋𝑡 may be described as a random 
variable that follows a Gamma distribution. The 

parameters 𝛼 and 𝛽 of the Gamma distribution 

influence the form and size of the deterioration 

process, respectively. 
The Gamma approach has received recognition 

and respect among professionals in the area of 

deterioration modelling [24]. Its successful 
implementation in different real contexts, along 

with its mathematical tractability, makes it a 

perfect alternative for our research aims. By using 
the Gamma process, we can effectively capture the 

degradation dynamics, estimate degradation rates, 

and provide valid predictions on the future 

behavior of the system under study. 
To recap, the choice to adopt the homogeneous 

Gamma process, defined by shape parameter 𝛼 

and scale parameter 𝛽, is anchored in its 
established track record in practical applications 

across different areas, as well as its support by 

domain experts. The use of the Gamma process 

not only aids the mathematical formulation and 
study of degradation processes but also allows us 

to describe the degradation increment 𝑋𝑠 − 𝑋𝑡 as a 

random variable following a Gamma distribution 
with a well-defined probability density function:  

 

𝑓𝛼.(𝑠−𝑡),𝛽(𝑥)

=
𝛽𝛼.(𝑠−𝑡)𝑥𝛼.(𝑠−𝑡)−1𝑒−𝛽𝑥

𝛤(𝛼. (𝑠 − 𝑡))
. 1{𝑥≥0},                      (1) 

 
and survival function: 

 

 �̅�𝛼.(𝑠−𝑡),𝛽(𝑥)

=
𝛤(𝛼. (𝑠 − 𝑡), 𝛽𝑥)

𝛤(𝛼. (𝑠 − 𝑡))
,                                            (2) 

 

Where  Γ(𝛼) = ∫ 𝑧𝛼−1𝑒−𝑧∞

0
𝑑𝑧   and Γ(𝛼, 𝑥) =

∫ 𝑧𝛼−1𝑒−𝑧∞

𝑥
𝑑𝑧 represent the complete and upper 

incomplete Gamma functions, respectively. 

In the context of the degradation process, we apply 

a threshold-type model to characterize the failure 

of the system. This model enables us to assess 
when a system is regarded to have failed based on 

economic or safety factors. For instance, a system 

may be regarded to have failed if it no longer 
fulfils the needed product quality requirements or 

if there is a significant risk of dangerous failures, 

even if it is technically still operating. 
To quantify this failure situation, we construct a 

critical threshold, abbreviated as 𝐿. As the 

deterioration of the system continues over time, 

the system is regarded to have failed as soon as its 
degradation level is above this specified threshold. 

This threshold acts as a limit that separates an 

acceptable operating situation from an 
unsatisfactory one. 

To further describe the system's failure time, we 

add the random variable 𝜏𝐿, which reflects the time 

at which the system encounters failure. In other 

words, 𝜏𝐿 specifies the random failure time of the 

system. It is vital to note that this failure time is 

dependent on the degradation level reaching or 

surpassing the critical threshold 𝐿. 

Now, let's look into the mathematical formula for 

𝜏𝐿. To denote the indicator function, which 

produces a value of 1 if the input is true and 0 

otherwise, we use the notation 1{⋅}. In this 

scenario, we may describe the failure time as 

follows: 
 

𝜏𝐿

= inf {t ∈ ℝ+|Xt ≥ L}                                            (3) 

 

where 𝑋𝑡 represents the accumulated degradation 

of the system at time 𝑡, and inf denotes the 

infimum or the smallest value in a set. This 
equation signifies that the failure time occurs at the 

earliest time 𝑡 for which the degradation level 𝑋𝑡 

surpasses or equals the critical threshold 𝐿. 

To model a range of degradation behaviours, 
spanning from nearly deterministic to highly 

erratic, we introduce a pair of parameters, (𝛼, 𝛽). 

These parameters provide a means to adjust the 
degradation model accordingly. The average 

degradation rate is characterized by the ratio 𝛼/𝛽, 

while the variance is determined by the ratio 𝛼 𝛽2⁄ . 

By manipulating these parameters, we can capture 
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different degradation patterns and determine the 
average rate and variability of the degradation 

process. 

In cases where degradation data is available, these 

parameters (𝛼, 𝛽) can be estimated using 

conventional statistical techniques such as 

maximum likelihood estimation or moments 
estimation [25]. These techniques allow us to 

derive the most suitable values for the parameters 

based on the observed degradation data, enabling 

us to accurately model the degradation behavior 
and estimate the failure time of the system. 

The density function of τL at time 𝑡 ≥ 0 is given by 

[6] : 
 

𝑓𝜏𝐿(𝑡)

=
𝛼

Γ(𝛼𝑡)
∫ (ln(𝑧)

∞

𝐿𝛽

− ψ(αt))zαt−1 𝑒−𝑧𝑑𝑧,                                           (4) 

 

Where  𝜓(𝜈) =
𝜕

𝜕𝜈
ln(Γ(𝜈))  is known as the 

digamma function. 
 

3. Maintenance Strategies and Cost 

Models 
In this specific section, our major purpose is to 

look into the examples of Condition-Based 
Maintenance (CBM) methods, especially the 

Periodic Inspection and Replacement strategy 

(PIR) and the quantile-based inspection and 
replacement strategy (QIR). Through this 

extensive description, we hope to give a complete 

knowledge of these techniques, including their 

underlying concepts, decision criteria, and the 
step-by-step procedure involved in formulating 

their Maintenance Cost per Renewal Cycle 

(MCPRC). 
To begin, it is vital to identify the assumptions 

connected to the system being maintained. These 

assumptions serve as the basis for applying CBM 

methods successfully. By explicitly defining the 
fundamental assumptions, we create the 

framework for understanding the upcoming choice 

criteria and MCPRC formulation process. 
Moving further, we give complete choice criteria 

for both the PIR and QIR techniques. These 

decision criteria operate as guidance for making 
educated decisions about maintenance activities 

depending on the system's status. The choice 

criteria take into consideration numerous elements 

such as the system's degradation trends, criticality, 
and reliability objectives. By considering these 

parameters, maintenance personnel may decide 

when inspections and replacements should be 
conducted, maximizing the overall maintenance 

approach. 

Finally, we present a thorough explanation of the 
step-by-step method required in developing the 

MCPRC for both the PIR and QIR strategies. The 

MCPRC is a critical statistic that helps assess the 
cost-effectiveness of CBM techniques across a 

renewal cycle. It takes into consideration elements 

like as inspection expenses, replacement costs, and 
possible savings resulting from preventing 

catastrophic failures. By understanding this 

process, practitioners may examine the financial 

consequences of applying these methods and make 
educated judgments about their adoption. 

In summary, this section fully examines the 

exemplars of CBM methods, especially the PIR 
and QIR. By explaining the assumptions, offering 

extensive decision criteria, and exhibiting the 

MCPRC formulation process, we want to provide 

readers with a full grasp of these strategies and 
their practical application in maintenance 

management. 

 

3.1. Maintenance assumptions 
Taking into consideration the extensive analysis 

presented in Section II about the single-unit 
system, we assume that the deterioration level of 

the system stays concealed and its failure 

condition is not immediately obvious. In other 
words, the system cannot independently convey its 

deterioration degree or operational/failure state. 

