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In this paper, we consider a flow shop scheduling problem with bypass
consideration for minimizing the sum of earliness and tardiness costs.
We propose a new mathematical modeling to formulate this problem.
There are several constraints which are involved in our modeling such
as the due date of jobs, the job ready times, the earliness and the
tardiness cost of jobs, and so on. We apply adapted genetic algorithm
based on bypass consideration to solve the problem. The basic
parameters of this meta-heuristic are briefly discussed in this paper.
Also a computational experiment is conducted to evaluate the
performance of the implemented methods. The implemented algorithm
can be used to solve large scale flow shop scheduling problem with
bypass effectively.
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1. Introduction

Production scheduling is a decision-making

more realistic, and it assumes that at least one job
does not visit one machine. Moreover, a machine can

process in the operation class. It can be defined as the
allocation of available production resources to carry
out certain tasks in an efficient way. Such a frequently
occurring scheduling problem is difficult to solve due
to its complex nature.

This paper is primarily concerned with industrial
scheduling problems, where one has to sequence the
jobs on each resource over time.

In a flow shop environment, a set of jobs must be
processed on a number of sequential machines,
processing routes of all jobs are the same, that is the
operations of any job are processed in the same order,
whereas a flow shop with bypass model, a
generalization of the ordinary flow shop model, is
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process at most one job at a time and a job can be
processed by at most one machine at a time.
Preemption of processing is not allowed. The problem
consists of sequencing the jobs to the each machine so
that some optimality criteria are minimized.

Since flow shop as well as job shop problems with few
exceptions have been proved to be NP-hard [1],
heuristic procedures are the most suitable ones for their
solution, especially for large-size instances. Several
approaches and models are proposed to solve the
scheduling problem, namely the discrete variable
mathematical programming, simulation techniques and
the network analysis. Johnson [2] was the first to
propose a method to solve the scheduling problem in a
flow shop production environment for a single criterion
context. His algorithm has been utilized by other
researchers, including, for instance, Palmer [3],
Campbell et al. [4], Gupta [5], Gupta et al. [6] and
Tadei et al. [7]. Flow shop scheduling with the
makespan objective has been investigated for instance,
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Simons [8], Huq et al. [9], Zobolas et al. [10]. Flow
shop scheduling with the sum of earliness and tardiness
costs objective has been investigated for instance,
bulbul et al. [11], Lauff and Werner [12].

Actually, we are not the first who observed the

phenomenon of '"bypass". The fact that the

computational complexity of a more general problem
(admitting missing operations) may be much harder
than that of the corresponding problem without
missing operations was the subject of some previous

papers known in the literature. For instance, as

observed by Leisten and Kolbe [13], Glass et al. [14].

Glass et al. [14] considers the no-wait scheduling of n
jobs in a two-machine flow shop, where some jobs

require processing on the first machine only. The

objective is to minimize the maximum completion
time, or makespan.

We consider the scheduling of # jobs in a m machine

flow shop, where some jobs do not require processing
on the some machines. The objective is to minimize

the sum of earliness and tardiness costs. Just in time

concept for the scheduling environment can be
provided by considering minimization of the sum of
earliness and tardiness costs as the objective function.

2. Problem Description

In the flow shop scheduling problem (FSSP) there
are m machines in series. Every single job has to be
processed on each machine.
All jobs have to follow the same route i.e., they have to
be processed first on machine 1, then on machine 2,
and so on. The flow shop scheduling problem with
bypass consideration can be interpreted as a
generalization of the classical flow shop model which
is more realistic and assumes at least one job does not
visit one machine.
The FSSP with bypass can be described as follows:
Each of n jobs from set J={1,2,..., n} will be sequenced
through m machines (i=/, 2,..,m). Job j& J has a

sequence of /; operations through a subset m machines
(jobs may have zero processing time on some
machines) and a given due date d;. Operation O
corresponds to the processing of job j on machine i
during an uninterrupted processing time #; (processing
time #; can be zero). At any time, each machine can
process at most one job and each job can be processed
on at most one machine.

3. Mathematical Formulation
3-1. General Assumption

All n jobs to schedule are independent and are not
available for processing at time zero.

