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Abstract: In the present paper, partial cavitation over various head-forms was 
studied numerically to predict the shape of the cavity. Navier-Stokes equations in 
addition to an advection equation for vapor volume fraction were solved. Mass 
transfer between the phases was modeled by a sink term in vapor equation in the 
numerical analysis for different geometries in wide range of cavitation numbers. 
The re-entrant jet formation, which is the main cause for the cavitation cloud 
separation, was modeled very well with a modification of turbulent viscosity. In 
regions with higher vapor volume fractions (lower mixture densities) a 
modification of the k   turbulence model was made by artificially reducing the 
turbulent viscosity of mixture. Computed shapes of cavities were found to be in 
good agreement with those of the reported experiments. Simulation results also 
compared well with those obtained from analytical relations. 
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1. Introduction1 

When the pressure in a liquid flow falls below the 
particular saturation vapor pressure, the liquid 
evaporates. This phenomenon, called cavitation, has 
many applications in the industry, and is categorized 
by a dimensionless cavitation number   20.5vp p v 

 
   

where vp  is the vapor pressure,   is the liquid 

density, p


 and v


 are the main flow pressure and 

velocity respectively. When a liquid flows over a solid 
body, as the fluid velocity increases (or cavitation 
number decreases) five different cavitation regimes can 
be observed: incipient-cavitation, shear-cavitation, 
cloud-cavitation, partial-cavitation and super-
cavitation. The cavitation regime that occurs at low 
cavitation numbers (or high flow velocity) is called 
super-cavitation. 
The cavity closure is a critical region that is 
characterized by its unsteady and unstable behavior. In 
this region, liquid and vapor are highly mixed and 
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experience a strong interaction of the cavity and the 
outer flow. Most of the erosion occurs at the vicinity of 
the closure region and is caused by the collapse of 
traveling small cavities. The vapor structures formed in 
the low pressure zones are transported downstream and 
collapse violently when they pass the higher pressure 
zone. 
In the presence of a multiphase flow, the turbulence 
modeling would be considered by separate models for 
each phase. The complexity of this approach leads 
major researchers to be careful the classical 
homogeneous turbulence formulation. Some 
researchers consider the idea based on the modification 
of classical two-equation turbulence modeling. 
Vaidyanathan and Senocak[1-2] proposed a non-
equilibrium k   based on the correction of the model 
coefficients to fit the experimental data based on 
optimization techniques. The difference between the 
computational and experimental results is used to judge 
the model fidelity. Coutier-Delgosha et al [3] and 
Reboud et al.[4] have introduced an artificial 
compressibility effect on the classical incompressible 
k   modeling. The main idea is to avoid the high 
diffusivity of the numerical model caused due to the 
addition of the artificial viscosity  t . Besides 

cavitation, serious implications of turbulence modeling 
on cavitating flows were recently revealed by Wu et al. 
[5]. They reported that high viscosity of the original 
k   model dampens cavitation instabilities. 
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Consequently, simulation of the phenomena such as 
periodic cavity inception and detachment requires 
alternate modeling approaches. Alternatively, Johansen 
et al.[6] have recently formulated a filter-based RANS 
turbulence model. The new model imposes a grid 
independent filter on the flow. While the imposed filter 
size prevents excessive dissipation of small-scale 
motions like the original RANS model, it allows 
development of flow scales corresponding in size with 
the grid resolution. Thus, the resultant behavior of the 
model can be tuned between the limits of RANS-type 
and a hybrid RANS-LES model. In this paper, in order 
to modeling the unsteady and shedding behavior of 
cavitation, two of the above-mentioned methodologies 
(Coutier-Delgosha et al.[3] and Reboud et al.[4]) as 
well as the methodology from Johansen et al.[6] were 
performed. The re-entrant jet formation is formed very 
well with these modifications. 
 

2. Governing Equations 
The vapor-liquid flow described by a single-fluid 

model is treated as a homogeneous bubble-liquid 
mixture, so only one set of equations is needed to 
simulate cavitating flows: 
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The Equation(1) is continuity and the Equation(2) is 
momentum equation. In these equations, the 
constitutive relations for the density, dynamic viscosity 
and turbulent viscosity of mixture are as following: 
 

(1 )m L L V L                                                    (3) 
 

(1 )L L L V                                                      (4) 
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t

C k
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
                                                              (5) 

 
The subscript L  and V  stand for the properties of 
pure liquid and pure vapor, which are supposed to be 
constant. Additionally, a transport equation for the 
vapor-mass fraction f  is required. This transport 

equation is: 
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In the Equation, m  stands for the appropriate 
cavitation mass transfer sink term. 