Instead, this information can only be gathered via 
inspection efforts. It's crucial to note that the 

phrase "inspection" comprises more than simply 

data gathering; it entails extracting significant 

characteristics from the obtained data, building 
deterioration indicators, and maybe additional 

duties [26]. Essentially, this activity comprises all 

the essential processes preceding the Maintenance 
Decision Making process in a predictive 

maintenance program [2]. However, performing 

inspections incurs money and demands time. 
Nevertheless, when considering the lifetime of a 

system, the time needed for an examination is low. 

Therefore, we assume that each inspection 

operation is quick, perfect, non-destructive, and 

incurs a constant cost indicated as 𝐶𝑖, where 𝐶𝑖 > 

0. 

The system under examination provides two 
maintenance options: Preventive Replacement 

(PR) and Corrective Replacement (CR). A 

replacement may be carried out rapidly and entails 

either physically replacing the component or 
executing a thorough repair or overhaul that 

returns the system to a state equal to being brand 

new. However, the expenses associated with PR 
and CR operations may not be equal. Corrective 

replacements, being unexpected and possibly 

causing environmental harm, often incur greater 
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expenses compared to preventative replacements. 

Additionally, even when performing the same sort 

of maintenance activity, the expenses incurred by 

the system may differ. This is because executing 
maintenance on a more deteriorated system is 

likely to be more involved and, thus, more 

expensive. Let 𝐶𝑝(𝑋𝑡) and 𝐶𝑐(𝑋𝑡) reflect the costs 
of preventative and corrective replacements at 

time 𝑡, respectively. These costs are both rising 

functions of the deterioration level 𝑋𝑡 and meet the 

connection 0 < 𝐶𝑖 < 𝐶𝑝(𝑋𝑡) < 𝐶𝑐(𝑋𝑡). 
Furthermore, because a replacement may only be 

conducted at discrete periods (particularly, during 

inspection times in the PIR and QIR schemes), 
there is downtime for the system once a failure 

occurs. This downtime incurs an extra cost, which 

accumulates from the moment of failure until the 
next replacement time, at a constant cost rate 

represented as 𝐶𝑑, where 𝐶𝑑 > 0. 

 

3.2. Maintenance strategies  

3.2.1. Periodic inspection and replacement 

policy (PIR): 
The Periodic Inspection and Replacement (PIR) 

strategy is acknowledged as one of the simplest 

Condition-Based Maintenance (CBM) techniques. 
Its strategy entails maintaining a static inspection 

period, and both Preventive Replacement (PR) and 

Corrective Replacement (CR) procedures are 
synchronized with the inspection periods. The 

decision-making process within the PIR policy 

involves several steps: 
Step 1: Regular inspections: The system receives 

inspections at defined intervals of time, designated 

as δ, independent of its present status or age. These 

inspection periods are expressed as Tk = kδ, where 
k takes on values of 1, 2, and so on. 

Step 2: Decision depending on deterioration level: 

At each inspection time Tk, the observed 
deterioration level XTk is examined to make a 

judgment about the necessary maintenance action. 

The choice alternatives are as follows: 
• If XTk is larger than or equal to the failure 

threshold L, it signals that the system has failed 

and needs corrective replacement with a new one 

at time Tk. 
• If XTk falls within the range of M to L (inclusive), 

the system is considered to be running but 

sufficiently degraded, necessitating preventive 
replacement with a new one at time Tk.  

• If XTk is less than the threshold M, the system is 

deemed to be in a healthy state, and no 

maintenance action is taken at Tk. 
Step 3: Scheduling the next inspection: Regardless 

of the kind of intervention made during the current 

inspection, the next examination for the system is 
scheduled at Tk+1 = Tk + δ. In other words, the 

inter-inspection time stays constant. The success 

of the PIR policy is controlled by two main 

variables: the inspection period δ and the 

preventative replacement (PR) level M. The 
inspection period reflects the time interval 

between subsequent inspections, regulating the 

frequency at which the system's status is checked. 
The PR threshold M determines the degradation 

level at which the system is regarded as 

sufficiently deteriorated to require preventative 
replacement. Adjusting these factors enables 

maintenance practitioners to adjust the PIR policy 

to the unique features and needs of the system 

under consideration. 
 

3.2.2. Quantile-based inspection and 

replacement policy (QIR): 
Diverging from the Periodic Inspection and 

Replacement (PIR) policy, the Quantile Inspection 
and Replacement (QIR) policy adopts a new 

technique to analyse the system's status. In the 

QIR policy, the inspection schedule is decided 
based on a quantile schedule given by a parameter 

α, where 0 < α < 1. 

Rather than sticking to predefined inspection 

intervals as in the PIR policy, the QIR policy adds 
flexibility by matching inspections with specified 

quantiles of the system's degradation distribution. 

These quantiles are specified by the parameter α, 
reflecting a proportion between 0 and 1 that 

describes the intended percentile of the 

deterioration distribution at which an inspection 

should occur. 
For example, if α = 0.5, the QIR strategy targets 

the median of the degradation distribution. This 

implies that inspections are scheduled when the 
system's degradation level reaches the point where 

50% of the degradation distribution is below it. 

Similarly, if α = 0.9, inspections are triggered 
when the system's deterioration level crosses the 

threshold where only 10% of the degradation 

distribution stays below it. 

By leveraging quantile schedules, the QIR policy 
provides for a more dynamic and adaptable 

inspection technique. The inspection intervals are 

chosen by the system's degradation behavior, 
ensuring that inspections occur at points of 

relevance within the degradation distribution. This 

technique allows more focused maintenance 
operations and may possibly decrease wasteful 

inspections in times of low deterioration. 

 

Tk+1 = Tk + ∆Tk+1  ,       Δ𝑇𝑘+1 = δ( X𝑇𝑘
) =

inf{t ≥ 0, R( t|    X𝑇𝑘
) ≥ α}, k = 1, 2, . ..    (5) 
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In the given context, XT0 = X0 = 0 denotes the 
initial degradation level of the system at time T0, 

which is assumed to be zero. This implies that at 

the start of the system's life, there is no degradation 
present. 

The term R (t |  𝑋𝑇𝑘
= 𝑥𝑘) represents the system's 

conditional reliability at time t, given the 

degradation level xk observed at the inspection 
time Tk. This conditional reliability provides an 

understanding of the system's probability of 

functioning properly up to time t, given its 

degradation level at the inspection time Tk. 

When we have     X𝑇𝑘
= 𝑥𝑘, we can calculate the 

conditional reliability as follows: 

 

𝑅(𝑡 ∕  𝑋𝑇𝑘 = 𝑥0) =  1 −  �̅�𝛼.(𝑡−𝑇𝑘),𝑏(𝐿 − 𝑥𝑘),     (6) 

 

Here, �̅�𝛼.(𝑡−𝑇𝑘),𝑏(𝐿 − 𝑥𝑘)  is obtained from 

equation (2), which refers to the survival function 
of the distribution governing the degradation 

process. This function calculates the probability 

that the system's degradation level, starting from 

xk at inspection time Tk, remains below a certain 
threshold L over the time interval [Tk, Tk+1]. 