A job has some operations that each of them is to be
performed on a specified machine. Some jobs may
not process on some machines so the processing time
of them on that machines are zero (missing
operations). (bypass).

Job descriptions are known in advance.
Jobs have no associated priority values.
One machine can process at most one job at a time.
Each job is processed on at most one machine at a
time.
Setup times for the operations are sequence-
independent and are included in processing times.
Machine is available at all times.
There is no travel time between stages; jobs are
available for processing at a stage immediately after
completing processing at the previous stage.
There is only one of each type of machine.
There is no precedence constraint among the jobs.
Preemption and splitting of any particular job is not
allowed: a job, once started on a machine, continues
in processing until it is completed.
Jobs are allowed to wait between two stages, and the
storage is unlimited.
All programming parameters are deterministic and
there is no randomness.
Any breakdowns and scheduled maintenance are not
allowed.
No more than one operation of the same job can be
executed at a time.

The processing times are independent of the sequence

and are given.

3-2. Parameters
n: Number of jobs
m: Number of machines
i: Machine index
J,h: Job index
t;: Processing time of job j on machine i
R;: Release date of job j
d;: Due date of job j
H;: Holding (earliness) of job j per time unit
B;: Shortage (tardiness) cost of job j per time unit
0;: A binary parameter that is equal to 1 if job j is
not processed on machine i, 0 otherwise.
M: A large constant (M—o0)

3.3. Decision Variables
S;; : Starting time of job j on machine i
C;; : Completion time of job j on machine i
Ej: Earliness of job j Ej=max {d;- C;;, 0}
T;: Tardiness of job j Tj=max { Cj—d;, 0}
Yy: A binary variable that is equal to 1 if job j is
processed immediately after job 2 when processing on
machine i, 0 otherwise.
The mathematical model for minimizing of the
earliness cost, [,(E;), and the tardiness cost, §;(T)) is as
follow. The earliness cost could represent the
inventory cost for early finished stocks, and the
tardiness cost could represent the penalty cost for the
late delivery.
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The objective function (1) considers the minimization
of the earliness cost and the tardiness cost and the
considered objective function provides just in time
production in manufacturing systems. The constraint
set (2) determines earliness and tardiness of each job.
The constraint set (3) corresponds to the computation
of the completion time of job (if job j is not processed
on machine i, its completion time is the same as
completion time on previous machine).

The constraint set (4) forces to start the processing of
each job only when it has been completed on the
precedent machine. The constraint set (5) forces to start
the processing of each job only when its precedent job
has been completed on the same machine. The
constraint sets (6-11) determine sequence of jobs for
any machine. The constraint set (12) bounds the job
starting times to be after job release times in the
system. The constraint set (13) insures that the job
finishing times on the first machine to be after job
release times (if job j does not require processing on
the first machine, C;;=R;. (14) is logical constraint.

It must be noticed that when there is the bypass
condition, the completion time of jobs do not
necessarily determine on the last machine, but in our
model the completion time of each job —that may occur
on any machine — transferred on the last machine by
considering a Jj;.

Consider a flow shop scheduling problem with bypass
consideration with three jobs and three machines.
Processing time of each job on each machine and other
data is given in table 1. Job 2 and 3 do not require
processing on the machine 2 and they can process on
machine 3 right after their process completed on
machine 1.

Tab. 1 Processing times and other data

Machine
. 1 2 3 R d H p
1 5 7 1 2 14 3 2
Job 2 3 0 1 4 2 3
31 0 3 3 4 3

The optimum sequence of jobs on machines for
minimizing the sum of earliness and tardiness costs is
shown in Fig. 1.

A

]
A

Vs

»
»

Fig. 1 Gant chart of sequence vector on machines
(objective function = 15)
Although job 2 and 3 do not require processing on the
machine 2 (d,,=1, J,3=0) but our model considers a
virtual completion time for them on this machine (see
the constraint set 3).
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4. The Genetic Algorithm

Genetic algorithms have been proven to be
powerful techniques for constrained optimization and
combinatorial optimization problems.
The GA was proposed by Holland (1975) [15] to
encode the factors of a problem by chromosomes,
where each gene represents a feature of the problem.
The GA’s structure and parameter setting affect its
performance.
The overall structure of our GA can be described as
follows:

1. Coding: The genes of the chromosomes
describe the jobs, and the order in which they appear in
the chromosome describes the sequence of Jobs. Each
chromosome represents a solution for the problem.

