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ABSTRACT

Integrated treatment planning for cancer patients has high importance in intensity modulated
radiation therapy (IMRT). Direct aperture optimization (DAQO) is one of the prominent approaches
used in recent years to attain this goal. Considering a set of beam directions, DAO is an integrated
approach to optimize the intensity and leaf position of apertures in each direction. In this paper, first,
a mixed integer-nonlinear mathematical formulation for the DAO problem in IMRT treatment planning
is presented. Regarding the complexity of the problem, two well-known metaheuristic algorithms,
particle swarm optimization (PSO) and differential evolution (DE), are utilized to solve the model. The
parameters of both algorithms are calibrated using the Taguchi method. The performance of two
proposed algorithms is evaluated by 10 real patients with liver cancer disease. The statistical analysis
of results using paired samples t-test demonstrates the outperformance of the PSO algorithm
compared to differential evolution, in terms of both the treatment plan quality and the computational
time. Finally, a sensitivity analysis is performed to provide more insights about the performance of
algorithms and the results revealed that increasing the number of beam angles and allowable
apertures improve the treatment quality with a computational cost.

KEYWORDS: Radiation therapy treatment planning; Intensity modulated radiation therapy, Direct
aperture optimization, Particle swarm optimization, Differential evolution.

1. Introduction shapes and modulates the intensity by its metal
Radiation therapy is one of common methods for leaves. In IMRT, the goal is to deliver the
cancer treatment all over the world, where about prescribed dose to the cancerous cells while
66 percent of cancer patients experience at least minimizing the dose to the healthy structures.
one stage of the treatment procedure [1]. This The trial-and-error method has been the initial
treatment method is divided into external and approach to generate a treatment plan in IMRT,
internal types, according to the radiation source which results time-consuming and low-quality
position. IMRT is among the most efficient plans. According to its deficiency, the researchers
methods of external radiation therapy. In this in this area were prompted to provide treatment
method, the radiation is directed to the head of the schemes ~ with  mathematical  optimization
machine, which is called gantry through a linear approaches. Three main optimization sub-
accelerator. There is a multi-leaf collimator problems are defined as: (1) Beam angle
(MLC) device on the head of the gantry, which optimization (BAO) to determine the position of
the gantry for dose irradiation, (2) Fluence map
* optimization (FMO), to specify the dose intensity
Corresponding author: Mehdi Mahnam map in each angle, and (3) MLC leaf sequencing
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the fluence map of each direction by a fast
filtered backprojection exact algorithm. [4]
designed a parallelized levy-firefly metaheuristic
algorithm to solve FMO. [5] proposed a game
theory approach to make a trade-off between the
absorbed dose of tumor and healthy structures in
the FMO problem [6] addressed nonconvex dose-
volume constraints in FMO by applying some
new exact algorithms.

The main limitation of the hierarchical approach
in three above sub-problems is not considering
the apertures decisions, i.e., the feasibility leaf
sequencing, in the intensity and fluence map
optimization. [7] considered this drawback and
proposed the direct aperture optimization (DAO)
problem for the first time. DAO integrates FMO
and LS subproblems and optimize the apertures'
intensity and shape in an integrated way. In recent
years, more researchers paid attention to DAO.
[8] developed a genetic algorithm (GA) for DAO
problem. [9] presented a deterministic algorithm
for optimizing an approximation of DAO, and
compared the performance of their method to a
SA algorithm. [10] proposed a rapid solution
algorithm using a piecewise matrix-based engine.
They examined this method on the SA algorithm
and the computational time is reduced
significantly. [11] used the column generation
algorithm as the solution method of DAO for the
first time. After that, [12] tried to speed up the
column generation method by parallelizing the
algorithm using graphics processing unit (GPU).
[13] used SA to find near-optimal solutions of
DAO, and showed that DAO has significantly
better performance than the classic sequential

approach. [14] presented a hybrid algorithm for
DAO, in which a genetic algorithm (GA)
optimized the shapes and conjugate gradient
found the optimal intensity of apertures. [15]
designed a multi-objective GA algorithm for
DAO with an intensity-based and a dose-based
objective function. [16] presented a fast inverse
dose optimization algorithm for DAO, in which
direct matrix inversion used to find the optimum
solution. They validated the performance of this
algorithm by comparing it to the interior point
method. [17] developed a robust direct aperture
optimization model to consider the breathing
motion uncertainty during the treatment process.
Recently, [18] presented a stochastic local search
algorithm with two neighborhood structures to
find the best apertures shapes and intensities. The
proposed heuristic and metaheuristic approaches
have also been used for other radiation therapy
techniques such as volumetric modulated arc
therapy (VMAT), Cyberknife, and Tomotherapy
[1, 19, 20]. We refer the interested readers to
comprehensive review papers in the literature for

more details [2, 7, 21].

