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A Numerical Method for Backward Inverse Heat Conduction 
Problem With two Unknown Functions 

 
A. Shidfar,   and   Ali Zakeri 

 

Abstract: This paper considers a linear one dimensional inverse heat conduction 
problem with non constant thermal diffusivity and two unknown terms in a heated bar 
with unit length. By using the WKB method, the heat flux at the end of boundary and 
initial temperature will be approximated, numerically. By choosing a suitable parameter 
in WKB method the ill-posedness of solution will be improved. Finally, a numerical 
example will be presented. 
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1. Statement of the problem1 
This section deals with a linear heat equation  
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( , ) ( , )( ) ( ) ( , ),

                ( , ) | 0 1, 0 ,

u x t u x ta t q t u x t
t x

D x t x t T

∂ ∂
= −

∂ ∂

= < < < <
        (1) 

with boundary conditions 

(0, ) ( ), 0 ,u t g t t T= ≤ ≤                               (2) 

(1, ) ( ), 0 ,u t h t t T= ≤ ≤                               (3) 

and the initial condition 

0( ,0) ( ), 0 1,u x u x x= ≤ ≤                            (4) 

where T is a given positive constant number, q(t), a(t) 
and g(t) are known functions on [0,T], and h(t), 0 ( )u x  
and u(x, t) are unknown functions. To solve the above 
problem, we use the following extra conditions 

(0, ) 0, 0 ,u t t T
t

∂
= ≤ ≤

∂
                                (5) 

( , ) ( ), 0 1,u x T f x x= ≤ ≤                            (6) 

where f(x) is an known function. 
Clearly, the problem (1)-(6) is inverse heat conduction 
problem with two unknown terms.  
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In fact, these problems are of two types: backward 
inverse heat conduction problems (BIHCP) and 
determining unknown temperature histories and heat 
flux on a part of boundary, from known values in the 
body is the idea of many mathematicians.  
Physically, let us consider a heated bar with unit length 
in one dimensional space.  
A direct measurement of the heat flux or temperature in 
a boundary and initial time of hot body is almost 
impossible.  
Consequently, this problem is an inverse heat 
conduction problem (IHCP). Some numerical and 
theoretical approaches for solving IHCPs when the 
histories of temperature at the initial time or in a 
boundary, not both, are unknown have been 
summarized in [1, 2, 3, 4, 5, 6, 7].  
Beck in [1,2] has shown that, if an error is made in a 
known boundary condition, then there will be errors in 
the unknown heat flux on the other boundary.  
In [4], an estimated of the solution an BIHCP, by using 
the regularization method, is derived.  
These results are consistent with earlier observations 
that small values of time can produce large errors in 
surface flux.  
In this article, we discrete the variable t and reduce the 
problem (1)-(6) to a system of linear, inhomogeneous 
secondary order differential equations.  
Then, we express a relation of a parameter and 
increment time. By using this parameter we modify the 
instability of solution.  

 
2. Time Variable Discretization 

In this section, by given the following theorem we shall 
prove the existency and unicity for the solution of 
problem (1)-(6). 
Theorem 1 For any final time T, let 

( ) ([0, ]), ( ) ((0, ]),1g t T a t L T∞∈ ∈H such that, 
( ) 0a t k> >  where k is a constant number, ( )q t be an 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ie
pr

.iu
st

.a
c.

ir
 o

n 
20

25
-0

3-
14

 ]
 

                               1 / 4

mailto:shidfar@iust.ac.ir
http://ijiepr.iust.ac.ir/article-1-118-en.html


72                 A Numerical Method for Backward Inverse Heat Conduction Problem With two Unknown Functions 
 

integrable positive function in [0, T], and f(x) be an 
analytical function for any 0<x<1, then there exist a 
unique weak solution 2 (0, ; ([0,1])) 1u L T∈ H and  
Holder&& continuous function h(t), for the problem (1)-
(6). 
Proof In order to prove this theorem, let us consider 
the transformation 

{ }0
( , ) ( , ) exp ( ) .

t
v x t u x t q dτ τ= ∫  

By using this transformation, the problem (1)-(2) and 
(5)-(6) becomes 

{ }

{ }

{ }

2

2

0

1

0

1

( , ) ( , )( ) ( ) ( , ),

                ( , ) | 0 1, 0 ,

( , ) ( ) exp ( )

( ), 0 1,

(0, ) ( ) exp ( )

( ), 0 ,
(0, ) 0, 0 .