2. Initial population: The initial chromosomes are
obtained by a Random dispatching rule for sequencing.

3. Fitness evaluation: The sum of earliness and
tardiness cost is computed for each chromosome in the
current generation.

4. Selection: In any iteration, chromosomes are
chosen randomly for crossover and mutation.

5. Offspring generation: The new generation is
obtained by changing the sequencing of operations
(reproduction, enhanced order crossover and mutation).
These rules preserve feasibility of new individuals.
New individuals are generated until a fixed maximum
number of individuals is reached.

6. Stop criterion: Fixed number of generations is
reached. If the stop criterion is satisfied, the algorithm
ends and the best chromosome, together with the
corresponding schedule, are given as output.
Otherwise, the algorithm iterates again steps 3—5.
Based on bypass consideration GA is adapted to
consider operation with zero processing time on some
machines. Following is the presented our proposed
genetic algorithm.

4.1. Design of Genes

In this paper, each gene is job and the
chromosome is job sequence vector on machines. At
first it is supposed that all jobs have a priority on each
machine. It means that if a job does not be processed
on a machine, a virtual priority is assigned that its
processing time on the machine is zero. The priorities
on machines are generated randomly.
Consider a flow shop scheduling with missing
operation problem with 5 jobs and 3 machines (see
table 2).

Tab. 2 Processing time data

Machine
1 2 3
1 2 0 1
2 0 1 2
Job 3 4 2 1
4 0 0 5
S 1 2 0

The job sequence for this example represented in fig. 2

can be translated into a list of ordered jobs below:
Machinel: j, > j, > js > Jj3 > ],
MachineIl : j, > j, > j, = js > ],
MachineIll : j, > j, = j, > js = J,

Priority (k) 1 2 3 4 5

job Sequence on machine 1: V;(k) | 2 1 5 3

job Sequence on machine 2: Vy(k) | 4 1 215

— W | s

job Sequence on machine 3: V3k) | 3 | 2 | 4 | §

*Highlight jobs on a machine have zero processing time

Fig. 2 Illustration of the job sequence vector on
machines

4.2. The Genetic Operators
4.2.1. Reproduction

The best chromosomes which have a lower fitness
function are chosen. This mechanism just copies the
chosen chromosomes to the next generation.

4.2.2. Crossover

Crossover operator recombines two chromosomes
to generate a number of children. Offspring of
crossover should represent solutions that combine
substructures of their parental solutions. The enhanced
order crossover expanded from the classical order
crossover [16] works as follows:
Stepl. Randomly choose two chromosomes, named
parent 1 and parent 2.
Step 2. Do the following steps for the same machine in
selected chromosomes (parent 1 and parent 2):
Step 1.2. Randomly select a subsection of job sequence
for ith machine from parent 1.
Step 2.2. Produce a proto-child by copying the
substring of job sequence into the corresponding
positions.
Step 3.2. Starting with the first position from ith
machine of parent 2, delete the jobs which are in the
substring from ith machine of the second parent. The
resulted sequence of jobs contains the jobs that the
proto-child needs.
Step 4.2. Place the remaining jobs into the empty
positions of the proto-child from left to right according
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to the order of the sequence in the ith machine of
second parent.

4.2.3. Mutation
Our mutation mechanism works as follows:
Step 1. Randomly choose one chromosome.
Step 2. Do the Following steps for the same machine in
selected chromosome:
Step 2.1. Randomly choose two priorities from ith
machine of selected chromosome in step 1.
Step 2.2. Replace selected jobs with each other [17,18].

4.3. Fitness Function

The fitness function is the same as the objective
function which defined in section 3. In the proposed
genetic algorithm the lower fitness function is desired.

E;: Earliness of job j Ej= max {d;- C;j, 0}

T;: Tardiness of job j Tj= max { C;—d;, 0}
H;: Holding cost of job j per time unit

B Shortage cost of job j per time unit
Fitness Function : } . (H,E;+B.T)

Note that the earliness cost could represent the
inventory cost for early finished stocks, and the
tardiness cost could represent the penalty specified in
the contract for the late delivery.

