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| nformation and Covariance M atricesfor Multivariate Pareto
(1V), Burr, and Related Distributions

GH. YARI and A.M.D JAFARI

Abstract: Main result of this paper isto derive the exact analytical expressions of
information and covariance matrix for multivariate Pareto, Burr and related
distributions. These distributions arise as tractable parametric models in reliability,
actuarial science, economics, finance and telecommunications. We showed that all
the calculations can be obtained from one main moment multidimensional integral
whose expression is obtained through some particular change of variables. Indeed,
we consider that this calculus technique for that improper integral has its own

importance.
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1. Introduction
In this paper the exact form of Fisher information
matrix for multivariate Pareto (IV) and related
distribution is determined. It is well-known that the
information matrix is a vauable tool for derivation of
covariance matrix in the asymptotic distribution of
maximum likelihood estimations (MLE).
In the univariate case of the above distributions, the
Fisher information matrix is found by Brazauskas [1].
As discussed in Serfling [2], section 4, under suitable
regularity conditions, the determinant of the asymptotic
covariance matrix of (MLE) reaches an optimal lower
bound for the volume of the spread ellipsoid
estimators.
In the univariate case of the above Pareto (1V), this
optimality property of (MLE) is widely used in the
robustness versus efficiency studies as a quantitative
benchmark for efficiency considerations Brazauskas
and Serfling [3,4], Brazauskas [5], Hampel et a [6],
Abramowitz and Stegum [7], Huber [8], Klugman [9],
Kimber [10,11] and Lehmann [12], chapter 5. These
distributions are suitable for situations involving
relatively high probability in the upper tails.
More specifically, such models have been formulated
in the context of actuaria science, rdiability,
economics, finance and teletrafic.
These models arise whenever we need to infer the
distributions of variables such as sizes of insurance
clams, sizes of firms, income, and income in a
population of people, stock price fluctuations and
length of telephone calls.
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For a broad discussion of pareto models and diverse
applications see Amold [13], Johnson, Kotz and
Balakrishnan [14], Chapter19.

Gomes, Selman and Crato [15] have recently
discovered pareto (V) tall behavior in the cost
distributions of combinatorial search algorithms.This
paper is organized as follows: Multivariate Pareto and
Burr distributions are introduced and presented in
section 2. Elements of the information and convariance
matrix for multivariate pareto (IV) is derived in section
3. Elements of the informations matrices for
multivariate Burr, Pareto (l11), and Pareto (1)
distributions are derived in section 4. Conclusion is
presented in section 5. Derivation of first and second
derivatives of the log density and the main moment
integral calculations are given in Appendices A and B.

2. Multivariate Pareto and Burr

distributions

As discussed in Arnold [13] Chapter 3, a hierarchy of
Pareto distribution is established by starting with the
classica Pareto(l) distribution and subsequently
introducing additional parameters related to location,
scale, shape and inequality (Gini index).

Such as approach leads to a very general family of
distributions, called the Pareto (IV) family, with the
cumulative distribution function

Fx(x)=1-(1+(’(;”]y] X > u, @

where —oo < < +oo is the location parameter,

6 > 0 isthe scae parameter, ¥ > 0 is the inequality

parameter and « >0 is the shape parameter which
characterizes the tail of the distribution. We denote this
distribution by Pareto (IV) (u,0,7,a). Parameter
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yis called the inequality parameter because of its
interpretation in the economics context.

That is, if we choose @ =1 and ¢ = Qin expression
(1), the parameter (y <1)is precisely the Gini index
of ineguality.

For the Pareto (IV) (,0,,a) distribution, we have
the density function

X — v
“( 0ﬂj
(2

$a+l’x>ﬂ'
X—u)
oyl 14| 224
4 ( 0 )

The density of the n-dimensional Pareto (V)
distribution is

fx (X) =

1 \~(a+n)
N (X —u. )i
f(x)= 1+Z[ ’H“JJ <
j=1 i

1

n i—1( x nt
HaH_ [I—Mj v X > M,
i—1 07 o,

©)

where X =[X,..., X, ], X > g, a >0,

7i>0,and 6 >0 fori=1..,n

One of the main properties of this distribution is that,
the joint density of any subset of the components of a
Pareto random vector is again of the form (3) [13].