3. Turbulence Modeling 
For the system closure, the original k   

turbulence model with wall function is utilized as 
follows: 
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The turbulence production, Reynolds stress tensor 
terms, and the Boussinesq eddy viscosity concept are 
defined as: 
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The empirical coefficients originally proposed by 
Launder and Spalding [7] assuming local equilibrium 
between production and dissipation of turbulent kinetic 
energy are as follows: 

 

1 21 44    1 92    1 3    1kC C
  

    . ; . ; . ;  

 
4. Turbulence Modifications 

As mentioned before, because of the deficiency of 
the original k   model in predicting shedding and 
unsteady behavior of cavitating flow, we must modify 
this turbulence model. This problem is due to non-
adequate turbulent viscosity predicted in cavity 
regions. Three suggestions are proposed in the 
literature to modify this simulation method. The first 
suggestion is to use k   turbulence modeling with 
compressibility effects� correction proposed by Wilcox 

[8]. The second suggestion is to reduce turbulent 
viscosity in the cavity region using the following 
relation (from Coutier et al.[9]): 
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  

              (10) 

 
This modification limits the turbulent kinetic energy in 
cavity region and consequently allows the formation of 
re-entrant jet and the cavitation cloud shedding (Dular 
et al. [10]). The third suggestion is to use detached 
eddy simulation (DES) form of k   turbulence 
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model. In this form of k   model, turbulent viscosity 
is calculated by the relation as follows: 
 

2
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where   is smallest edge length of each numerical 
cell. This relation produces a hybrid RANS-LES 
behavior by allowing development of length scale, 
comparable to the numerical grid resolution [6]. The 
second suggestion is applied for the present study. 
 

5. Cavitation Model 
To simulate cavitation, a liquid flow is initially 

considered over the axisymmetric body. The value of 
liquid mass fraction  f  is then calculated at locations 

where pressure drops below the vapor pressure. 
Numerical models of cavitation differ in mass transfer 
term m . Among the semi-analytical models, the most 
known are Singhal model [11], Merkle model [12], 
Owis and Nayfeh model [13] and Kunz model [14]. In 
present studies, we used the Singhal model. Source 
terms m

  and m
  that are included in the transport 

equation define vapor generation (liquid evaporation) 
and vapor condensation, respectively. Source terms are 
functions of local flow conditions (static pressure and 
velocity) and fluid properties (liquid and vapor phase 
densities, saturation pressure and liquid vapor surface 
tension). The source term are derived from the 
Rayleigh-Plesset equation, where high order terms and 
viscosity terms can be found in Singhal et al. [11]. 
They are given by: 
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where f  is vapor-mass fraction, k  is turbulent kinetic 

energy, and   is surface tension. destC  and prodC  are 

empirical constants to regulate mass transfer due to the 
evaporation and condensation respectively. 

 
6. Numerical Method 

An unstructured CFD code based on finite volume 
method is used for two- and three-dimensional 
calculations. The SIMPLE pressure based algorithm is 
applied to solve the fluid flow field. The diffusive flux 
is discretized using the second order central difference 
scheme, whereas the choice of discretization scheme 
for the convective flux often depends on the fluid flow 
conditions and also physical properties of fluid [15]. In 
the present study, the first order upwind (FOU) scheme 
is considered. In addition, a first order implicit 

temporal discretization scheme is applied for transient 
calculations. For the present study, the transport 
equation based on cavitation models, which was 
described earlier, is implemented into the solver, and 
related modifications regarding the convection 
schemes and the pressure-based algorithm have been 
made for steady computations. To describe the 
underlying algorithm, the steady-state generic transport 
equation is adopted in vector form as: 
 

u q     


.( ) .( )                                          (14) 
 

where   is the generalized dependent variable,   is 

the diffusion coefficient, and the second term on the 
right hand side represents the source term for the 
transport quantity  . This equation is transformed to 

an integral form, suitable for finite volume 
discretization, using the divergence theorem: 

 

