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Abstract: In this paper hemodynamic wall parameters which play an important role to 
diagnose arterial disease were studied and compared for three different rheology 
models (Newtonian, Power law and Quemada). Also because of the pulsatile behavior 
of blood flow the results were obtained for three Womersley numbers which represent 
the frequencies of the applied pulses. Results show that Quemada model always 
located between Newtonian and Power law models however its behavior is closer to 
Power law model. Concerning this behavior and better agreement between Quemada 
and experimental blood viscosity, it can be expected that Quemada results are more 
realistic and accurate. 
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1. Introduction1 

The main goal of blood flow simulation in vessels is to 
evaluate hemodynamic forces which artery wall 
experiences due to different factors like the pulsatile 
blood flow, the fluid flow geometry and the blood 
rheology behavior (Quasi-Newtonian or non-Newtonian 
fluid). Besides, it is important to know if there is any 
observable correlation between flow pattern 
characteristics and abnormal biological events and arterial 
diseases like stenosis, thrombosis and atherosclerosis. 
It is proved that hemodynamic parameters play 
fundamental roles in the regulation of vascular biology 
and access of arterial diseases [1]. Wall shear stress, 
particle residence time, recirculation zones and arterial 
wall strain are examples of hemodynamic parameters. 
Formations of dysfunctions in vascular biology are results 
of irregular variation of these parameters [1,2]. For 
example high shear stress regions, long particle residence 
time and low oscillatory shear stress are some cases 
which lead to abnormal events and finally blood vessel 
diseases [3]. 
Among various researches have been done in this field, 
evaluation of blood flow in stenosed vessels is one of the 
extraordinary subjects has been raised by many 
researchers. Since the arterial stenosis is one of the most 
widespread diseases in human beings, these researches are 
shown to be more valuable to scholars [4]. 
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Both experimental and computational studies have been 
performed to investigate blood flow in stenosed vessels 
[4-16]. Tu and Deville [4] used four rheological models to 
simulate pulsatile blood flow through arterial stenosis. 
They computed axial velocity, pressure variation and wall 
shear stress for a 75% stenosed vessel and showed that the 
rheological properties of blood can significantly affect the 
flow patterns. Ojha et al. [5] used a photochromic tracer 
method to record pulsatile flow velocity profiles in an 
experimental work. In this work both axisymmetric and 
asymmetric stenosis with different area reductions were 
analyzed and the wall shear stress variations were 
examined.  
Kumar and Naidu [6] simulated a pulsatile suspension 
flow in a stenosed vessel numerically.  
They showed the occurrence of recirculation regions both 
in upstream and downstream to the stenosis. Siouffi et al. 
[7] presented a study of a post-stenotic velocity flow field 
corresponding to the oscillatory, pulsatile physiological 
flow waveforms and too much emphasis was placed on 
the analysis of the experimental velocity-profile patterns.  
They proved that beyond the influence of the flow 
parameters such as the Reynolds number and frequency 
parameter, the velocity profile (hence the wall shear 
stress) highly depends on the waveform. Deplano and 
Siouffi [9] accomplished an experimental and numerical 
investigation on pulsatile flows through stenosis and also 
they focused on the wall shear stress analysis.  
They concluded that the presence of the stenosis leads to 
the artery acting in a direction which is opposite of a 
healthy artery. Buchanan et al. [10] considered 
rheological effects on pulsatile hemodynamics in a 
stenosed tube. They reported that different flow patterns 
formed for the highest Womersley number under 
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consideration ( 5.12=Wo ). The hemodynamic wall 
parameters and the particle residence time have been 
computed in this study.  
Ishikawa et al. [11] examined vortex enhancement in 
blood flow through stenosed and locally expanded tubes.  
They found that vortex formation can be influenced by 
the frequency of pulsation in manner that the vortex in 
downstream of stenosis or expansion part becomes 
strongest at a certain frequency.  
Chakravarty and Mandal [12] introduced an improved 
shape of the time-variant overlapping stenosis to study 
two-dimensional blood flow in tapered arteries with the 
presence of stenosis.  
Long et al. [13] simulated pulsatile blood flow in three 
axisymmetrical and three symmetrical stenosed tube 
models with area reduction of 25%, 50% and 75%.  
They focused on the flow separation zone (FSZ) and the 
wall shear stress (WSS) distributions for all models.  
In recent years some researchers which especially studied 
hemodynamic parameters include Buchanan et al. [1], 
Kute and Vorp [2] and Hyun et al [3]. 
In our previous works [15-16] the pulsatile blood flow 
through a stenosed tube was simulated for three different 
pulsation frequencies by using the Power law model for 
blood rheology simulation.  
It was showed that the frequency of pulsation has a 
remarkable effect on the flow field and changes the time 
point and location of the vortex formation distal to the 
stenosis.  
In present study three rheology models are considered to 
simulate blood rheology (Newtonian, Power law and 
Quemada).  
These three models are compared with the computed 
hemodynamic parameters at three Womersley numbers 
for pulsatile blood flow through a stenosed tube. Of all 
hemodynamic parameters which computed in blood flow 
analysis of stenosed vessels, the wall shear stress and its 
derivatives are the most important ones which are 
examined in this study. 
 

