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KKEEYYWWOORRDDSS                                  ABSTRACT 
 

 

This expository article shows how the maximum likelihood estimation 
method and the Newton-Raphson algorithm can be used to estimate the 
parameters of the power-law Poisson process model used to analyze 
data from repairable systems. 
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11..  IInnttrroodduuccttiioonn

                                                

   
A repairable system is often modeled as a counting 

failure process. Analysis of repairable system 
reliability must consider the effects of successive repair 
actions. When there is no trend in the system failure 
data, the failure process can often be modeled as a 
renewal process where successive repair actions render 
the system to be in “good as new” condition. The two 
principal classes of systems where this is not 
appropriate is (1) reliability improvement where design 
flaws are removed and the failure intensity is 
decreasing over time as the design evolves and 
improves, and (2) reliability deterioration when a 
system ages. 
This article deals with the use maximum likelihood 
estimation method and Newton-Raphson algorithm to 
estimate the parameters of the power-law poisson 
process, the most commonly used model to analyze 
data from a repairable system. For systems undergoing 
reliability improvement testing, it is critically 
important to identify whether significant improvement 
is occurring. System reliability improvement can be 
detected by observing a significant trend of increasing 
successive time-between-failures, i.e., system failure 
inter-arrival times. For fielded systems, it is very 
important to detect when the system reliability is 
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deteriorating. Decisions for preventive maintenance 
and over-haul require this information. System 
reliability deterioration can be detected by observing a 
significant trend of decreasing successive time-
between-failures. A non-homogeneous Poisson process 
(NHPP) is capable of modeling these situations. If the 
failure intensity function, m (t), is decreasing over 
time, the times between failures tend to be longer, and 
if it is increasing, the times between failures tend to be 
shorter. 
If a system in service can be repaired to "good as new" 
condition following each failure, then the failure 
process is called a renewal process. For renewal 
processes, the times between failures are independent 
and identically distributed. A special case of this is the 
Homogeneous Poisson Process (HPP) which has 
independent and exponential times between failures. 

 
2. HPP and NHPP Process 

Notation: 
HPP  

Homogeneous Poisson Process  

NHPP  Non-homogeneous Poisson process  
N(t)  number of observed failures in (0, t]  
m(t)  The intensity function (sometimes called the 

instantaneous failure intensity) 
M(t)  Expected (mean) number of failures by time t 

(sometimes called "the mean cumulative function 
MCF") 

 , β  model parameters (scale and shape parameter 
respectively) (  >0, β > 0)  

t  
AMSAA 

development test time or in-service time  
Army Material Systems Analysis Activity  

Non-Homogenous, Poisson, 
Process, Exact Failure 
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2.1. Homogenous Poisson Process 
A counting process, N (t), is a homogenous Poisson 
process with parameter λ>0 if  
 
• N (0)=0  
• The process has independent increments  
• The number of failures in any interval of length t is 
distributed as a Poisson distribution with parameter λt 
(λ = 1/ ) 
 
There are several implications to this definition of 
Poisson process. First, the distribution of the number of 
events in (0, t] has the Poisson distribution with 
parameter λt. Second, the expected number of failures 
by time t, is M(t) = E[N(t)] = λt, where λ is often called 
the failure intensity or rate of occurrence of failures 
(ROCOF). Therefore, the probability that N (t) is a 
given integer n is expressed by: 
 

             (1) 
 
The intensity function is m (t) = M′ (t) = λ. Therefore, 
if the inter-arrival times are independent and 
identically distributed exponential random variables, 
then N (t) corresponds to a homogenous Poisson 
process. 

 
2.2. Non-Homogenous Poisson Process 
A counting process, N (t), is a non-homogenous 
Poisson process if  
 
• N (0) = 0  
• The process has independent increments  
• The number of failures in any interval of length t is 
distributed as a Poisson distribution with parameter M 
(t)  
• Pr {N (t+h) - N(t) = 1} = m(t) + o(h)  
• Pr {N (t+h) - N(t) ≥ 2} = o(h) 
 
M (t) is the mean value function which describes the 
expected cumulative number of failures. m (t) is the 
intensity function. o (h) denotes a quantity which tends 
to zero for small h. Given m (t), the mean value 
function M (t) =E [N (t)] satisfies: 

 
               (2) 