5. Computational Results

In the scheduling literature, there is not a
benchmark for the FSSP with bypass. To test the
efficiency of the modified genetic algorithm for
considering bypass assumption, a number of random
instances were generated with the following
characteristics:
1. Dimensions of the problem are between (mxn) =
(3%3) and (mxn) = (30%30)
2. Holding (earliness) and shortage (tardiness) costs for
each job at each stage are chosen randomly from U(1-
5).
3. Release date for each job is chosen randomly from
U(0-10).
4. Due date for each job is chosen randomly from
U(15-30).
5. Processing time for each job on each machine is
chosen randomly from U(0-5).
The proposed mathematical model for FSSP with
bypass is solved by genetic algorithm as well as
LINGO 8.0. The genetic algorithm was coded with
MATLAB R2007(b) and all tests were conducted on a
Pentium_IV PC at 3 GHz with 1.0GB of RAM.
The flow shop scheduling problem, when considered in
the general case, gives (n!)"™ possible schedules. Even
for problems as small as n = m = 5, the number of

possible schedules is so large that a direct enumeration
is economically impossible.

When the size of problem is small both genetic
algorithm and LINGO can solve it in a short time.
However, as the size of problem increases the
computation time of LINGO increased exponentially.
The comparison for small size problems between
LINGO and genetic algorithm is shown in table 3.

Tab. 3. Comparison results of GA and LINGO

GA (Iteration=100,
Prob. m n _ Population size=50) LINGO

FF* Time(min) FF  Time (min)

1 2 5 6 0.022 6 0.417
2 3 3 2 0.017 2 0.017
3 3 4 3 0.023 3 0.083
4 3 5 7 0.027 2 0.800
5 4 3 8 0.022 8 0.067
6 4 4 18 0.032 18 1.510
7 5 2 12 0.022 12 0.017
8 5 3 43 0.028 43 0.083
9 5 5 40 0.046 69 12 (hours)**

* FF: Fitness function (Sum of the earliness and tardiness
costs)

* * This problem is interrupted

As demonstrated in table 3, the adapted genetic
algorithm has the ability to reach the optimal solution
for small-sized problems. The implemented genetic
algorithm can efficiently solve the problem in a
considerably short time.

For large scale problems, the results by using the
genetic algorithm is presented in table (4-6). According
to fig. 3 and fig. 4, the adapted GA has the ability to
reach stable solutions.

It is obvious while the problem size is increasing, the
efficiency of the genetic algorithm decreases as
demonstrated in table 4 and table 5.

Tab. 4. Numerical example for 5 machines and 5
jobs

m=5, n=5, Iteration=100, Pop. size =50
(Time: Second)

Prob. FF Time Prob. FF Time Prob. FF Time

| 46 267 34 41 236 7 45 250
41 267 35 49 244 g 45 253
41 249 35 S0 254 g9 46 251
46 246 37 41 259 59 49 262

E-NE VS I 8]
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m=5, n=5, Iteration=100, Pop. size =50 Tab. 5. Numerical example for 10 machines and 10
(Time: Second) jobs
Prob. FF Time Prob. FF Time Prob. FF Time m=10, n=10, Iteration=100, Population size =100

45 243 38 46 2.47 71 41 2.58 (Time: Second)

[ Downloaded from ijiepr.iust.ac.ir on 2025-07-17 ]