By subtracting this survival probability from 1, we 

obtain conditional reliability, representing the 
probability that the system remains functional up 

to time t, given its degradation level xk at 

inspection time Tk. 
 

3.3.Maintenance cost per renewal cycle          
In our analysis of the PIR and QIR strategies, we 
propose the utilization of the Maintenance Cost 

per Renewal Cycle (MCPRC) as a metric to assess 

their robustness. The MCPRC is calculated based 
on the length of a renewal cycle, denoted as S, and 

the overall maintenance cost incurred during that 

cycle, represented by C(S). The MCPRC is 

defined as the ratio of the maintenance cost to the 
length of the renewal cycle: 

 

𝐾 =
𝐶(𝑆)

𝑆
.                                                                  (7)  

 
The value of K is a random variable, and we aim 

to evaluate it using its mean value, denoted as 𝜇 = 

E(K), and its standard deviation, expressed as: 
 

    𝜎 = √𝐸(𝐾2) − 𝐸2(𝐾)

= √𝐸(𝐾2) − 𝜇2.                                                      (8) 

 

Here, 𝐸(𝐾2) represents the expected value of K 

squared. Evaluating the mean and standard 

deviation of the MCPRC provides insights into the 
average cost per renewal cycle and the variability 

around this average. 

It's vital to note that when the value of 𝜎 (the 
standard deviation) grows, the resilience of the 

maintenance solutions lowers. Higher 𝜎 suggests 

a broader band of MCPRC values, signaling more 
uncertainty and unpredictability in the 

maintenance costs each renewal cycle. 

In the remaining portions of our research, we will 

present analytical equations to determine 𝜎 for 
both the PIR and QIR techniques. These 

expressions will enable us to statistically examine 

the resilience of each method by determining the 
amount of uncertainty and unpredictability in their 

relative maintenance costs every renewal cycle. 

 

3.3.1. Standard formulation of the 

MCPRC for the PIR pol      
Let's suppose a system that conducts regular 

inspections to evaluate its status and decide 

whether any maintenance activities are necessary. 

For simplicity and without loss of generality, we 
assume that the system undergoes either 

preventative or corrective replacement at the k-th 

inspection time, where k might take values from 1, 
2, and so on. 

Each inspection cycle has a period of 𝑆𝑘 = 𝑘Δ𝑇, 

where ΔT indicates the time gap between 

successive inspections. As the number of 
inspections rises with each cycle, the system 

incurs inspection expenses proportionate to the 

number of inspections completed. Therefore, 
during the k-th inspection occasion, the system 

accrues a total of k inspection costs. 

In addition to the inspection costs, there are 
additional charges related to the system's behavior 

throughout the renewal cycle. If the system stays 

functioning and does not need replacement by the 

end of the cycle, it incurs a preventative 
replacement (PR) cost. This cost accounts for the 

proactive replacement of particular components or 

subsystems to avoid probable failures or 
performance deterioration. 

On the other side, if the system fails during the 

renewal cycle, it pays the expenses of k 

inspections, a corrective replacement (CR) cost, 
and the downtime resulting from the failure. The 

CR cost covers the fees associated in repairing the 

failed components, while the downtime cost 
reflects the losses experienced due to the system 

being out of action. 

Considering these criteria, we can compute the 
Mean Cost Per Renewal Cycle (MCPRC) for the 

preventative inspection and replacement (PIR) 

program. The MCPRC indicates the average cost 

incurred by the system across a whole renewal 
cycle. To compute it, we total up the expenses 

associated with each feasible possibility for the 

system's behavior throughout the cycle.
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The Mean Cost Per Renewal Cycle (MCPRC) for the PIR policy can be stated as: 

 

𝐾𝑃𝐼𝑅 = ∑(

∞

𝑘=1

𝐶𝑝  (𝑋𝑆𝑘
) + 𝑘𝐶𝑖

𝑆𝑘
1

{ 𝑋𝑆𝑘−1
<𝑀≤𝑋𝑆𝑘

<𝐿}
+ 

𝐶𝑐  (𝑋𝑆𝑘
) + 𝑘𝐶𝑖

𝑆𝑘
1

{ 𝑋𝑆𝑘−1
<𝑀<𝐿≤𝑋𝑆𝑘

}

+
𝐶𝑑𝑊𝑑,𝑃𝐼𝑅  

𝑆𝑘
)       ,                                                                                                                            (9) 

 

Within the context of the PIR (preventive 

inspection and replacement) strategy, 𝑊𝑑, PIR  

refers to the system downtime that occurs during 

the time span [𝑆𝑘−1, 𝑆𝑘]. This time span 

corresponds to the interval between the (k-1)-th 

inspection and the k-th inspection, encompassing 
a complete renewal cycle. 

System downtime refers to the period when the 

system is not operational due to maintenance 
activities or failures. In the case of PIR, downtime 

can occur for two reasons: preventive 

replacements and corrective replacements. 

During the time span [𝑆𝑘−1, 𝑆𝑘], if the system 
undergoes a preventive replacement, it means that 

certain components or subsystems are proactively 

replaced to prevent potential failures or 
performance degradation. This replacement 

activity may require the system to be taken offline 

temporarily, resulting in downtime. The duration 

of this downtime associated with preventive 

replacement is denoted as 𝑊𝑑, PIR. 
Alternatively, if the system experiences a failure 

or requires a corrective replacement during the 

time span [𝑆𝑘−1, 𝑆𝑘], it will also incur downtime. In 

this case, the system is out of operation while the 
failed components are replaced and the necessary 

repairs are carried out. The duration of this 

downtime associated with the corrective 

replacement is also denoted as 𝑊𝑑, PIR. 

Therefore, 𝑊𝑑, PIR captures the cumulative downtime 

occurring within a renewal cycle under the PIR 

strategy. It includes both the downtime resulting 
from preventive replacements and the downtime 

resulting from corrective replacements. By 

quantifying the duration of downtime, we can 
evaluate the impact of system maintenance 

activities on its overall availability and operational 

efficiency. 