( ).
s V

u ndS q dV    
 


                                  (15) 

 
Integration of this equation yields the following 
equation: 

 

  1 1 1 1 ,, , , , ,
2 2 2 2

i ji j i j i j i j i j
F F F F F b

   
                 (16) 

 
where ,i jb  is the integrated form of the source term and 

,i jF  represents the flux of   at each control volume 

face. ,i jF  is composed to a convective and a diffusive 

part as follows: 

 

( ).conv diff
cf cf cf cfF F F u nS     

 

                    (17) 

 
As mentioned before, the diffusive flux is discretized 
using the second order central difference scheme, 
whereas the choice of discretization scheme for the 
convective flux often depends on the fluid flow 
conditions and physical properties of fluid. In the FOU 
scheme, the value of the dependent variable is 
estimated using the upwind neighbor value. If one lets 

1 2,i jF


 be the first order flux at a control volume face, 

determined through first order extrapolation of two 
immediate neighboring cells, then the scheme can 
simply be written as: 
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where u  is the velocity component in the 
corresponding direction. Higher order spatial accuracy 
can be obtained by employing more grid points for 
extrapolation. However, it is known that second or 
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higher order accurate schemes for convection terms 
produce oscillations around discontinuities. 

 
7. Pressure-Based Algorithm for Cavitating 

Flows 
The pressure-based algorithm, when adapted for 

steady-state computations, follows the spirit of the well 
established SIMPLE algorithm (Patankar [16], 
Patankar & Spalding [17]), with substantial extension 
to treat issues associated with curvilinear coordinates 
and multi-block interface. Basically, the momentum 
equations are discretized as: 

 

( )u u u
P P nb nb P d P PA u A u V P b   
   

                          (19) 

 
where u

pA


 and u
nbA


 are the coefficient of the center and 

neighboring nodes, respectively, due to contributions 
from convection and diffusion terms. pV  and u

pb


 

represent the volume of the cell and the source term, 
respectively. Note that the d  operator is the discrete 

form of the gradient operator. For the present study, 
there is no source term in the momentum equations; 
hence, it does not appear in the following formulation. 

 
8. Boundary Condition 

In this study inflow boundary was specified as a 
velocity inlet and outflow was specified as a constant 
pressure condition. At the inlet, the turbulent kinetic 
energy k  is set to be equal to 5 23 10 inu . The value of 

the specific dissipation rate is selected using the length 
scale equation (see [18]). On the wall, the boundary 
conditions are the impermeability and no-slip for the 
velocity, and the normal gradient of pressure is 
assumed to be zero. Wall functions based on the law of 
the wall are used as boundary conditions for the 
turbulence modeling. The applied boundary condition 
for axisymmetric and 3D configurations is sketched in 
Fif. (1) and Fig. (2). We used the axis boundary 
condition in the center-line of the computational 
domain where the normal gradient of the every variable 
in the flow domain is zero. Since the original k   
turbulence model together with the wall function is 
adopted, it is important to offer spatial resolutions 
consistent with the modeling requirement. This 
requires that the non-dimensional normal distance from 

the wall  y , a representation of the local Reynolds 

number, should be in the log-law region. 
Once a cavity forms on the surface, the local Reynolds 
number decreases due to reduction in density, and the 
first grid point away from the wall may not be 
positioned in the log layer. This issue has important 
implications for both accuracy and convergence. We 
found that proper grid distribution is very important for 
satisfactory results and convergence of cavitating flow 
computations. For the present study, the non-

dimensional wall distance y  was set to values 

between 30 and 70, so that the logarithmic wall law 
can be applied. The grid is clustering near the wall 
boundary as shown in Fig. (3). 

 

 
Fig. 1. Applied boundary condition for 2D 

axisymmetric configuration. 
 