T

M

t

v x t v x ta t q t v x t
t x

D x t x t T

v x T u x q d

f x x

v t g t q d

g t t T
v t t T

x

τ τ

τ τ

∂ ∂
= −

∂ ∂

= < < < <

= −

= < <

= −

= < <

∂
= ≤ ≤

∂

∫

∫

 

 
Because, q(t) is a positive function and integrable in it's 
domain, if g and f(x) may be satisfied in the 
assumptions of theorem 1, then 1g  and 1( )f x  
satisfying in these assumptions, too.  
Consequently by using [1, 4, 6, 8, 9] the proof of this 
statement will be completed. In continuation, assume 
that ,M ∈   ,Mt T M∆ =  and i Mt i t= ∆ .  
Also, we use ˆ ( )iu x  instead of the approximate 

( , ),Mu x i t∆  and ( )i ia a t=  for any 0 .i M≤ ≤  
Obviously, we have ( ) ( ).Mu x f x=  Now, apply the 
semi-implicit finite difference method in the form 
 

1
1

ˆ ˆ( , ) ( , )ˆ ˆ( ) ( ) ,i i
i i M

u x t u x tu x u x t
t t

θ θ +
+

 ∂ ∂′= + + ∆ ∂ ∂ 
      (7) 

 
where 0θ >  and 1 .θ θ′ = −  Then, by substituting (1)-
(6) into (7) we drive the following ordinary differential 
equations system 
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Consequently, we have 

[ ]0 1ˆ (0) , , T
Mg g −=u K  

and  

[ ]ˆ (0) 0, , 0 .T′ =u L  

 
Now, let us ( ) 0,f x =  then, for the solution of the 
equations system (8) may be in the form 

( )1
0 1ˆ ( ) cos( ( )) ( ) ( ) ,x S x x xλ λ−= + +u f f L            (9) 

or 

( )1
0 1ˆ( ) sin( ( )) ( ) ( ) ,x S x x xλ λ−= + +u f f L              (10) 

Where ( )S x  is an unknown function and 

0 ( ),xf 1( ),xf L , are unknown vector-functions. By 
substituting (9) and (10) into the ordinary differential 
equations system (8), cancel the cosine or sine term 
and simplifying the produced results, then we obtain a 
recurrent system of equations 

( )2
0( ) ( ) ,S x x′− =A I f 0                                        (11) 

( )2
1 0 0( ) ( ) ( ) ( ) 2 ( ) ( ),S x x x S x x S x′ ′′ ′ ′− = +A I f f f       (12) 

( )2
1( ) ( ) ( ) ( )k kS x x x S x−′ ′′− =A I f f

 
1 22 ( ) ( ) ( ), 2.k kx S x x k− −′ ′ ′′+ + ≥f f                     (13) 

If ( )a t  is a monotone function, then the characteristic 
equation (8), has not turning points for any [0,1]x ∈  
([5]). 
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Then A  has M  unequal eigenvalues and M linear 
independent eigenvectors corresponding to eigenvalues 
of matrix A .  
By using (11)-(13) we derive 2M  independent 
solutions for (8). It follows from (11) that 2 ( )S x′  is 
an eigenvalue, and 0 ( )xf  is an eigenvector of .A   Let 

{ }0 1( ), , ( )Mx x−e eK  be a base of eigenvectors. Then, 
we derive 

1
( ) , 0 1,j M

j
j

x q t
S x j M

a

θ

θ

− ∆
= ≤ ≤ −  

( )
,( ) ( ) ( ), 0, 0 1,j

i i j jx x x i j Mα= ≥ ≤ ≤ −f e  

where 

4
0, ( ) ( ), 0 1,j jx a x j Mα = ≤ ≤ −  

and 

0, ( 1),
,

0 0,

( ) ( )
( ) 0,

2 ( )

0 1, 1.

x
j i j

i j
j

x s
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s

j M i

α α
α

α
−′′

= − =

≤ ≤ − >

∫  

Then, for finding ˆ ( )iu x  for any 0,1, , 1,i M= −K  
setting  

1 1
(1) (1) (2) (2)

0 0

ˆ ˆ ˆ( ) ( ) ( ),
M M

i i i i
i i

x C x C x
− −

= =

= +∑ ∑u u u                 (14) 

where 

(1) ( )
0

1
ˆ ( ) sin ( ),i M i

i
i M

x q t
x x

a t
θ

θ

 − ∆
=   ∆ 

u f                 (15) 