     2. Physical Model 
The schematic of local stenosis and some biological 
information are shown in Fig. 1.  
As shown in this figure the constriction (stenosis) has no 
uniform profile and it is usually approximated by 
sinusoidal or exponential profiles [4]. 
In this study the following sinusoidal extension is used to 
determine the tubular geometry by radius 0r  and the local, 
smooth and axisymmetric constriction [4]. 
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Where, 0r  is the tube radius, 0z is the stenosis half-length 
and δ is the tube constricted thickness. 
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Fig. 1. Constricted Tube Schematic. 

 
A control volume mesh of the flow field is shown in Fig. 
2.  As can be seen in Fig. 2 the mesh size varies in r  
direction, from center line to wall, and z  direction, from 
each sides of the tube to the stenosis center, as near the 
wall and around the stenosis fine meshes have been 
generated. Therefore, with this mesh structure ( 30300× ), 
velocity gradient near the wall and flow pattern 
components around the area reduction can be computed 
more accurately. 

  

Fig. 2.  Finite Volume Grid Structure of Flow 
Pattern. 

 
Because of flexibility and wide use in both numerical and 
experimental studies a sinusoidal pulse is used for input 
flow. Selected relation that controls the Reynolds number 
is [9]: 

(2)  





+=

T
tReReRe ampmean π2sin  

where T is a period time. The flow input pulse and key 
times are shown in Fig. 3. 
 

-1

0

1

2

3

4

5

6

0 0.25 0.5 0.75 1t/T

U
m

ea
n(

t) 
[c

m
/s

ec
]

T1

T2

T3

T4

 

Fig. 3.  Flow Input Pulse and Four Key Times. 
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The Reynolds number definition is based on constant tube 
diameter, the area-averaged velocity and blood 
Newtonian viscosity, i.e. 

(3) 
∞

=
µ

ρUDRe  

The related viscosity to upper shear rate limit for non-
Newtonian models is ∞µ and it is called the limiting high 
shear rate Newtonian viscosity.  
It means that after this limit, blood behaves like a 
Newtonian fluid and non-Newtonian models should reach 
the Newtonian viscosity. 
A dimensionless parameter called Womersley number is 
usually defined for periodic and pulsatile flow problems 
which represents pulse frequency. The Womersley 
number is the ratio of transient inertial effects to viscous 
effects with the following definition [1]. 
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Where 0r  is the tube constant radius and ν  is the 
kinematic viscosity that is Newtonian viscosity, 

ρµν ∞= .defined based on the  
 

3. Fluid Rheology 
Nowadays, it is well-defined that blood is a non-
Newtonian fluid [4,8,11,17-19]. In this study three fluid 
rheology, including the Newtonian, the Power law and the 
Quemada models are considered. For the Newtonian 
model viscosity is constant. 
On the other hand, viscosity in non-Newtonian models 
varies with shear rate. The Power law model uses the 
following simple non-linear expression in the form of an 
apparent viscosity [20-22]. 