Despite the development of various optimization
approaches, there is not much discussion of
efficient metaheuristic algorithms for the DAO
complex problem. This is the motivation of
current research, where we try to present a mixed-
integer nonlinear mathematical model for DAO,
and design two efficient metaheuristic algorithms,
DE and PSO as the solution approaches for the
first time. Table 1 compares the current works
against the previous researches in the literature.

Tab. 1. The features of the relevant works in IMRT literature

Paper Year BAO FMO LS Approach Case study
Pugachev, et al. [3] 2000 v 4 x  SA, fast filtered backprojection ~Phantom
Shepard, et al. [13] 2002 < v v SA Prostate, Head and neck,
Phantom
Cotrutz and Xing [8] 2003 x 4 v GA Phantom
Bingzhou, et al. [15] 2008 x v v GA Phantom
Men, et al. [12] 2010 x 4 v" Column generation Prostate, Head and neck
Cao, etal. [14] 2014 x v v Hybr.ld GA and conjugate Head and neck
gradient
Kalantzis, et al. [4] 2016 x 4 x  GPU-based levy-firefly Head and neck, Prostate
. Glioblastoma multiforme
v v - >
Nguyen, et al. [9] 2017 x Primal-dual, SA Head and neck, Lung
Zeng, etal. [10] 2018 x v ¥ Modified SA Liver, Prostate, Head and
neck, Phantom
MacFarlane, et al. [16] 2019 x 4 v Fast inverse dose optimization Liver, Prostate, Head and

Sadeghnejad Barkousaraie,

neck, Phantom

etal. [22] 2020 Vv v x  Deep learning Prostate

Ripsman, et al. [17] 2021 x 4 4 gan@d.a te plan generation Breast
euristic

Céceres, et al. [18] 2021 x 4 v" Stochastic local search Prostate

Maass, et al. [6] 2022 x v x  Exact algorithms Prostate

Current paper 2022 x v v DE, PSO Liver
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The rest of this paper is organized as follows. In
section 2, the DAO problem is defined, and a
mixed integer-nonlinear mathematical model is
presented. In section 3, two metaheuristic
algorithms are proposed to solve the problem. In
section 4, the parameters of algorithms are
calibrated by Taguchi's design of experiments,
and the performance of these algorithms is
compared by applying them to 10 patients with
liver cancer. In addition, a sensitivity analysis is
provided in this section to give more insights into
the performance of the model and algorithms. In
section 5, the managerial insights are discussed.
Finally, in Section 6, the paper is concluded, and
some directions for future research are suggested.

Let

V be the index set of all structures;
Vs be the index set of structure s;
B be the index set of all beam directions

S be the index set of structures, se{1, ..., S};

2. Problem Description and Mathematical
Formulation

In the direct aperture optimization problem, the
set of beam directions B are given. Each direction
b € B is discretized into small rectangular grids,
so called beamlets. By moving the left and right
leaves of MLC, we can open or close a beamlet
(7, ¢), in the row r and column ¢ of MLC. In
addition, all the structures of the patient, denoted
by se{1,...,S}, are decomposed into small cube
elements, called voxels denoted by ve{1, ..., V,}.
There is a dose correlation factor parameter
D(bm),, indicating the received dose by voxel v in
1 Gy/MU, when the beamlet (r,c) in beam b is
on. The goal is to determine a set of MLC
apertures per beam direction and optimizing the
intensity of each aperture, so that the overdose
and underdose of tumor and the overdose of
healthy structures are minimized. To this end, a
mixed-integer nonlinear model is provided as
follows.

A}, be the index set of available apertures in beam angle b, aef1, ..., Ap};
R be the index set of available rows in an aperture, re{1, ..., R};

e ( be the index set of available columns in an aperture, ce{1, ..., C}.