 
Fig. 2. Applied boundary condition for 3D 

computations 
 

 
Fig. 3. Grid clustering near the solid wall 

boundaries 

 
9. Results and Discussion 

9-1. Axisymmetric Numerical Simulation of Natural 
Cavitation: 
In �0through�0the numerical results for blunt body 

head-form are plotted with the corresponding 
experimental results. As we can see, the calculation 
predicts the cavity length with high accuracy. The re-
entrant jet will transport liquid phase into the cavitating 
regime at the end of the cavity. Visually, this will result 
in a closure of the cavity in a phase contour plot. It is 
also worth mentioning that the cavity length alone does 
not describe the flow. This can be seen clearly from the 
contour of constant void fraction plots shown in Fig. 
(4).  
In�0the plot of vapor volume fraction and selected 
streamlines was sketched, showing that while the 
cavitation number decreased the cavity length 
increased. The determination of the cavitation regimes 
was done by visual inspection of contour plots of the 
numerical solution. Rouse & McNown [�019] carried 
out a series of experiments wherein cavitations induced 
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by convex curvature aft of various axisymmetric fore 
bodies with cylindrical after bodies were investigated. 
At low cavitations numbers, these flows exhibit natural 
cavitation initiating near or just aft of the intersection 
between the fore-body and the cylindrical body. 

 

 
Fig. 4. Volume fraction and selected stream lines for 

cavitating flow over a blunt fore-body at 1.2   

 
For each configuration, calculations were made 
between a range of cavitation numbers, including a 
single-phase case (large  ). Surface static pressure 
calculations were taken along the cavitator and after-
body. Snapshots were also taken from which 
approximate bubble size and shape were deduced. 
Several of the Rouse & McNown [19] configurations 
were analyzed. These included 0-caliber (blunt), 1/2-
caliber (hemispherical), and conical (22.50-cone half-
angle) cavitator shapes.  
The simulations were performed at Reynolds numbers 
greater than 100,000 based on maximum cavitator 
(after-body) diameter. 

 

 
Fig. 5. Volume fraction and selected stream lines for 

cavitating flow over fore-body at 0.3   

 
Fig. (7) through Fig. (10) provide similar comparisons 
for hemispherical and conical fore-bodies. Specifically, 
�0and�0 Fig. (10) show comparisons between predicted 
and measured surface pressure distributions for these 
two configurations at a cavitation number of 0.3.  

As we can see at the rear part of the cavitation zone, 
the flow was re-circulated and the liquid has been 
sucked to the cavitation region. In each case, a discrete 
bubble shape is observed, but the aft-end of the 
predicted bubble does not exhibit a smooth 
�ellipsoidal� closure. Indeed, due to local flow reversal 

(reentrant jet), liquid is swept back underneath the 
vapor pocket. The pressure in this region retains nearly 
constant on free streamline liquid flow. 
 

 
Fig. 6. Pressure coefficient distribution for blunt 

fore-body at 0.3   
 

 
Fig. 7. Volume fraction and selected streamlines for 
cavitating flow around a hemispherical fore-body at 

0.3   

 

 
Fig. 8. Pressure coefficient distribution for 

hemispherical fore-body at 0.3   
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Fig. 9. Volume fraction and selected streamlines for 
cavitating flow around conical fore-body at 0.3   

 

 
Fig. 10. Pressure coefficient distribution for conical 

fore-body at 0.3   

 
9-2. Cloud Cavitation Over Cylinder: 

In this test case, we considered cavitation over a 
blunt cylinder and cylinder with hemispherical head at 
two cavitation numbers 0.3    26 /V m s


  and 

0.15    36 /V m s

 . In all the simulations, for 

capturing the unsteady behavior of cloud cavitation and 
formation of re-entrant jet at the rear part of the cavity, 
turbulent viscosity was modified with the Reboud et al. 
[3-4] modification. The time evolution of cavity region 
at 0.3   is shown in Fig. (11).  
Cavitation starts and grows in vortices formed near the 
cylinder wall. The current simulations show that at 

0.3  , cavity exhibits the periodic behavior of cloud 
cavitation. After the formation of a developed cavity 
(t=48ms), large vapor structures detach from the main 
cavity due to the unsteady movement of re-entrant jet; 
the cavity then grows again from the edge of the 
cylinder (t=57.5 ms). The detached region moves 
downstream and gradually disappears (t=62.5-65.5 
ms).  
The newly developed cavity exhibits similar periodic 
behavior: inward movement of water jet, detachment of 
vapor structure and cavity growth (t=67.5-68.5 ms). It 
should be noted that the unsteady behavior of cloud 
cavitation results in a nonsymmetrical cavity shape, 
consequently more accurate simulation of this 
cavitation regime requires a three dimensional 
modeling [20]. 