Here, 𝑊𝑑, PIR  is articulated as:
 

𝑊𝑑,𝑃𝐼𝑅 = (𝑆𝑘 − 𝜏𝐿). 1{ 𝑆𝐾−1<𝜏𝐿≤𝑆𝐾}
 

 =  ∫   1
{ 𝑋𝑆𝑘−1

<𝑀<𝐿≤𝑋𝑡}
 

𝑆𝐾

𝑆𝐾−1
𝑑𝑡                                                            (10) 

 

The mean MCPRC of the PIR strategy 𝜇𝑃𝐼𝑅 = 𝐸[𝐾𝑃𝐼𝑅] is thus computed as 

 

𝜇𝑃𝐼𝑅 = ∑
1 

𝑆𝑘

∞

𝑘=1

∫ ( 
𝑀

0

      ∫ (𝐶𝑝  (𝑥 + 𝑧) + 𝑘 𝐶𝑖)
𝐿−𝑥

𝑀−𝑥

×  𝑓𝛼∆𝑇,𝛽  (𝑧)𝑑𝑧

+ ∫ (𝐶𝑐  (𝑥 + 𝑧) + 𝑘 𝐶𝑖  ) 𝑓𝛼∆𝑇,𝛽  (𝑧)   
∞

𝐿−𝑥

𝑑𝑧  

+ 𝐶𝑑 ∫ �̅�𝛼(𝑡−𝑆𝑘−1),,𝛽   (𝐿 − 𝑥)   
𝑆𝑘

𝑆𝑘−1

𝑑𝑡        )  𝑓𝛼𝑆𝑘−1,𝛽  (𝑥)𝑑𝑥                                               (11) 

 

where 𝑓𝛼(.),𝛽 and  �̅�𝛼(.),𝛽  are derived from (1), (2) respectively. The associated mean of square 𝐸[(𝐾𝑃𝐼𝑅)2] is 

given by  
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𝐸[(𝐾𝑃𝐼𝑅 )2] = ∑{

∞

𝑘=1

            ∫ ( 
𝑀

0

      ∫  (𝐶𝑝  (𝑥 + 𝑧) + 𝑘 𝐶𝑖 )
2

              𝐿−𝑥

             𝑀−𝑥

×  𝑓𝛼∆𝑇,𝛽  (𝑧)𝑑𝑧

+ ∫  (𝐶𝑐  (𝑥 + 𝑧) + 𝑘 𝐶𝑖)2 × 𝑓𝛼∆𝑇,𝛽  (𝑧)   
∞

𝐿−𝑥

𝑑𝑧          )  𝑓𝛼𝑆𝑘−1,𝛽  (𝑥)𝑑𝑥  

+ 2𝐶𝑑 ∫   (    ∫ ( 
𝑀

0

     ∫ (∫ (𝐶𝑐  (𝑦)
∞

𝑥+𝑧

∞

𝐿−𝑥

𝑆𝑘

𝑆𝑘−1

+ 𝑘 𝐶𝑖 ) 𝑓𝛼𝑆𝑘,𝛽  (𝑦)𝑑𝑦) 𝑓𝛼.(𝑡−𝑆𝑘−1),𝛽  (𝑧)𝑑𝑧 )   𝑓𝛼𝑆𝑘−1,𝛽  (𝑥)𝑑𝑥       )   𝑑𝑡

+ 𝐶𝑑
2   ∫        

𝑆𝑘

𝑆𝑘−1

      (𝑆𝑘 − 𝑡)2    𝑓𝜏𝐿
 (𝑡)  𝑑𝑡            }   /𝑆𝑘                       ,                              (12) 

 

To derive the formula for the standard deviation 

𝜎𝑃𝐼𝑅 (standard deviation of the Mean Cost Per 
Renewal Cycle) within the framework of the PIR 

(preventive inspection and replacement) strategy, 

we need to incorporate certain equations and 

factors. 

𝑓𝛼(⋅),𝛽 represents the cumulative distribution 

function (CDF) of the time to failure for the 

system. It provides information about the 
probability that the system will fail within a given 

time interval. 𝛼 is a parameter associated with the 

failure distribution. 

𝛽 represents the fraction of the failure cost 
compared to the cost of a new system. It quantifies 

the relative expense of failure to the replacement 

cost. 

𝑓𝜏𝐿 represents the probability density function 

(PDF) of the time between preventive 

replacements. It describes the likelihood of 
needing a preventive replacement at a specific 

time interval. 𝜏𝐿 is a parameter associated with the 

preventive replacement distribution. 

Equations (1) and (4) are used to deduce these 
probability functions, taking into account the 

system's failure behaviour and the occurrence of 

preventive replacements. 
By incorporating equations (11) and (12) into 

equation (8), we can derive the formula for 𝜎𝑃𝐼𝑅, 

the standard deviation of the MCPRC. Equation 

(8) represents the mean cost per renewal cycle 
within the PIR strategy. 

The standard deviation 𝜎𝑃𝐼𝑅 provides a measure of 

the variability or dispersion of the MCPRC values. 
It allows us to assess the level of uncertainty 

associated with the average cost estimation for a 

renewal cycle under the PIR strategy. 

By considering the failure characteristics, the cost 
components, and the probability distributions 

associated with preventive replacements, we can 

calculate 𝜎𝑃𝐼𝑅. This information helps in 
evaluating the potential cost fluctuations and risks 

involved in implementing the PIR strategy for 

system maintenance and replacement. 
 

3.3.2. Standard formulation of the 

MCPRC for the QIR policy:  
The equation for the Mean Cost Per Renewal 

Cycle (MCPRC) of the QIR (Quality 

Improvement and Replacement) policy, assuming 
the standard deviation, may be determined using a 

similar approach as the one used for the PIR 

(Preventive Inspection and Replacement) strategy. 
In the purpose of this study, we assume that the 

system is changed either preventively or 

correctively at the k-th inspection time, where k 

spans from 1 to an arbitrary number. 
To articulate the MCPRC of the QIR policy over a 

renewal cycle, we use the symbol 𝐾𝑄𝐼𝑅  to 

represent it. The expression for 𝐾𝑄𝐼𝑅 can be stated 

as follows:

 

𝐾𝑄𝐼𝑅 =
1

∑ 𝑇𝑘 . 1
{ 𝑋𝑇𝑘−1

<𝑀≤𝑋𝑇𝑘
}

∞

𝑘=1

. ∑(

∞

𝑘=1

       (𝐶𝑝 (𝑋𝑇𝑘
) + 𝑘𝐶𝑖 ). 1

{ 𝑋𝑇𝑘−1
<𝑀≤𝑋𝑇𝑘

<𝐿}
  + (𝐶𝑐  (𝑋𝑇𝑘

)

+ 𝑘𝐶𝑖). 1
{ 𝑋𝑇𝑘−1

<𝑀<𝐿≤𝑋𝑇𝑘
}

+ 𝐶𝑑𝑊𝑑,𝑄𝐼𝑅        )       ,                                                                  (13) 

                             

where the downtime of the system over a renewal cycle under the QIR policy is obtained by 

 

𝑊𝑑,𝑄𝐼𝑅 = (𝑇𝑘 − 𝜏𝐿). 1{ 𝑇𝐾−1<𝜏𝐿≤𝑇𝐾}
 

=∫   1
{ 𝑋𝑇𝑘−1

<𝑀<𝐿≤𝑋𝑡}
 

𝑇𝐾

𝑇𝐾−1
𝑑𝑡                                                              (14)  
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In addition, the determination of Tk is iteratively 

calculated based on equation (5). The analytical 

computation of μQIR = E[𝐾QIR] and E[(𝐾QIR)2] from 

equation (13) poses significant challenges, 
primarily due to the dynamic nature of the 

inspection schedule. Consequently, our attention 

is directed toward acquiring the standard deviation 
σQIR of the Mean Cost Per Renewal Cycle 

(MCPRC) for the QIR policy by employing a 

Monte Carlo simulation methodology. 
 