Moreover, the following parameters are considered in the model as follows:

Uy The overdose penalty factor of structure s

Lg The underdose penalty factor of structure s

AL The number of allowable apertures in a beam direction

IL The upper limit for the intensity of each aperture

P, The desired upper limit on the received dose by voxels of structure s
P The desired lower limit on the received dose by voxels of structure s

B(br oy The dose deposition coefficient for the irradiated dose from beamlet (r,c) from direction b
to voxel v
The decision variables of the problem are defined as:

ig The intensity of irradiated dose from aperture a

Va A binary variable; if i; > 0, 1 and otherwise 0

lef The position of left leaf in row r of aperture a

rid The position of right leaf in row r of aperture a

wle¢ A binary variable; if beamlet (7, c¢) of aperture a is open, 1 and otherwise 0
Qv The delivered dose to voxel v

The model is formulated as follow:

s Vs
—\2 2
MinF() = )" ) Us(qy—B), +1Ls (P — av) (1)
s=1v=1 *
Subject to:
Z Ya < AL Va € Ay, Vb € B )
aeAp
le} <rif—1 Va € A,,VYb € B,YTr €ER 3)
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1<ri}<C+1 VYa € A,,Yb € B,Yr €R (€))]
cwlt <rig -1 Va € A, Vb € B,Vr ER,VcEC 5)
C+1-owl‘+lef<C Va € A,,Vb € B,Vc € C,Vr €R 6)
E}ﬁczﬁ?_kg—l Va € A,,Vbh € B,Vc € C 7)
ceC

Vo whe{0,1} Ya € A,,Vb € B,Vr ER,VcEC ®
led, ri¢ € ZR<Al Va € A,, Vb € B,Vr €R 9)
iy € R Va € A,,Vb € B (10)

The quadratic objective function (1) penalizes the
under-dose and over-dose for the target volume
(PTV) and healthy structures, which is one of the
convex objectives in this research area [2, 23].
Constraints (2) limit the number of apertures in
each beam direction to control the delivery time.
The overlapping of the right leaf and left leaf in
each row of MLC aperture is restricted by
constraints (3). Constraints (4) define the possible
positions for the right leaf of MLC in each
aperture row. Constraints (5) and (6) ensure that
there is no dose irradiation from the blocked
beamlets by left and right leaves. Constraints (7)
guarantee the continuity of open beamlets in each
aperture row. Constraints (8) - (10) specify the
type of decision variables.

This model falls into the category of constrained
nonlinear optimization problems that cannot
easily be solved using commercial solvers or
exact algorithms.

3. Solution Method
The complexity of DAO motivates the
researchers  to  customize  heuristic  and
metaheuristic algorithms for this problem. To the
best of the authors’ knowledge, two highly
efficient PSO and DE metaheuristic algorithms
have not yet been applied to DAO. Both

Vierr = WV + 171 (Ppest — Xit) + €272 (Gpest — Xir)

where Py, is the previous best position of
particle i, and Gpegis the previous best position
of all particles. The parameter w is the inertial
weight parameter, which is modified in each
iteration by multiplying to a parameter Wqgmp-
Parameters c¢; and c, are learning factors for
managing the impact of Ppesy and Gpese, and 1q
and r, € [0,1] are two randomly generated
numbers. The new position of each particle is
updated by adding the current velocity to the
previous position:

KXits1 = Xip ¥ Vigsa (12)

algorithms are simple and many studies have
demonstrated promising performance of these
algorithms in a wide range of optimization
problems [24, 25].

The first challenge in this problem is a
hierarchical dependency between the decision
variables, i.e., number of apertures, intensity of
apertures, and leaves positions. For example, the
shape of an aperture is influenced by its direction.
Therefore, we consider all the hierarchical
relationships in both algorithms. Also, the
quadratic objective function (1) is considered as
the fitness function.

3.1. Particle swarm optimization

PSO is a nature-inspired population-based
metaheuristic algorithm, first introduced by [26].
The algorithm imitates the social behavior of
birds and has great performance in solving a wide
range of complex optimization problems [27-31].
PSO starts the first iteration (t = 1) with an
initial random population (Npop) of solutions,
each single solution is called particle (X;.). The
direction of particles in each iteration is
dynamically determined by a wvelocity variable
(Vi £+1), according to Equation (11):

(11

The PSO algorithm is run until the termination
condition, i.e., maximum number of iterations
(Max;;), is met.