(1) ( )
0

1
ˆ ( ) cos ( ),

0, , 1,

i M i
i

i M

x q t
x x

a t

i M

θ

θ

 − ∆
=   ∆ 
= −

u f

K

                (16) 

such that, ( )j
iC  for any 0, , 1,i M= −K  and 

1,2j =  are unknown constants and will be found from 
initial conditions 

[ ]0 1ˆ (0) , , T
Mg g −=u K  

and 

[ ]ˆ (0) 0, , 0 .T′ =u L  

Now, if ( ) 0,f x ≠  then, a particular solution ( ) ( )p xu  
of the inhomogeneous system can be found by the 
method of variation of parameters in the form  

1 1
( ) (1) (1) (2) (2)

0 0

ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ),
M M

p
i i i i

i i

x x x x xυ υ
− −

= =

= +∑ ∑u u u  

where, ( ) ( )j
i xυ  for any 0, , 1i M= −K  and 

1, 2j =  are unknown functions and will be found 
from (8) and (14)-(16). Now, for each n ∈   and 

0 1,i M≤ ≤ −  if ( )21 ,i M

i M

q t n
a t

θ
π

θ
− ∆

≠
∆

 then the 

solution (11) is unique ( [10] ). The above result may 
be summarized in the following statement. 
Theorem 2 If ( )f x  be the analytical function, and for 
each n ∈   and 0 1,i M≤ ≤ −  if 

( )21 ,i M

i M

q t n
a t

θ
π

θ
− ∆

≠
∆

 then the equations system (8) 

has a unique solution. 
Proof See the analysis preceding the above theorem 
statement.  
In the next section we consider the one example, and 
show that, choosing an appropriate θ  produce 
convergent solution for problem (1)-(4). 

 
3. Numerical Example 

This section will present a simulated case to evaluate 
the capability of the proposed robust input estimation 
scheme. 
 
Example Assume that 

2

1

2

1, ( ) 2 ,
( ) cosh(2) cos( ), 0 1,

( ) 3 2 , 0 1,

( ) cosh( 3 ), 0 1.t

T q t t
f x e x x

a t t t

g t e t t t

−

−

= =

= ≤ ≤
= − ≤ ≤

= − ≤ ≤

 

 
Clearly, ( )f x  and ( )g t  satisfy in assumptions of 
theorems 1 and 2.  
Therefore, there is a unique solution for this sample 
problem. Obviously, 2( , ) cosh( 3 ) cosu x t t t x= −  
for any 0 1,x≤ ≤  0 t T≤ ≤  and the above 
assumptions, satisfies in problem (1)-(6). Now, we use 
the above numerical method to this problem.  
For 1, 0.1,Mx t= ∆ =  10,θ = the result are given in 
the table 1.  
One can see from the data in the table 1 the relation 
errors generated through the computation show that the 
approximate and the exact solutions are vanished.  
In the fifth column, the produced errors of area, 
between u and û  in the interval [0,1], no more than 
five percentage, although, the relative errors in ˆ (1),iu  
for some of 0 i M≤ ≤  may be 23%, but the 
maximum error in area region of between u and û  in 
their domain no more than 0.03 (3.7% relative error).  
Consequently this technique can be applied for the 
similar inverse problems. 
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Table. 1. Exact and Estimate of the Temperature in x=1 with 0.1, 10.Mt θ∆ = =  

t (1, )u t  ˆ(1, )u t  relative error [0,1]
( , )i L

u x t  
[ 0,1]

ˆ( , ) - ( , )i i L
u x t u x t  

0 0.540302 0.438671 18.8 % 0.806089 0.035381 

0.1 0.563181 0.428510 23.9 % 0.830280 0.04682 

0.2 0.627258 0.482832 23.0 % 0.926704 0.05019 

0.3 0.727453 0.591342 18.7 % 1.085646 0.04729 

0.4 0.859802 0.745534 13.2 % 1.299360 0.03970 

0.5 1.020319 0.936711 8.1 % 1.560007 0.02904 

0.6 1.204232 1.154731 4.1 % 1.858290 0.01718 

0.7 1.405515 1.387395 1.2 % 2.182683 0.00627 

0.8 1.616714 1.620597 0.24 % 2.519261 0.00137 

0.9 1.829042 1.839611 0.57 % 2.852268 0.00370 

4. Conclusion 
In this paper we shown that, if we choose the 
appropriate of parameter θ  such that, the estimated 
solution of this problem well-posed, then we can to 
tend Mt∆  to zero and we derive the convergency and 
stability of this problem.  
In order to, reduce of effect measurements error in the 
final time and boundary, we use the source term 

( ) ( , ) q t u x t  in the problem (1)-(6). 
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