9-3. Three-Dimensional Partial Cavitation: 
In order to demonstrate the three-dimensional 

capability of the code, a cavitation flow was simulated 
over a model of hemispherical fore-body configuration 

at numerous angles of attack and 0.3  . The domain 
consisted of 8 blocks.  
Fig. (12) provides sample results for angles of attack of 
0.0, 2.5, 5.0 and 7.5 degree. These plots include 
pressure contours on the plane of symmetry, sample 
streamlines and the cavitation bubble shape as 
identified with an isosurface of 0.99l  .  

Several interesting features are observed in the 
prediction. A recirculation zone aft of the bubble grows 
with the angle of attack. This diminishes the local 
pressure recovery associated with the bubble-induced 
blockage, and this in turn leads to a local collapse of 
the bubble on the top of the body. Indeed, at angle of 
attack the bubble is seen to have its great axial extend 
off the symmetry plane of the geometry. At this 
cavitation number, steady state solutions could be 
obtained. 

 
9-4. Supercavitation Behind a Disk Cavitator: 

In this section, we present the numerical 
simulation of cavitating flow over an axisymmetric 
body such as disk and cone with the head angle of 90, 
for which experimental and analytical results (such as 
Richardt Relation from Frane and Michel [21]) are 
available in the literature.  
For a cavitation number of 0.15   and a Reynolds 

number of 6Re 8.6 10    40V m s

 , the steady 

supercavity shape behind a disk is shown in �0 Fig. (13). 
For the case 0.15  , the contours of velocity and 
Cp  are shown in�0 Fig. (14) and Fig. (15) Inside the 

supercavity, there exists a core of reverse flow and 
vortices.  
The main concentration of reverse flow is located in 
the cavity center, identified by a pink color in�0 Fig. 
(14). with a maximum reverse flow velocity of about 
30 m s . Outside this vortical core, the velocity is 

relatively low, with an approximate absolute value of 
less than 10 m s .  

Meanwhile, the range of velocity at the location of the 
re-entrant region is about 6 m s , which is about 17% 

of the main flow velocity V


. As shown in�0 Fig. (15), 

Cp contours vary from 1 at the stagnation point where 

the flow impacts the disk to 0.15  inside the cavity. 
The contour of supercavity boundary is identified 
by 0.15 . It is observed that this value is equal to the 
negative value of the cavitation number which was 
expected because: 
 

2 2
  ;   

0.5 0.5

inside thecavity :    

v

v

P PP P
Cp

V V

P P Cp


 





 


 

   

                   (20) 
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9-5. Model Validation: 
A wide range of analytical relations are available 

for, the main characteristics of axisymmetric 
supercavities, shape and drag coefficients. Richardt 
Relation [21] states the ratio of length to diameter of a 
supercavity as following: 

 

   

0.5

max

0.5

max

0.008

1.7 0.066 1 0.132

cavity D

cavity

l C

d



   

 
  

   

  (21) 

 
This relation is independent of the cavitator geometry. 
According to Richardt [21], the diameter of the 
supercavity is also given by: 

 

 

0.5

max

0.51 0.132

cavity D

cavitator

d C

D  

 
 

  

                             (22) 

 
where DC  is the drag coefficient given by: 

 
 

0
1D DC C                                                         (23) 

 
where 

0DC  depends on the cavitator geometry. 

Richardt suggests a value of 
0

0.79DC   for disk 

cavitator while Fisher recommends a value of 

0
0.84DC  . Another analytical relation for drag 

coefficient is that of Palset- Schaffar: 

 

 
0

0

21 0.028

0.8053

D D

D

C C

C

   


                                   (24) 

 
For disk cavitators it should be noted that the drag of a 
supercavity is mainly due to pressure drag because the 
fluid in contact with the solid body is only vapor with a 
low density. 
Fig. (16) and Fig. (17) show the non-dimensionalized 
supercavity length and cavity width vs. cavitation 
number for the disk cavitator, which compare the 
results of the numerical model with those of the 
experiments [21] and analytical relations (Equations 
(21) and (22)). The length of the supercavity 
exponentially increases when   decreases. The 
numerical results compare well with both experiments 
and theory.  
The small discrepancy between experimental results 
and those of the simulation may be attributed to the 
effects of water tunnel walls on the experimental 
measurements. 