4. Maintenance Strategies Assessment 
The evaluation of strategy success demands the 
application of frequently adopted criteria in the 

literature, known as the long-term projected 

maintenance cost rate. This criteria has attracted 
substantial interest and has been thoroughly 

researched to measure the efficiency of different 

tactics [3]. Its mathematical model, derived from 

the standard renewal-reward theorem, offers a 
rigorous framework for analyzing and comparing 

the long-term maintenance costs associated with 

alternative techniques. this condition may be 
quantitatively stated as [4]: 

 

 𝐶∞ = lim
𝑡→∞

𝐸[𝐶(𝑡)]

𝑡
=

𝐸[𝐶(𝑆)]

𝐸[𝑆]
                        (15) 

 

The period of a renewal cycle is represented as 𝑆, 

and 𝐶(𝑆) reflects the cumulative maintenance cost 

incurred throughout this cycle. Equation (15) 
focuses entirely on the mean values of the renewal 

cycle and its related maintenance cost, neglecting 

the fluctuation in maintenance costs from one 

cycle to another. Consequently, depending merely 
on the long-term predicted maintenance cost rate 

may not effectively evaluate maintenance 

solutions in terms of both performance and 
robustness. 

To alleviate this constraint, a suggested cost 

criteria involves combining the long-term 

predicted maintenance cost rate 𝐶∞ with the 
standard deviation of the MCPRC (Maintenance 

Cost per Renewal Cycle). The combined criteria 

may be represented as: 
 

𝜑 = 𝐶∞ + 𝜆. 𝜎;               𝜆 ≥ 0.                           (16) 

 

The mathematical equations for 𝜎 under the PIR 

(Proportional Interval Replacement) method and 

the QIR (Quadratic Interval Replacement) 

approach have been supplied in Section III-C. The 
process for establishing their long-term projected 

maintenance cost rates is comparable, and its 

specifics may be found in [6]. The coefficient 𝜆 in 

equation (16) shows the proportional weight given 

to cost variability, compared to the mean, in 

affecting decision-making. When 𝜆 < 1, decision-

makers emphasize the performance of 

maintenance measures. Conversely, when 𝜆 > 1, 

they trend towards preferring the robustness of the 

techniques. Thus, the suggested cost criteria show 
more suited than the long-term projected 

maintenance cost rate for assessing maintenance 

techniques from both performance and robustness 

viewpoints. Furthermore, the former reverts to the 

latter when 𝜆 = 0. By utilizing these cost criteria, 

the optimization of the PIR strategy and the QIR 

method includes calculating their optimum 

decision parameters that minimize 𝜑 in equation 

(16). 

To demonstrate the benefits of the new criteria, 
let's use a system characterized by the parameters 

𝛼 = 0.1, 𝛽 = 0.1, and 𝐿 = 29. For simplicity, we 

assume the CR (Corrective Repair) cost stays 

constant, whereas the PR (Preventive 
Replacement) cost is represented as a quadratic 

function of the deterioration degree. The 

maintenance cost values are chosen as follows: 𝐶𝑖 

= 5, 𝐶𝑑 = 34, and 𝐶𝑐 = 98. The link between 
maintenance costs is described as : 

 

 𝐶𝑝(𝑋𝑡)

= 𝐶0

+
𝐶𝑐 + 𝐶0

2
(

𝑋𝑡 − 𝑀𝑠

𝐿 − 𝑀𝑠
)

2

    1{𝑀𝑠<𝑋𝑡<𝐿},               (17) 

 

where 𝐶0 = 48 indicates the fundamental cost of PR 

and 𝑀𝑠 = 14 marks the system threshold. 

Applying the PIR method and the QIR strategy to 
the investigated system leads to their optimum 

configurations, long-term predicted cost rates, and 

the accompanying standard deviations of MCPRC 

for different values of 𝜆, as provided in Table 1. 

The table indicates that, for both techniques, as 𝜆 

grows, the standard deviation of MCPRC reduces. 

This is a consequence of introducing maintenance 
cost variability into the optimization process. 

To offer a more visual and intuitive understanding 

of the distribution of MCPRC values, histograms 

(visual representations) of the MCPRC for both 
the PIR and QIR techniques have been generated. 

Figure 1 depicts these histograms, constructed 

using Monte-Carlo simulation based on the 
maintenance cost variables indicated previously. 

The histograms give a supplementary viewpoint to 

the information offered in Table 1, allowing for a 

better assessment of cost changes across various 
situations.
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                    (a)  BR strategy                                                         

 

     (b)  PIR strategy                                                          

  

 
 

 

 

         (c) QIR strategy            

Fig. 1. MCPRC Histogram of BR,PIR and QIR strategies. 
 

Tab. 1. Optimal configurations 𝝋 of the BR, PIR, and QIR strategies 
Strategies Relative 

weight 
Optimal decision 

variables 
Optimal 

configurations of 𝝋 

BR 
 

 𝜆 = 1.4 𝑇𝑜𝑝𝑡 = 9.70 𝜑𝑜𝑝𝑡
𝐵𝑅 = 11.738 

PIR 𝜆 = 1.4 Δ𝑇𝑜𝑝𝑡 = 6.19 

𝑀𝑜𝑝𝑡 = 12.8 

𝜑𝑜𝑝𝑡
𝑃𝐼𝑅 = 9.864 

QIR 𝜆 = 1.4 𝛼𝑜𝑝𝑡 = 0.55 

𝑀𝑜𝑝𝑡 = 18.3 
𝜑𝑜𝑝𝑡

𝑄𝐼𝑅 = 9.628 
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5. Maintenance Strategies Comparisons 
In this part, a detailed comparative study is 

undertaken to assess the performance and 
resilience of the PIR and QIR maintenance 

techniques in diverse circumstances. The idea is to 

discover which approach is better fit for given 
aims or scenarios. By studying the changes in 

optimum decision variables for various 

techniques, insights are acquired into the ideal 
settings for different combinations of maintenance 

costs and system features. This study aids 

educated decision-making when choosing 

maintenance techniques based on unique demands 
and conditions. The paper gives a systematic way 

to analyze and pick solutions, including aspects 

such as maintenance costs, system features, and 
the relative weight parameter, λ. By assessing the 

efficacy and resilience of the PIR and QIR 

techniques across varied situations, informed 

judgments may be made to optimize maintenance 
efforts and successfully manage complex systems. 

 

5.1. Sensitivity to the maintenance costs 
It seems that after studying the influence of CR 

(Corrective Repair) and PR (Preventive Repair) 

expenses, it has been shown that these costs do not 
substantially alter the differences between the PIR 

(Periodic Inspection and Repair) and QIR 

(Condition-based Inspection and Repair) methods. 
As a consequence, you have taken the choice to 

maintain the CR cost unchanged at Cc = 98. 

Furthermore, you have provided the PR cost 
function according to equation (17), where C0 = 

48. This equation enables you to determine the PR 

cost depending on specified characteristics and 

situations. 

To analyze the implications of maintenance 

expenditures, especially on the inspection side, 

you have completed the first case study. In this 
research, you are introducing modifications in the 

inspection cost (Ci) and examining a range from 1 

to 45, with an increment of 1 for each step. It is 

vital to remember that throughout this study, the 
system downtime cost rate (Cd) stays constant at a 

set value of 19. 