 
Inversely, knowing M (t), the instantaneous failure 
intensity at time t can be obtained as   . 
As a general class of well-developed stochastic process 
models in reliability engineering, non-homogeneous 
Poisson process models have been successfully used in 
studying hardware and software reliability problems. 
NHPP models are especially useful to describe failure 
processes which possess trends such as reliability 

improvement or deterioration. The cumulative number 
of failures to time t, N (t), follows a Poisson 
distribution with parameter M (t). The probability that 
N (t) is a given integer n is expressed by: 
 

           (3) 

 
The most commonly used and flexible model for the 
non-homogenous Poisson process is the power-law 
process and for which: 
 

                 (4) 

 
               (5) 

 
The intensity function represents the rate of failures or 
repairs. The value of the shape ( ) depends on whether 
the studied system is improving, deteriorating, or 
remaining stable. 
     If 0 <   < 1, the failure/repair rate is decreasing. 
Thus, the studied system is improving over time. 
     If   = 1, the failure/repair rate is constant. Thus, the 
studied system is remaining stable over time (HPP 
process). 
     If   > 1, the failure/repair rate is increasing. Thus, 
the studied system is deteriorating over time. 
 
Note With the (maximum likelihood) estimation 

method, the power-law process is commonly 
referred to as the AMSAA model. When only 
a single system is considered and the least 
squares estimation method is used, the power-
law process is known as the Duane model. 

 
3. Estimation Of Parameters For The Case Of 

Exact Failure Data 
Let Tij denote the time of occurrence of the jth 

failure for the ith  system the pdf of Tij at tij given the 
previous observation is: 

 
   (6) 

Where yi denotes the retirement time of the ith system. 
The joint density function or the likelihood function of 
ti1,ti2,…..tir = yi is: 
 

                 (7) 

Where Nij denotes the frequency of failures at tij. 
Note: it is not theoretically possible to have Nij > 1. 

Nri = 0 for all systems (retirement time). 
The likelihood function for the N systems is: 
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               (8) 

            (9) 

The log likelihood function is: 

 

 

(10)

Taking the first partial derivatives of L( , ) according 
to  ,  yields: 
 

 

(11) 
 
 
 

(12)

 
Taking the second partial derivatives of L( , ) yields: 
 

 

 

(14) 

(13) 

The estimation of the parameters  ,  can be done by 
tow methods: 
The first method is by equating (11) & (12) to zero and 
this yields: 
 

 

 
Every solution  of (16) & (17) are estimates of  ,  

The second method is by using the Newton-Raphson 
algorithm: 
 

1- Evaluate the first partial derivatives  L/   and 
 L/   at   =  and   =  . 
 

2- Evaluate the second partial derivatives  2L/  2, 
 2L/  2 and  2L/     at    =  and   = . 
 
3- Solve the linear equations for the adjustments ai and 
bi : 
 

 

 
 
4- Calculate the new estimates  and 

 
 
5-Continue steps (1) through (4) until the estimates 
meet a convergence criterion. For example, stop when 
ai+1 and bi+1 are small, say, each a small fraction of the 
standard errors of  and . Alternatively stop 
when  is statistically small, 
say, less than 0.01. 

 

(15) 

(16) 

4. Estimation of the Standard Errors of 
Parameters and Their Confidence Limits. 

The estimation of the standard errors of are as 
follows: 
First we calculate the estimate of the Fisher matrix 
 

 
Second using the asymptotic variance-covariance 
matrix: 

(19) 

(20)

 
 
 

(17) 

(18)
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We can solve the equation  and find the 

estimation of the standard errors of : 

 

 
The tow sided 100 % confidence limits of   are: 

 

 

 

 
 

5. Numerical Example. 
In this section we will show through an example 

how the statistical methods and numerical calculations 
illustrated in the previous sections can be used to 
analyze exact failure data from a repairable system 
with the power-law process as a chosen model.  
 
5.1. Failure/Rtirement Data 

  Informative data Table I.3 displays the needed 
informative data collected on three systems that 
will be used and analysed to estimate the 
parameters of the chosen model (the power-law 
process model). This data are a sequence of failure 
times on three systems in addition to the 
retirement time of each system. 

 

Tab. 1. Informative data 
Failure/ 

retirement 
time 

Retirement frequency System 
ID 

1 1 2 1 
5 1 1 1 
9 0 1 1 
4 1 2 2 
7 1 1 2 
8 0 1 2 
3 1 2 3 
6 1 1 3 
10 0 1 3 

  Time the failure or retirement time of each 
sample. (21)

(22) 
 
 

(23) 
 
 

(24) 

 
  System ID identifies each system within a sample. 

we do not need a system column when we have 
only one system. 