> Prob. FF Time Prob. FF Time  Prob. FF Time
6 45 260 39 41 251 7, 45 246
1 1338 2444 11 1443 2477 21 1187 24.66
7 45 228 49 46 260 73 45 240
2 1452 2453 12 1666 2444 22 1262 24.60
g 50 243 4 45 250 74 50 252
3 1332 2493 13 1256 2477 23 1517 24.56
9 41 236 4 41 264 75 41 242
4 1625 2232 14 1501 2450 24 1417 2462
10 45 255 43 45 259 75 41 243
5 1341 2509 15 1212 2246 25 1400 22.16
11 41 235 44 41 247 77 49 2.63
6 1287  25.02 16 1210 24.90 26 1307 2233
12 41 248 45 41 255 75 46 256
7 1241 2272 17 1232 2483 27 1357 2492
13 49 252 46 49 253 79 45 2.68
8 1592 2525 18 1403 24.72 28 1507 2495
14 41 260 47 46 258 gy 49 223
9 1587 2498 19 1645 2520 29 1584 2474
15 46 244 48 49 243 g1 45 243
10 1231 2481 20 1380 2487 30 1374 2470
16 46 249 49 41 261 gy 49 253
Min (FF Max Mean StDev C.V. Range Mean
17 45 247 50 50 259 g3 45 250 n®E)  FF)  (FF)  (FF)  (FF) __ (FF) _(Time)
18 41 256 51 49 236 g4 45 250 1187 1666 13962  144.1 0.103 479 24393
19 41 258 50 45 230 g5 41 259 500
20 S50 238 53 49 243 g 41 249 1600
21 49 255 54 45 232 g7 41 229 1400 7
1200 -
n 45 253 55 41 261 gg 4l 255 Lo
23 41 247 56 50 239 g9 41 262 800 7
24 41 259 57 50 240 g9 49 250 ]
25 49 246 58 45 232 91 41 248 200 ~
26 50 238 59 49 236 o9y 41 247 0
1 3 5 7 9 11 13 15 17 19 21 23 23 17 19
27 46 2.35 60 41 2.40 93 46 2.35 —— Bum of the earliness and tardiness costs
28 41 252 g1 41 249 94 49 249 Fig. 4. Line chart of table 4 (sum of earliness and
29 41 269 gy 49 256 95 49 2.6l tardiness costs)
30 41 267 63 4l 244 96 S0 245 Elapsed time to solve several large-sized problems by
31 45 240 g4 46 253 97 50 262 proposed GA is given in table 5.
32 45 244 65 46 225 9 50 253 Tab. 5. Numerical examples of large-sized problem
33 45 240 66 49 256 99 49 247 GA
Min Max Mean StDev C.V. Range Mean (Iteration=100, Population size=100)
(FF) (FF)  (FF) (FF) (FF) (FF)  (Time) Prob. m n Time (min)
41 50 45.04 3411 0.076 9 2.49 1 4 10 0.327
2 4 15 0.480
& 3 4 20 0.658
% 5 5 15 0.634
30 6 5 20 0.765
20 7 6 10 0.513
10 8 6 15 0.757
0 ‘ 9 8 10 0.681
1 8 15 22 20 36 43 50 57 64 7L 78 85 02 90
—— Sum of the earliness and tardiness costs 10 8 15 1.033
) . 11 10 10 0.762
Fig. 3. Line chart of table 4
12 10 15 1.082

(Sum of earliness and tardiness costs)
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GA
(Iteration=100, Population size=100)
Prob. m n Time (min)
13 10 20 1.242
14 10 30 1.409
15 20 10 0.799
16 20 20 1.801
17 20 30 2.877
18 30 30 3.489

If we increase the number of jobs whilst the number of
machine is fixed, solving time according to proposed
GA increases piecewise linearly (see fig. 5).

CPU time

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18
Prob

Fig. 5. Line chart of elapsed time (Table 5)

If we increase the number of machines whilst the
number of jobs is fixed, solving time according to
proposed GA increases piecewise linearly (see fig. 6).

CPU time

1 4 7 9 11 15
Prob

Fig. 6. Line chart of elapsed time for fix 10 jobs
(Table 5)

6. Conclusions

In this paper, we presented a mathematical
formulation model for minimizing sum of the earliness
and tardiness costs in flow shop scheduling problem
with bypass consideration (some jobs may not process
on some machines) which is often occurring in shop
environment of real world. We proposed genetic
algorithm to solve this problem with medium and large
size. Computational experiments have been performed
to demonstrate that the proposed GA is efficient and
flexible.

Further research can be done to use other meta-
heuristics algorithms such as simulated annealing (SA),
tabu search (TS), ant colony optimization (ACO).
Hybrid algorithms should be developed by using a
local search algorithm within a GA. This means that,
after generating an offspring, the solution should be
improved by applying for instance TS or SA before
applying the selection criterion of GA.
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