The n-dimensional Burr distribution has the density

—(a+n)

fx)=| 1+ | 2 x
A

]

¢ -1
na+i-c (X —u )
H(a ; )|(X|0:u|j X >,
i=1 i i

4

Where
X >u,a>0,¢c >0, 6 >0for i =1...,n.
We note that multivariate Burr distribution equivalent

- R |
to the multivariate Pareto distribution with— = C, .
7i

3. Information Matrix for Multivariate Pareto
(V)

Suppose X is a random vector with the probability

density functions fg(.) where® = (6,,6,,...,6,) .

The information matrix | (®)is the K x K matrix
with elements

2
M} i21.K -

'i©) :_E‘{ 06,06,

For the multivariate Pareto (IV), we have

O=(Llyseer )y O1e s 0,711y Vi ).

In order to make the Multivariate Pareto (1V)
distribution a regular family (in terms of maximum
likelihood estimation), we assume that 4« is known

and, without loss of generality, equal to 0.
In this case information matrix is

(2n+1) x (2n+1).Thus, further treatment is based
on the following multivariate density function

1 \—(a+n)

()= 1{“:[3}”
j=1 0,

(6)

a+i-1(x )"
[ § % > 0.
[TE] %

i=1 i7i i

Thelog-density is:

Inf (6)=>] I +i ~~Ing +[1— Jlr{xj—ln%}
i=1 7 q

1

Cermin1e > ™
=

i

Since the information matrix | (®) is symmetric it is
enough  find  elements 1;(®),  where

1<i<j<2n+1.

The required first and second partial derivatives of the
above expression are given in the Appendix A.

Looking at these expressions, we see that to determine
the expression of the information matrix and score
functions, we need to find the expressions of:

n

n (X ﬁ "
E[Inf1+> | =+ ||, E LR
i\ 9 6
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1
XI 7l
b
1
n Xj 7
1+Zjl[6’jJ

and the general terms

(jﬂmWWﬂﬂ
c O, o) \4

(X))
1+Zj_{a‘J
]

m

x|2

X
o

(n,n,>-DeRn;,n,eNand n,eR".

3.1. Main Strategy to Obtain Expression of the
Expectations

Derivation of these expressions are based on the
following strategy: first, we derive an analytica
expression for the following integral

n
i

- 1_1[[%] [ wfowl_l[[%j f, (0, @

and then, we show that al the other expressions can be
found easily fromiit.

We consider this derivation as one of the main
contributions of this work.

This derivation is given in the Appendix B. The result
isthe following:

fi

- [ jo“’l‘[l [;—j f(x) dx

_T(a- >l Lrn +1)
I'(a) )

DY <a,r>-Lr eR,

i=1
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where I isthe usual Gamma function,

r,. [a -y rij= o’ (a->" 1)

or,or,
A<l,k<n,
\P(“)(z):d— ' . z>0
dz"\ T'(2)
(m+n) T A
,a (2 =p™(z), z>0
or"or'\ T'(2)

and integers N,M> 0. Specifically, we use digamma
¥(2)=¥Y(2), triganma¥’(z) and ¥, (2

functions. To confirm the regularity of In f_(X)and

evaluation the expected Fisher information matrix, we
take expectations of the first and second order partial
derivatives of (7). All the other expressions can be
derived from this main result. Taking of derivative
with respect to ¢« , from the both sides of the relation

1= f, (x)ax, (10)
0
leads to

=1 1+Zn“[%}j :i 1 1D

a+i-1

From relation (9), for apair of (I,k) we have

X, Y[ X

o BN

| k 0| Hk (12)
I'(e =1, —r )T (r, + )T (r, +1)

I'(a) ’

and
a(n3+n4)
W(p(rl =N, =n,) = (13)

e[ X)) o] X )y X0 |
9| ek ek 9|

Fromrelation(12), at I, =0 we obtain

I

£ X )| _T(@-r)r( +2)
- I'()

, (14)
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and evaluating this expectation at I, =1 we obtain

1
X\ \n| 1
E[?j - (15)

Writing the expression of the expectation

1

[ @]
i)

as E to emphasis the role of the parameter « in (6), it
can easily by shown that

2 E, (ﬁ] . (16)

Using (15) with « replaced by o +1, we now obtain
an expression for the last expectation as

a+n

(XY
1+ ZJ_l[g_J]
]