 
  Retirement indicates whether the data in each 

corresponding row is a failure time or a retirement 
time. Typically, the column will contain two 
distinct values; one representing failure times, one 
representing retirement times. The lower value 
indicates the retirement time for a system.  

  Frequency the total frequency of failures at a 
particular time. it is not theoretically possible to 
have multiple failures at any one instant for a 
given system.  

 
5.2. Estimating of the Shape and Scale and Their 
Standard Errors Confidence Limits 
Using equations (11) through (15)  for the first and 
second partial derivatives of the log likelihood function 
L( , ) according to  , ; and the Newton-Raphson 
method by  the linear equations (18), (19)  for the 
adjustments ai and bi with   = 0.5,   =1 as a start 
values we will reach a good estimate of   and    
through six iteratios: 

 
 

(25) 
 

 
 

 
The following table shows the evolution of estimates 
through these six iterations: 

 
Tab. 2. Sequential iterations 

Iteration i 

 ^
i  ^

i  ^
i+1  ^

i+1 

1 0.5 1 0.736837559 2.039875655 

2 0.736837559 2.039875655 0.900782511 2.700238496 

3 0.900782511 2.700238496 0.945284096 2.817096422 

4 0.945284096 2.817096422 0.94821643 2.824709958 

5 0.94821643 2.824709958 0.948227903 2.824738618 

6 0.948227903 2.824738618 0.948227904 2.824738618 

 
As we mentioned  the Newton-Raphson method 
requires the evaluation of  L/  ,  L/  ,  2 L/  2,  2 

L/  2 and  2 L/      at    =  and   = and repeat 
that for each iteration (six iteration in our example); 
but in spite  of the complexity of these calculations, 
they can easily be done using EXCEL. The following 
tables display these calculations for each iteration as 
has been done by EXCEL: 
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Tab.3. Calculations for 1st and 2nd iteration 

 

 L/   -0.004647608  L/   -0.018473295 
   2L/  2 -2.243028589    2L/  2 -1.15856988 
 L/   8.562284837  L/   2.814636774 
 2L/  2 -79.47979851  2L/  2 -36.41917458 
 2L/     9.868022781  2L/     4.779346856 
ai 1.039875655 ai 0.660362841 
bi 0.236837559 bi 0.163944952 

 2.039875655  2.700238496 

 0.736837559  0.900782511 

 
Tab. 4. Calculations for 3d and 4d  iteration 

 L/   -0.04334695  L/   -0.00259991 
 2L/  2 -0.971049445  2L/  2 -1.011564759 
 L/   0.660294165  L/   0.038803797 
 2L/  2 -24.09120349  2L/  2 -22.35444383 
 2L/     3.523959293  2L/     3.513070606 
ai 0.116857926 ai 0.007613536 
bi 0.044501585 bi 0.002932334 

 2.817096422  2.824709958 

 0.945284096  0.94821643 

 
Tab. 5. Calculations for 5th and 6th  iteration 

 L/   -1.12307E-5  L/   -1.80417E-09 
   2L/  2 -1.014159873    2L/  2 -1.01417158 
 L/   0.000154589  L/   1.28802E-08 
 2L/  2 -22.24674147  2L/  2 -22.24633438 
 2L/     3.512145998  2L/     3.512147386 
ai 2.866E-5 ai 4.98796E-10 
bi 1.14735E-5 bi 6.57728E-10 

 2.824738618  2.824738618 

 0.948227903  0.948227904 

 
From the calculation results in table V and equation 
(20) the estimate of the Fisher matrix at 

 is: 
 

 
 
As the inverse of a matrix of the form  is the 

matrix  so according to that, the 
inverse of the estimate of the Fisher matrix mentioned 
above is: 

 

 
 

 
 

 
Now using the asymptotic variance-covariance matrix 
in equation (21) and letting    we find: 

 

 
 

 
 

 
 

Using equations (22) through (25) for the 95% 
confidence limits of the shape and scale yields: 
 

 

 

 

 
 

6. Concluding Remarks 
There are many software packages like Minitab 

that can do this work.  But we wanted to gain more 
understanding of the methods and numerical 
calculations so we illustrated a numerical example for 
the case of exact failure data; and step by step we did 
this work using EXCEL for the complicated 
calculations; and also we solved the same example 
using Minitab and compare the results of the tow 
calculations. 

 
Parameter Estimates 
 
                     Standard    95% Normal CI 
Parameter  Estimate     Error     Lower    Upper 
Shape      0.948228     0.315  0.494562  1.81805 
Scale       2.82474     1.475   1.01515  7.86008 
 
We can see how these results are very close to the 
results of our calculations. 
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