3.2. Differential evolution

Differential Evolution is a population-based
algorithm first proposed by by [32] in 1995. This
metaheuristic has recently attracted much
attention due to its simplicity and efficiency [33-
36]. DE has three main operators as mutation,
crossover, and selection. To start, DE generates a
random initial population of target vectors with
size Npop. Next, the mutation operator is
implemented for each variable of target vector to
produce a new mutant vector as follows:
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Viiesr = Xajt + F(Xa,jit — Xayjt) Vi =1,..,Dandi=1,..,Npop (13)

where X, , X,, and X,are three randomly
selected target vectors. After that, the crossover

U _ (Viigsr if rand(j) < P, or j = randi(i)
ST Xy Otherwise

where P, € [0,1] is the crossover probability.
rand(j) € [0,1] and randi(i) € [0,i] are
continuous and integer random numbers,

Yo {Ui,m if fUsee1) < F(Xie )
t+1 —

Xt Otherwise

The maximum number of iterations (Max;;) is
taken into account as the stop condition of DE in
this study, similar to PSO.

3.3. Constraint handling

Constraint handling is a big challenge for
metaheuristic algorithms. Several constraint
methods are wused in the literature for
metaheuristics, e.g., penalty functions, decoders,
special operators [37, 38]. To provide practical
results and keep the quality of solutions, the
operators in our proposed algorithms ensure all
solutions' feasibility during the procedure of the
algorithm.

4. Clinical Case Study

4.1. Data description

We analyze the performance of proposed
algorithms using the TROTS dataset provided at
Erasmus University Medical Center Rotterdam
[39]. We consider 10 cases with liver cancer from
this dataset. For each case, the goal is to deliver
75 Gy dose to at least 95% of the tumor while
other healthy structures receive the minimum
dose. The desired dose is planned to deliver in 15
fractions. Other healthy structures are the heart,
esophagus, stomach, spinal cord, duodenum,
pancreas, liver minus clinical target volume

operator is performed to combine the mutant
vector and related individual as:

(14)

respectively. Finally, the selection of target
vector for the next generation is as follow:

(15)

(CTV), and kidney. The algorithms are
implemented in MATLAB R2017a programming
language and run on a supercomputer with 64 GB
ram and Intel Xeon E312 CPU.

4.2. Parameter calibration

As the performance of metaheuristics is highly
dependent on the input values, we employed the
Taguchi method to calibrate the parameters.
Taguchi divides the affecting parameters to signal
(S) and noise (N) factors. This method uses
orthogonal arrays to identify a combination of
inputs that maximize the signal to noise ratio. For
a minimization problem, this ratio is as follow:

NgE

1
S/N = -10 loglo(Z z?) (16)

i=1

where n is the number of replications and z; is the
objective function value in i*" replication. We
consider six parameters of PSO and four
parameters of DE to be calibrated by the Taguchi
method. We use L27 and L° orthogonal arrays for
PSO and DE, respectively. The sample size of
each array is three. This method is implemented
by Minitab 17 statistical software, and the results
are graphically presented in Figure 1 and Figure
2.
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Main Effects Plot for SN ratios (PSO)
Data Means
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Fig. 1. Optimal parameter level for PSO

Main Effects Plot for SN ratios (DE)

ata Means

i P

Mean of SN ratios

05 09 L4 0% 095 099

Signal-to-noise: Smaller is better

N pop Max_it

10 15 20 50 75 100

Fig. 2. Optimal parameter level for DE

Based on the Taguchi experiments, the optimal
parameters level of PSO are ¢; =1, ¢, = 2.5,
w=0.99, wigmp =0.95 Npop =20, and
Max;; = 50. For DE algorithm, F=0.5, P, = 0.9,
Npop = 20, and Max;; = 100 are obtained
parameters levels.

4.3. Performance comparison

The algorithms are implemented for 10 cases of
TROTS. The objective function value and CPU
time are the considered measures for evaluating
the algorithms. Table 2 summarizes the obtained
results. It is clear that the PSO outperforms the
DE in all cases with respect to both measures.

Tab. 2. Computational results of algorithms

4Case Objective function CPU Time (Min)
PSO DE PSO DE
1 20667.86 37907.97  6.81 41.17
2 18070.94 42761.19  7.01 40.56
3 38895.05 60569.63  9.46 48.28
4 41809.26 68769.41  7.32 39.56
5 28435.55 45453.45  7.13 40.50
6 37199.40 53625.34  7.74 39.58
7 53662.63 78081.41  9.36 42.48
8 54029.09 75176.10  9.39 41.37
9 48861.29 57743.10  8.69 43.64
10 33142.13 49753.74  8.66 44.53

The convergence curves of algorithms for Case 1
are shown in Figures 3 and 4. As can be seen, the

PSO algorithm converges to better solutions
faster and in a fewer number of iterations.
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PSO algorithm

107

Best Solution

Iteration
Fig. 3. Convergence curve of PSO
algorithm

Moreover, we use the paired samples T-test to
statistically —analyze the performance of
algorithms in terms of solution quality and time.
In these tests, the null hypothesis is no difference
between two proposed algorithms, while the

DE algorithm

107

Best Solution

4
10
0 10 20 30 40 50 60 70 80 90 100

Iteration

Fig. 4. Convergence curve of DE
algorithm

alternative is the significant difference. We

provide the results of paired samples T-test in

Tables 3 and 4, based on the objective function
and CPU time, respectively.