 
 

 
 

 
 

 
 

 
 

 
 

 
Fig. 11. Time evolution of cloud cavitation over 

cylinder at 0.3   

T=36ms 

T=48ms 

T=57.5ms 

T=62.5ms 

T=65.5ms 

T=67.5ms 

T=68.5ms 
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Fig. 12. Predicted three-dimensional flow fields with 
natural cavitation about hemispherical fore-body at 

various angles of attack 
 

9-6. Supercavitation Behind Cone Cavitator 
In another test case, the supercavity behind a cone 

(with a head angle of 90 degree) was considered. For a 
cavitation number of 0.075   and a Reynolds 

number of 7Re 8.9 10   51V m s

 , the result is 

shown in Fig. (18). The ratio of cavity length to 

diameter  max maxcavity cavityl d  is a function of   and is 

independent of cavitator geometry, as stated by 
Richardt Relation: 
 

 
max

max

0.008

1.7 0.066
cavity

cavity

l

d



 





                                    (25) 

 

The length and diameter of the supercavity increase as 
the head angle increases from 45 to 180 degree (a disk 
cavitator can be assumed as a cone with an angle of 
180 degree).�0 Fig. (19) and Fig. (20) show the non-
dimensionalized supercavity length and cavity width 
vs. cavitation number for the cone cavitator. The 
figures compare the results of the numerical model 
with those of the experiments (Frane and Michel [21]) 
and analytical relations (Equation (25)). It is seen that 
the numerical results compares well with both 
experiments and theory. The non-dimensional cavity 
width was compared just with experimental data of 
[21]. 
 

9-7.  3D Computation of Supercavitation: 
In this section, supercavitation at cavitation 

number 0.02 on 3 for different cavitator with after body 
was modeled. Nondimensionalized supercavity length 
and width were considered as the main parameters. The 
geometry of three models is shown in�0 Fig. (21). Each 
model has a length of L  with the circular section with 
diameter of D . The ratio of L D  is 6 for three 

models. Model 1 has a conical nose with angle of 60 
degrees. Model 2 is a cut of conical nose at angle of 60 
and model 3 has a hemisphere cavitator. 
 

9-8. Results of 3D Supercavity Simulations: 
In Fig. (22) through�0 Fig. (24), the supercavity 

pattern for three models are shown. In Fig. (25) and 
Fig. (26), the �cavity length/body diameter� and 

maximum �cavity diameter/body diameter� for the 

models 1, 2 and 3 at cavitation number 0.02 were 
compared with the results of Stinebring et al.[22]. (The 
experimental results were obtained at cavitation 
number 0.05). As mentioned before, by decreasing the 
cavitation number, the cavity length increased rapidly 
and this fact is observed as shown in�0 Fig. (25). 
 

10. Conclusion 
In this paper, the transient and steady cavitating 

flow over various cavitators was studied numerically. 
In order to simulate the unsteady behavior of cavity 
shedding and re-entrant flow field, the original k­å 

model was modified based on the modification which 
is proposed by Reboud et al [4]. The cavity shape 
compared very well with experimental data. 
 

 
Fig. 13. Supercavity shape behind a disk at 

0.15   

0.0 

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

5.0 

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
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Fig. 14. Contour of velocity at 0.15   

 

 
Fig. 15. Pressure coefficient for disk cavitator at 

0.15   
 

 
Fig. 16. Supercavity length vs. cavitation number 

for disk cavitator 
 

 
Fig. 17. Nondimensional cavity width vs. cavitation 

number for disk cavitator 
 

 
Fig. 18. Supercavity shape behind cone cavitator at 

0.075   
 

 
Fig. 19. Supercavity length vs. cavitation number 

for cone cavitator 

 
Fig. 20. Nondimensional cavity width vs. cavitation 

number for cone cavitator 

 

 
Fig. 21. Geometry of three various cavitators with 

after body 

 

 
Fig. 22. Supercavity pattern at 0.02   for cone 

cavitator with after body 
 

 
Fig. 23. Supercavity pattern at 0.02   for cut off 

cone cavitator with after body 
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Fig. 24. Supercavity pattern at  0.02   for 

truncated hemispher cavitator with after body 
 

 
Fig. 25. Supercavity length to body diameter for 

models 1, 2 and 3 
 

 
Fig. 26. Maximum cavity diameter to body diameter 

for models 1, 2 and 3. 
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