Differentiating (14) with respect to I, , and replacing
for 1 =0and 1, =1, we obtain the following
relations:

m

I{zj}zmrm—wwn, an

() )| A2 e
0 0 a-1

1
a X Y\ (X
- % E 20 20, 19
a+n(“”(aj (aj 19

3.2. Expectations of the Scor e Functions

The expectations of the first three derivations of the
first order follow immediately from the

corresponding results for their three corresponding
parameters and we obtain:

E[alnfn (X)}
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n 1 n(X.
:Z . —E1n1+Z—' =0, (20)
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1

3

(22)

ool Gkt

n (XY
1 1
3 j‘l[ 0 }
3.3. The Expected Fisher Information Matrix
Main strategy is again based on the integral (9) which
is presented in the Appendix B. However, derivation of
the following expressions can be obtained
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mechanicaly but after some tedious algebraic
simplifications:

1
LOa) =~ @)
0,7, (x +n)
|x(}/|,0l)= ﬁ[r (2) ‘I’((Z)] (25)
| =1,.., n
a+n-1
| (8.) = l=1..,n, 26
<) 02y (a+n+1)’ Lo )
_a+n-1 |[T"(a) ..
IX(y')_y,z(a+n+1){F(a)+r(1)+1}
2(a+n-2) 3
+—7| (a+n+1)[ (1) - ¥ ()]
2(a + n-1) ,
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J=1,..,n,
L(@.0) = 1 k=l (29)
T Qnnlla+n+))’ ’
1
L (ird = (@i (29)

[(CQY -T'Q(Y, (@) +¥, (@) +¥,, (@)] k=,

nre

1

|X(9.,m)=—9|7|7k(a+n+1) (30)

[(T(2) - (Y, ()], k=1,

a+n-1 oy
W[(F (2) - (¥Y(a)] @1

—{1} =1..,n
0,7 (a +n+1)

Thus the information matrix, IMP (1V) (®), for the
multivariate Pareto(1V) (0,8, 7, «) distribution is

Ix(9|17|):

16,6) 16.7) 1(6,2)
L (IV)@) = 16, 7) 1(n.7n) 1(.a)| (32
16,2) 1,2 ()
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3.4. Covariance Matrix for Multivariate Pareto (1V)
Since the joint density of any subset of the components
of a Pareto (IV) random vector is again a multivariate
Pareto (1V), Arnold [13], we can caculate the
expectation

o[ (25e]" (25"
e B2

fx,,xk (%, % )dx dx, =

my )L (my, + T My, + 1)
I'(x)

C(a-—my, -

m,m e Rmy, Myic>-1
o=y —Mgi >0
Evaluating this expectation at (=1 m=0, (=0 m=)
andm=1 m =), we obtain

(33)

_ 4 _
E[Xl]_ﬂl+r(0{) )F(7I+1)]! (34)
n<a,y>-1
E[X I=u+——[T(a-r )y, +1)L (35)

F()

Ve <a,y,>-1

E[X X ] = i E[X ]+ i E[X, ] — 4 14

0,6,
+ r(0[)[F(a‘_7/| -7 )0y, + DT (y, +1)], (36)

VitV <&,

E[X ] = f('a)

7im <a, -1l<y,m,

[T(a —=my )T (my, +1)], (37)

2

ol = re( S =270r@r 43 @

-Tr? (7, +l)r (=7, 2y <a, (38)
nw>-1 2y, >-1 y <a,
CoX,, X, ] = 461 (, l‘l)r(%( +J)
()
[T(e=7 =7l (@) -T(a—r)l(a—7)] (39)

1<I<k<n, k=2..,n, y+n<a, %7 <a,
YV >—L
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4. Special Cases
4.1. Burr (0,7,a) distribution

The Burr family distributions are also sufficiently
flexible and enjoy long popularity in the actuarial
science literature (Daykin, Pentikainen, and Pesonen
[16] and Klugman, Panjer, and Willmot [9]).

However, this family can be treated as a specia case of

Pareto (1V). Burr (8,7,a) = Pareto (IV) (0,9,1,05)
v

( Klugman, Panjer, and Willmot [9], p.574).