Tab. 3. The results of paired samples t-test for the differences of the objective function of

algorithms
Source N Mean StDev SE Mean
PSO 10 37477 12676 4008
DE 10 56984 13708 4335
Difference 10 -19507 5334 1687

95% Confidence Intervale for mean difference: [-23322 ,-15691], P-value=0.000

Tab. 4. The results of paired samples t-test for the differences of the CPU time of algorithms

Source N Mean StDev SE Mean
PSO 10 8.157 1.068 0.338
DE 10 42.167 2.702 0.854
Difference 10 -34.010 2.134 0.675

95% Confidence Intervale for mean difference: [-35.536,-32.484], P-value=0.000

The p-value for both tests was less than 0.05 and
we can conclude, with at least 95% confidence,
that algorithms' objective function and CPU time
are significantly different. The boxplots of
algorithms are shown in Figures 5 and 6, to

90000

80000

70000

60000

50000 [—b—
g

O prso
DE

40000
30000
20000
10000

0

Objective function

Fig. 5. The boxplot for objective function

CPU time

provide more insights. The PSO boxplot in both
figures is lower and narrower, which indicates
less variance of objective function and CPU time
in this algorithm. This represents the robustness
of PSO compared to DE in different cases.

60
50
40
30 @ PSO

20 | DE

10" e
0

Fig. 5. The boxplot for CPU time
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In addition, Dose Volume Histogram (DVH) is a
tool that oncologists use to evaluate the quality of
a treatment plan, practically. DVH curves specify
the received dose level by different volumes of
structures. For example, V, < v% indicates that
v% of the structure has received less or equal

than u Gy dose. For instance, the DVHs 11
structures obtained by two algorithms for case 1
is compared in Figure 7. Clearly, the overdose of
tumor and healthy structures is less in the
treatment plan of PSO .

100

Dose (Gy)

— PTV/

== Stomach

=== Spinal Cord

s Heart

= Oesophagus
Duodenum

= Pancreas
External Ring
Liver minus CTV

=== Kidney (R)

=== Kidney (L)

— PSSO
== DE

Fig. 7. DVH comparison of proposed algorithms

Finally, the CT scan of Case 1 for the obtained
plans by PSO and DE are shown in Figures 8 and
9, respectively. Obviously, the maximum tumor
overdose in the PSO solution is about 102 Gy,

Liver01 (HFS), Slice 221 at-35.644531

(-35.644531,-186.362233,145.418773) mm 785
600 TR T ; 188

N
=]
@

caudal-cranial (mm)
w
aQ
o

-100 -150 -200 -253.5-300 -350 -400 -450
dorsal-ventral (mm)

Fig. 8. CT scan for PSO Obtained Plan

4.3. Sensitivity analysis

In this section, we provide sensitivity analyses to
address the impact of the number of beam
directions and allowable apertures per direction
on the treatment plan quality and CPU time. We
perform the sensitivity analysis on Case 1 of the
data set. First, to investigate the influence of

while this value is about 118 Gy for the obtained
solution by DE. Furthermore, the figures show
that there is more dose leakage to healthy
structures for the plan obtained by DE.

Liver 01 (HFS), Slice 221 at -35.644531
644 6

caudal-cranial (mm)

8 8 8 8 83

=)

=

-100 -150 -200 -253.5-300 -350 400 -45
dorsal-ventral (mm)

Fig. 9. CT scan for DE Obtained Plan

1=}

available beam directions on the results, we
consider a range of 3 to 5 for the number of beam
angles. The results are presented in Table 5.
Moreover, the impact of this parameter on the
results of algorithms is graphically shown in
Figures 10 and 11, respectively.
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Tab. 5. Sensitivity of algorithms with respect to the number of beam directions

Number of beam PSO algorithm DE algorithm
angles Objective CPU time Objective CPU
function (Min) function time(Min)