Moving on to the second case study, you are 
studying differences in the system downtime cost 

rate (Cd). Here, you are evaluating a range from 10 

to 50, with increments of 1 for each step. However, 

in this study, you are keeping the inspection cost 
(Ci) constant at a set value of Ci = 7. 

In all of these case examples, you have provided 

the relative weight parameter λ a precise value of 
1.4. This metric plays a key role in defining the 

relative relevance of maintenance costs and 

system performance. 
Additionally, to offer a full overview of the 

system, you have established the following system 

characteristics: α = β = 0.1, L = 29, and Ms = 14. 

These factors indicate particular elements of the 
system, such as failure rates, maintenance 

efficacy, system size, and repairable components. 

Here's a more detailed explanation of Case Study 
1 and Case Study 2: 

Case Study 1: 

In case study 1, the focus is on understanding how 
the inspection cost (Ci) affects the QIR and PIR 

strategies. The results are presented in Figure 2, 

which provides a comprehensive visualization of 

the performance and cost implications of these 
strategies.
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(a) Cost functions : σ, ϕopt and C∞              (b) Optimal decision variables : αopt, Topt , ∆Topt and Mopt 

Fig. 2. Varied inspection cost                                    

 

In Figure 2a, the graph represents the changes in 

the optimal value of the cost function ϕ as the 

inspection cost (Ci) varies. It also illustrates how 
these variations in Ci impact the long-run expected 

cost rate C∞ for both the QIR and PIR strategies. 

Additionally, the graph displays the standard 
deviation of MCPRC (Mean Cost per Repair 

Cycle) as Ci changes. This visual representation 

allows for a clear understanding of how changes in 
the inspection cost influence different aspects of 

the cost function and performance measures for 

both strategies. 

The analysis reveals that the QIR strategy 
outperforms the PIR strategy in terms of cost-

effectiveness. Furthermore, it demonstrates that 

the QIR strategy is more reliable and consistent, as 
indicated by its consistently smaller standard 

deviation of the MCPRC. This lower variability 

suggests that the QIR strategy yields more 
predictable outcomes compared to the PIR 

strategy. 

These findings align with expectations, as the QIR 

strategy is known for its adaptability. By adjusting 
the inspection intervals based on the current 

degradation level of the system, the QIR strategy 

effectively manages system downtime. 
Interestingly, the standard deviation (σ) remains 

relatively stable for both strategies, indicating that 

changes in the inspection cost (Ci) have a limited 

impact on the robustness of the QIR and PIR 
strategies. In other words, variations in inspection 

costs do not strongly affect the reliability and 

consistency of these maintenance strategies. 

The analysis demonstrates that the QIR strategy is 
more cost-effective than the PIR strategy up to a 

certain value of Ci, which in this case is Ci = 27. 

Beyond this threshold, the PIR strategy becomes 
more cost-effective. The examination of the 

optimal values presented in Figure 2b provides 

further insights into the strategies' behaviors: 

For the QIR strategy, the optimal value of α (𝛼opt) 

decreases as Ci increases. This suggests that the 

QIR strategy adjusts 𝛼opt  to lower values, 

reducing the number of inspections as the 

inspection cost rises. 
In contrast, for the PIR strategy, the optimal value 

of ∆T ( ∆𝑇opt ) increases as Ci increases. This 

implies that the PIR strategy increases ∆𝑇opt , 

leading to fewer inspections as the inspection cost 
becomes higher. 

These adjustments in 𝛼opt  and ∆𝑇opt reflect the 

strategies responses to changes in inspection costs. 

Each strategy aims to optimize its performance 
and cost-effectiveness based on the cost 

implications associated with inspections. 

Case Study 2: 

In case study 2, the focus shifts to understanding 
the impact of the system downtime cost rate (Cd) 

on the robustness and adaptability of the QIR and 

PIR strategies. The results are presented in Figure 
3, providing insights into the strategies' 

performance and decision-making.
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(a) Cost functions : σ, ϕopt and C∞               (b) Optimal decision variables : αopt, Topt ,  ∆Topt and Mopt 

Fig. 3. Varied system downtime cost rate 
 
Figure 3a showcases the optimal cost function ϕopt 

for both the QIR and PIR strategies, along with the 

associated long-run expected maintenance cost 
rate C∞ and the standard deviation of MCPRC (σ) 

to the system downtime cost rate (Cd). This 

visualization allows for a comprehensive 
understanding of the strategies' behavior under 

varying Cd values. 

Figure 3b presents the evolutions of the optimal 

decision variables, providing further insights into 
the strategies' adaptations. 

Similar to case study 1, the QIR strategy 

demonstrates higher profitability and reliability 
compared to the PIR strategy. The system 

downtime cost rate (Cd) plays a significant role in 

determining the robustness of both strategies. As 
Cd varies, both strategies exhibit predictable 

changes in their behavior. They become more 

stringent in controlling system downtime as Cd 

increases. 
The QIR strategy adjusts a certain parameter 

(𝛼opt) to optimize its performance, while the PIR 

strategy modifies another parameter ( ∆𝑇opt ) to 

adapt to changing conditions. Additionally, both 
strategies fine-tune the parameter Mopt to further 

optimize their performance. Overall, the QIR 

strategy outperforms the PIR strategy in terms of 

adaptability, and both strategies effectively adjust 
their settings to minimize system downtime as the 

system downtime cost rate changes. 

These findings provide valuable insights into the 
behavior and performance of the QIR and PIR 

strategies under varying inspection costs (Ci) and 

system downtime cost rates (Cd), helping decision-

makers make informed choices regarding 
maintenance strategies. 

Here's a more extensive explanation of Case Study 

1 and Case Study 2: 

Case Study 1: 
In case study 1, the emphasis is on understanding 

how the inspection cost (Ci) influences the QIR 

and PIR techniques. The findings are provided in 
Figure 2, which gives a thorough depiction of the 

performance and cost consequences of different 

solutions. 

In Figure 2a, the graph depicts the variations in the 
optimum value of the cost function ϕ as the 

inspection cost (Ci) fluctuates. It also indicates 

how these differences in Ci affect the long-run 
projected cost rate C∞ for both the QIR and PIR 

techniques. Additionally, the graph depicts the 

standard deviation of MCPRC (Mean Cost per 
Repair Cycle) as Ci fluctuates. This graphic 

depiction clearly explains how changes in the 

inspection cost affect various components of the 

cost function and performance measurements for 
both techniques. 

The research demonstrates that the QIR method 

beats the PIR technique regarding cost-
effectiveness. Furthermore, it reveals that the QIR 

method is more trustworthy and consistent, as 

evidenced by its constantly decreased standard 

deviation of the MCPRC. This decreased 
variability shows that the QIR technique provides 

more predictable results compared to the PIR 

strategy. 
These results match with predictions, given the 

QIR method is recognized for its versatility. By 

modifying the inspection intervals depending on 
the present degradation level of the system, the 

QIR technique efficiently controls system 

downtime. 
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Interestingly, the standard deviation (σ) stays 
rather steady for both techniques, demonstrating 

that changes in the inspection cost (Ci) have little 

influence on the robustness of the QIR and PIR 
procedures. In other words, fluctuations in 

inspection costs do not dramatically influence the 

dependability and consistency of these 
maintenance procedures. 