Since the Burr distribution is a reparametrization of
Pareto (1V) (0,6,y,a), it follows from Lehmann (8),
Section 2.7, that its information matrix | ;(®) can be
derived from 1py(®) by Jlpy)(©)J", where J is
the Jacobian matrix of the transformation of variables.
Thus, the transformation matrix of multivariate Burr
distribution, I, (®) is then given by Jl 0, (©)J",
where

| 1
J=[0 1y* 0] (40)
1 0 1

which is obtained by noting that J is the Jacobian
matrix of the transformation

O.7.a)> (0.2 a)
V4

4.2. Pareto (111) (0,8, y) Distribution

Thisis aspecial case of Pareto (IV) with ¢ = 1.
Therefor, last row and last column of
I wpvy (©) vanish (these represent information about

parameter ) and we obtain

1(4,6,) |(9|’7/k):|

e (©) {| @) 1007 | “

where we have to substitute & =1 in all the remaining
expressions.

4. 3. Pareto (1) (0,8, «) Distribution
Thisis aspecia case of Pareto (1V) with ¥ =1. There

for 1 (B, 7): 171, 7)  and 1(,@)in

I vpvy (@) vanish and we obtain
_|1@.6) 1(6,a) 42
IMP(”)(@)—L(M) e } (42)

where we have to substitute ¥ =1 in all the remaining
expressions.

5. Conclusion
In this paper we obtained the exact form of Fisher
information and covariance matrix for multivariate
Pareto (1V) distribution.
We showed that al the calculations can be obtained
from one main moment multi dimensiona integral
which has considered and whose expression is obtained
through some particular change of variables.
A short method of obtaining some of the expectations
asafunction of ¢ isused.
To confirm the regularity of the In f, (x), we showed

that the expressions of the score functions are equal to
0. Information matrices of multivariate Burr, Pareto
(111) and Pareto (I1) distributions are derived as special
cases of multivariate Pareto (IV) distribution.

Appendix A

Expression of the derivativesin this Appendix, we give
detailed expressions of the first and second derivatives
of In f,(x) which are needed for obtaining expression

of the information matrix:

1

olnf , (x) n B Xj (1)
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)(I n
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00, 0,7
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on N 7|2 % V7 3
n 7] j
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, 1=1...n,
8%1In f,(X) .
o nn\r)_ _ #
oa? Z; (a+i-1)2 (4)
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00 0a | 0,7, EERR )
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1 1

9 %0 & n 6w

n X i
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621nfn(x)= 1 (a+nj 0,

07,00, 9|7|2 ‘9|7|2

Appendix B.
Expression of the Main Integral

This Appendix gives one of the main results of this
paper which is the derivation of the expression of the
following integra

il el
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where f, (X) is the multivariate Pareto (1V) density

function (3). This derivation is done in the following
steps:
First consider the following one dimensional integral:

1 —(a+n)

SR HIE

L 1
+ 0 o [X—ljyl(x—lJ}/l
- Io 0171\ 01 0,

&)
0, _ lox,. @)

Note that, goings from first line to second line isjust a
factorizing and rewriting the last term of the integrand.
After many reflections on the links between Pareto and
Burr families and Gamma and Beta functions, we
found that the following change of variable

ol
8 1 3)

simplifies this integral and guides us to the following

result
al' (n+1)I' (¢ +n -1, —1)
Cl —

I'(a + n)

1 -(a+n)+r; +1

n X: |7
j

1+ E [—9]
j=2 j

Then we consider the following similar expression:

(4)

wa(a+) T+ +n-r, —1)
° 0y, ['(a +n)

1 —(a+n)+r+1

i3 E 1
[&)n(ﬁjyz 1+i ﬁ Vi dx
0,) \o, =\ 0, 2

B J'+°° a(a+1) T(rp+)I'(e¢ +n—1; —1)
0 0575 I'(a +n)

1 —(a+n)+ry+1

T 1, ) ES
(X_zJ“(X_zj“ 1+ Xi |7
0, 9, —~ | 0,

—(a+n)+r+1

dx,,

1
X. 17i
n i
1+ ijslal
j

and again using the following change of variable:

(ij
0
t e :11’ ©)

n Xj )7
1+ zi—{&J

we obtain:

a(a+)r((r, +)Ir(r, +1)
T(a + 1) *

MNa+n-r-r,-2)

I'(a +n)

C, =

1 —(a+n)+r+r+2

X 1+Z 9—1 . (6)

Continuing this method, finally, we obtain the general
expression:
i

el (%) v 50

Hin:ll“(ri +1)

I'(a) ’ @)
Zri<a, r, >-1.
i=1

We may note that to ssimplify the lecture of the paper
we did not give al the details of these calculations.
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