3 1826199.45 2.95 1012210.73 18.29

5 279994.87 3.84 818056.53 17.98

7 181953.66 3.78 104906.09 23.97

9 26310.6 5.07 41526.82 29.15

11 24783.6 5.42 32739.95 34.4

13 21502.35 5.85 37042.54 39.34

15 20667.86 6.81 37907.97 41.17

mDE =PSO
2000000
= 1800000
2 1600000
£ 1400000
% 1200000
£ 1000000
% 800000
o 600000
400000
200000 J I
0 | — —_— —
3 5 7 9 11 13 15

Number of beam angles

Fig. 10. The impact of the number of beam directions on the objective function of algorithms

=—@=—DE

45
40
35
30
25
20
15
10

CPU time

PSO

9 11 13

Number of beam angles

Fig. 11. The impact of the number of beam directions on the CPU time of algorithms

Clearly, increasing the number of beam directions
provides additional search space and more
flexibility and consequently results in Dbetter
objective values. On the other hand, this leads the
algorithms to be more time consuming for
treatment plan optimize of all beam direction.

Furthermore, the number of allowable apertures
per direction is another important parameter of

the DAO problem to investigate. We consider 7
levels of allowable apertures from 3-15 to analyze
the sensitivity of the outcomes of the algorithms.
The obtained results are summarized in Table 6.
In addition, these results are graphically depicted
in Figures 12 and 13, schematically.
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Tab. 6. Sensitivity of algorithms with respect to the number of allowable apertures

PSO algorithm DE algorithm
Number ortt“:lllowable Objective CPU time Objective CPU time

apertures function (Min) function (Min)

3 13253.1646 2.56 4650216.77 11.37

5 22747.9788 3.18 1349129.02 17.35

7 32369.8526 3.74 323808.38 23.03

9 19195.8355 5.47 75598.52 29.35

11 20686.1537 5.85 42634.28 35.64

13 18576.7438 6.45 40864.06 38.59

15 20667.86 6.81 37907.97 41.17

®DE ®PSO
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Fig. 12. The impact of the number of allowable apertures on the objective function of
algorithms
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Fig. 13. The impact of the number of allowable apertures on the CPU time of algorithms

The results indicate that the effect of this
parameter is similar to the number of beam angles
parameter, where the algorithms found better
solutions when the number of allowable apertures
increased, but at the same time, it imposes a more
computational cost to the metaheuristics.

5. Managerial Insights
Sequential planning is one of the main challenges
in IMRT treatment planning, which is time-
consuming and deteriorates the quality of the
treatment plan. In recent years, DAO is used as a
successful method to provide an integrated
treatment plan in less possible time. PSO and DE
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algorithms are designed in this research to solve

this problem for the first time. The following

managerial insights can be expressed based on the
obtained results of the algorithms for 10 patients
with liver cancer from the TROTS dataset:

e PSO is more powerful than differential
evolution in solving of DAO problem for all
liver cases of the TROTS dataset.

e Rising the number of beam angles positively
affects the quality of the treatment plan for
both metaheuristics.

e Rising the number of allowable apertures
positively affects treatment plan quality for
both metaheuristics.

e Rising the number of beam angles negatively
affects the computational time of both
metaheuristics.

e Rising the number of allowable apertures
negatively affects the computational time of
both metaheuristics.

e The DVH of algorithms shows that both
algorithms can calculate the acceptable
treatment plans which can be used by
oncologists practically. In addition, the PSO
has better performance than DE also
regarding the DVH criteria.

6. Conclusion
In this research, the direct aperture optimization
problem in IMRT treatment planning is
investigated. This problem integrates the
optimization of aperture intensities and leaf
positions. A mixed-integer nonlinear
mathematical models is presented to formulate
this problem. Due to the nonlinearity of the
problem, two efficient metaheuristic algorithms,
PSO and DE as two powerful metaheuristics,
were designed specifically with special features
of DAO. The parameters of both algorithms were
tuned by the Taguchi design of experiments
method. The performance of algorithms was
analyzed by applying the algorithms to 10 real
liver cancer cases from the TROTS data set. The
statistical analyses of results show the superior
performance of PSO. Moreover, sensitivity
analysis are performed on two important
parameters of the models to provide managerial
insights. The results show that that increasing the
number of beam directions and allowable
apertures enhance the solution quality of DE and
PSO. However, the rising of these parameters
rises the CPU time of algorithms. For future
research directions, hybridization of presented
metaheuristics or developing the adaptive version
and making a comparison with the current results
seems interesting. In addition, the current

algorithms can be applied to other problems in
IMRT, such as BAO and FMO.
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