The study reveals that the QIR technique is more 

cost-effective than the PIR strategy up to a specific 

value of Ci, which in this instance is Ci = 27. 
Beyond this level, the PIR method becomes more 

cost-effective. The evaluation of the optimum 

values shown in Figure 2b gives more insights into 
the strategies' behaviors: 

For the QIR technique, the ideal value of (𝛼opt) 

drops as Ci grows. This shows that the QIR method 

adjusts 𝛼opt  to lower values, lowering the 

frequency of inspections as the inspection cost 
grows. 

In contrast, with the PIR method, the optimum 

value of (∆𝑇opt) grows as Ci increases. This means 

that the PIR method increases ∆𝑇opt , leading to 

fewer inspections as the inspection cost grows 

larger. 

These revisions in 𝛼opt and ∆𝑇opt indicate the 

strategies' reactions to changes in inspection costs. 
Each method seeks to maximize its performance 

and cost-effectiveness depending on the financial 

implications connected with inspections. 
Case Study 2: In case study 2, the attention 

changes to studying the influence of the system 

downtime cost rate (Cd) on the robustness and 

flexibility of the QIR and PIR techniques. The 
findings are displayed in Figure 4, offering 

insights into the strategies' performance and 

decision-making.
 

 
 

 
 

  
(a) Cost functions : σ, ϕopt and C                         (b) Optimal decision variables : αopt, Topt ,  ∆Topt and 

Mopt 

Fig. 4. Varied relative weight of the cost variability 
 
Figure 4a highlights the ideal cost function ϕopt for 

both the QIR and PIR techniques, together with 

the related long-run projected maintenance cost 
rate C∞ and the standard deviation of MCPRC (σ) 

to the system downtime cost rate (Cd). This image 

offers a full understanding of the strategies' 

behavior under varied Cd levels. 

Figure 4b displays the evolutions of the optimum 

choice variables, offering deeper insights into the 

strategies' adaptations. 
Similar to case study 1, the QIR method offers 

improved profitability and dependability 

compared to the PIR technique. The system 

downtime cost rate (Cd) has a key role in 
determining the resilience of both techniques. As 

Cd fluctuates, both techniques demonstrate 
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predictable variations in their behavior. They 

become more strict in managing system downtime 

as Cd grows. 

The QIR strategy changes a particular parameter 
(αopt) to improve its performance, whereas the PIR 

strategy alters another parameter (∆𝑇opt) to adapt 

to changing circumstances. Additionally, both 

techniques fine-tune the parameter Mopt to further 
enhance their performance. Overall, the QIR 

method beats the PIR strategy in terms of 

flexibility, and both strategies efficiently update 
their settings to reduce system downtime when the 

system downtime cost rate varies. 

These results give useful insights into the behavior 
and performance of the QIR and PIR techniques 

under changing inspection costs (Ci) and system 

downtime cost rates (Cd), allowing decision-

makers to make educated decisions about 
maintenance strategies. 

 

5.2.  Sensitivity to the relative weight of 

the cost variability 
In this subsection, we delve into the influence of 
the relative weight parameter λ on the selection of 

a maintenance strategy. This parameter represents 

the balance between financial viability and risk 
tolerance for decision-makers when choosing a 

maintenance strategy. To conduct this 

investigation, we set the system characteristics as 

follows: α = β = 0.1, L = 29, and Ms = 14. 
Additionally, we fixed the maintenance costs at 

specific values: Ci = 7, Cd = 19, Cc = 98, and C0 = 

48. By keeping these system characteristics and 
maintenance cost parameters constant, we can 

vary λ to understand its effect on the choice and 

performance of maintenance strategies. This 
allows us to assess the trade-off between financial 

considerations and risk management in decision-

making. 

Regardless of the relative weight parameter λ, it is 
consistently observed that the QIR strategy 

outperforms the PIR strategy and exhibits higher 

robustness. This implies that the QIR strategy is a 
superior choice, regardless of the specific value of 

λ. 

However, as λ increases, a trade-off emerges 

between robustness and cost performance. On one 
hand, the robustness, represented by the standard 

deviation (σ) of costs, improves as λ increases. 

This means there is less variation in costs, 
resulting in more predictable outcomes and 

reduced risk. 

On the other hand, as λ increases, the cost 
performance metrics, such as the long-run 

expected cost rate 𝐶∞  and the optimal cost 

function 𝜑opt , worsen. This indicates that the 

overall cost-effectiveness of the maintenance 

strategy decreases as the weight of risk tolerance 

(represented by λ) becomes more significant. 

To adapt to this trade-off, the PIR strategy adjusts 

a single parameter, M_opt, to control cost 

variability. By optimizing 𝑀opt, the PIR strategy 

aims to minimize fluctuations in costs and 

maintain a certain level of stability. 

In contrast, the QIR strategy takes a more 
comprehensive approach by simultaneously 

optimizing two parameters, 𝛼opt and 𝑀opt . This 

allows the QIR strategy to achieve the best balance 
between performance and robustness. By fine-

tuning both 𝛼opt and 𝑀opt , the QIR strategy 

optimizes the inspection and maintenance 

intervals to achieve an overall superior outcome. 
In essence, the QIR strategy consistently 

maintains its superiority over the PIR strategy, 

regardless of the value of λ. However, increasing 

λ improves the robustness of the strategies, 
reducing cost variability and increasing 

predictability. Nonetheless, this improvement in 

robustness may come at the expense of cost 

performance metrics, such as 𝐶∞and 𝜑opt. 

The PIR strategy focuses primarily on controlling 

cost variability, while the QIR strategy takes a 

more holistic approach, optimizing multiple 
parameters for better performance and robustness. 

 

6. Managerial Insights 
This section aims to distill our research findings 

into actionable insights that can guide strategic 

decision-making in maintenance practices. Here 
are the key points we have emphasized: 

• Strategic Selection of Maintenance 

Techniques: We elaborate on the 

conditions under which the QIR strategy 
demonstrates superiority over the 

traditional PIR strategy. By detailing 

scenarios where each strategy excels, 

managers can better align their choice of 
maintenance technique with specific 

operational goals and constraints. 

• Balancing Cost Efficiency and System 

Resilience: We delve into the trade-off 
between cost-effectiveness and robustness 

inherent in maintenance strategies. This 

discussion helps managers understand 

how to balance the need to minimize costs 
with the imperative to maintain system 

reliability and performance over the long 

term. 

• Impact of Parameter Variations on 
Strategy Performance: We provide clear 

insights into how variations in critical 

parameters such as inspection costs (Ci), 
system downtime rates (Cd), and the 
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relative weight parameter (λ) influence 
the overall effectiveness of maintenance 

strategies. This guidance enables 

managers to make informed decisions 
when adjusting these parameters to 

optimize maintenance outcomes. 

• Implementation Strategies and Practical 

Considerations: We offer practical advice 
on implementing QIR and PIR strategies 

within diverse operational contexts. This 

includes considerations for adapting 

strategies to changing system conditions, 
managing financial constraints, and 

leveraging predictive maintenance 

techniques to enhance operational 
efficiency and minimize downtime. 

• Case Studies and Real-World 

Applications: Drawing on our case studies 

and numerical results, we illustrate real-
world applications of QIR and PIR 

strategies in different industrial settings. 

These examples provide concrete 

examples of how these strategies can be 

effectively deployed to achieve 
significant improvements in maintenance 

performance. 

 

These additions aim to bridge the gap between 

theoretical findings and practical applications, 

equipping decision-makers with actionable 
insights to optimize maintenance strategies in their 

respective industries. 

 

7. Comparison of This Study with 

Previous Research: 
In this section, we present a comparative analysis 
that highlights the distinctive contributions of our 

study within the context of existing literature on 

maintenance strategies. The table 2 provided 
below outlines key differences between our work 

and other reviewed papers, focusing on 

methodologies employed, evaluation metrics 
utilized, main contributions, key findings, and the 

practical implications for Condition-Based 

Maintenance (CBM) strategies.

 

Tab. 2. Maintenance strategies optimization of the BR, PIR, and QIR strategies 
Strategies Relative 

weight 
Optimal decision 

variables 
Long-run 

expected cost rate 
Standard deviation 

of MCPRC 

 
BR 

 𝜆 = 2.4 𝑇𝑜𝑝𝑡 = 8.20 𝐶∞
𝐵𝑅 = 6.713 𝜎∞

𝐵𝑅 = 3.721 

 𝜆 = 1.4 𝑇𝑜𝑝𝑡 = 9.70 𝐶∞
𝐵𝑅 = 5.986 𝜎∞

𝐵𝑅 = 4.109 

𝜆 = 0 𝑇𝑜𝑝𝑡 = 15.90 𝐶∞
𝐵𝑅 = 5.054 𝜎∞

𝐵𝑅 = 5.682 

 
 

PIR 

𝜆 = 2.4 Δ𝑇𝑜𝑝𝑡 = 8.29 

𝑀𝑜𝑝𝑡 = 4.80 

𝐶∞
𝑃𝐼𝑅 = 4.982 𝜎∞

𝑃𝐼𝑅 = 4.409 

𝜆 = 1.4 Δ𝑇𝑜𝑝𝑡 = 6.19 

𝑀𝑜𝑝𝑡 = 12.8 

𝐶∞
𝑃𝐼𝑅 = 4.103 𝜎∞

𝑃𝐼𝑅 = 4.115 

𝜆 = 0 Δ𝑇𝑜𝑝𝑡 = 5.50 

𝑀𝑜𝑝𝑡 = 16.50 

𝐶∞
𝑃𝐼𝑅 = 4.025 𝜎∞

𝑃𝐼𝑅 = 5.009 

 
 

QIR 

𝜆 = 2.4 𝛼𝑜𝑝𝑡 = 0.37 

𝑀𝑜𝑝𝑡 = 8.80 

𝐶∞
𝑃𝐼𝑅 = 4.063 𝜎∞

𝑃𝐼𝑅 = 4.020 

𝜆 = 1.4 𝛼𝑜𝑝𝑡 = 0.55 

𝑀𝑜𝑝𝑡 = 18.3 

𝐶∞
𝑃𝐼𝑅 = 3.832 𝜎∞

𝑃𝐼𝑅 = 4.140 

𝜆 = 0 𝛼𝑜𝑝𝑡 = 0.34 

𝑀𝑜𝑝𝑡 = 15.60 

𝐶∞
𝑃𝐼𝑅 = 3.667 𝜎∞

𝑃𝐼𝑅 = 4.487 

 
This comparative analysis serves to underscore the 

unique insights and advancements offered by our 

study, particularly in optimizing maintenance 

strategies through the application of composite 
cost criteria and Condition-Based Maintenance 

(CBM) principles. By contrasting our approach 

with existing literature, we aim to elucidate the 
specific areas where our research contributes 

novel perspectives and practical guidance for 

industry practitioners and decision-makers. 
Key Differences: 

• Focus : This study focuses on optimizing 

maintenance strategies (PIR and QIR), 

whereas other papers explore a wider 

range of maintenance approaches. 

• Methodology: We utilize composite cost 

criteria and CBM principles, contrasting 
with studies that rely primarily on 

empirical data and statistical models. 

• Evaluation Metrics: Our study evaluates 

based on long-run expected cost rate and 
variability in Mean Cost per Repair Cycle 

(MCPRC), while other studies often use 

metrics such as MTBF and direct repair 
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costs. 

• Main Contribution : Our research 

contributes by analyzing the trade-offs 

between performance and resilience in 

maintenance strategies, providing 
practical insights for industry decision-

makers. 

• Key Findings: We find that the QIR 

method consistently outperforms PIR in 
terms of cost-effectiveness and resilience. 

In contrast, other studies report varying 

outcomes regarding the optimal 
maintenance strategy to adopt. 

• Impact : Our findings have practical 

implications for implementing CBM 

strategies in real-world scenarios, 

contrasting with theoretical frameworks 
that lack direct applicability in industrial 

settings. 

 
This table 2 provides a clear numerical example of 

how to compare your study with other reviewed 

papers, highlighting specific differences in focus, 
methodology, evaluation metrics, main 

contributions, key findings, and impact. Adjust the 

specifics based on your actual study and the papers 

you have reviewed. 
 

8. Conclusion and Perspectives 
This study undertook a comprehensive analysis of 

two primary maintenance strategies: the Periodic 

Inspection and Replacement (PIR) and the 

quantile-based Inspection and Replacement (QIR) 
approaches. We utilized a composite cost criterion 

combining long-term predicted maintenance cost 

rates and the standard deviation of the Mean Cost 
per Repair Cycle (MCPRC) to evaluate these 

strategies under Condition-Based Maintenance 

(CBM) principles, emphasizing cost-effectiveness 

and adaptability to cost fluctuations. 
Our findings underscored a fundamental trade-off 

inherent in maintenance strategies: the inverse 

relationship between performance and resilience. 
Strategies prioritizing performance enhancements 

often compromise on robustness, and vice versa, 

posing a significant dilemma for decision-makers 
aiming to optimize maintenance practices. 

Numerical analyses consistently favored the QIR 

method over PIR across various performance 

metrics. The QIR strategy demonstrated superior 
cost-effectiveness and performance, suggesting its 

potential to minimize long-term maintenance costs 

while maintaining high system performance 
levels. Moreover, our analysis highlighted the 

substantial impact of downtime-related 

maintenance expenses on the resilience of 

maintenance plans, with QIR proving more adept 

at managing disruptions compared to PIR. 

In terms of contributions, this research provided a 

detailed performance evaluation of PIR and QIR 
strategies, offering decision-makers insights into 

their relative strengths and weaknesses. 

Additionally, it elucidated the inherent trade-off 
between performance gains and robustness, 

clarifying the implications of maintenance 

strategy choices for system reliability and 
operational continuity. The practical implications 

of these findings are significant for optimizing 

maintenance planning in industries where system 

uptime and maintenance costs significantly impact 
operational efficiency and profitability. 
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