(5) 1−= nmγη &  
Where m  and n  are constitutive coefficients and 
constant for each fluid. Whereas blood is known as a 
shear-thinning fluid, thus 1<n . 
The Quemada model defines the apparent viscosity with 
the following correlation [10]. 
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Three constitutive coefficients are appeared in this 
correlation ( λτη and; 0∞ ).  
The additional coefficient, λ , is the shear rate modifier 
which prevents the singularity and computation of unreal 
viscosity when shear rate approaches zero and increases 
the accuracy of the model, specially at low shear rate 
ranges. Constitutive coefficients of three models for 
human blood used in this study are listed in Table 1.  
The shear rate ( γ& ) which is appeared in the apparent 
viscosity formulation is taken as the second scalar 
invariant of the rate of strain tensor [23]. 

Table. 1.  Constitutive Coefficients for Three  
Rheological Models. 
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It is well known that blood has a limiting Newtonian 
viscosity at elevated shear rates, so the Newtonian 
viscosity is chosen as the lower viscosity limit for both 
non-Newtonian models. Each of the models reaches this 
limit at different shear rates. The Quemada model reaches 
the Newtonian limit at =maxγ& 256.7 s-1, but the Power law 
model reaches at =maxγ& 76.8 s-1 [10]. 
The Quemada model has lower shear rate limit viscosity 
( 2

0 )( λτη +∞ ), so it doesn’t need lower bound. On 
the other hand, to increase the Power law model accuracy 
it needs to have lower bound and for blood rhelogical data 
the lower bound is =minγ& 10-1 s-1 [10]. Fig. 4 shows the 
viscosity variation with shear rate for three different 
rheological models used in this study. 
 

4. Governing Equations 
A rigid wall tube with an axisymmetric local smooth 
circular constriction (sinusoidal profile) is considered. It 
is assumed that flow is laminar and incompressible and 
these conditions have no change during a period. The 
governing equations are as follows [24]: 

(7) 0. =∇ v
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t is: 

(9) ( )[ ]trvv
rrt

&
t

∇+∇== ηγητ  
Whereη is constant for the Newtonian model and it can 
be determined by Eqs. (5) and (6) for non-Newtonian 
models. 
The boundary conditions include no slip at the wall, no 
gradient or stress free at the outlet and symmetry at the 
centerline. Developed velocity profile with sinusoidal 
variation in each period (Eq. (2)) is used as a inlet 
boundary condition.  
A validated user-enhanced finite volume code (teach-t) 
which benefits the advantage of boundary fitted 
coordinate system is used to solve the governing 
equations. The ability to solve two-dimensional flow 
field, unsteady and periodic problems, non-Newtonian 
fluid flow and fluid rheology simulation have been added 
to the code and the obtained predictions were verified by 
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numerical and experimental results [14] conceded the 
correctness of these enhancements. 
 

10-3 10-2 10-1 100 101 102 103

γ

10-1

100

η

Power law
Quemada
Newtonian
Experiment- Merril, 1969

.
(sec )-1

(d
yn

.s
/c

m
)2

 
Fig. 4.  Viscosity Variation vs. Shear rate Compared 

with Experimental Data. 
 

5. Numerical Algorithm 
The numerical computations used, is based on verified 
finite volume code algorithm [14,25] (teach-t) which has 
been modified to solve flow fields in irregular geometry 
with a boundary fitted coordinate system. The results 
presented in this paper are for 30300×  mesh size and 
repeated computations with finer meshes had no influence 
on the results and the mesh-independency of 
computations is revealed [14]. For eliminating of start-up 
unsteadiness of periodic flow it is necessary to carry out 
the computations at least for 3 or 4 periods. For the 
rheological and physical data which considered here 
maximum difference in results between the fourth and the 
fifth periods did not exceed 0.5% , therefore in this study 
the fourth period results have been presented as the final 
results. The number of time steps differs with the amount 
of Womersley number. The number of time steps (in each 
period) are 70, 180 and 490 for 5.7,5.12=Wo  and 0.4  
respectively. The computational work has been done on a 
PC machine with 1800 MHz Intel CPU and 256 MB DDR 
Ram. The total time for each computation depends on the 
Womersley number and rheology model varies from 36 
hours to 6 days. The longest computation took place for 
the Quemada model at 4=Wo  and the shortest was 
belong to the Newtonian model at 5.12=Wo . 
 

6. Assumptions 
For obtaining following results the laminar 
incompressible flow in a rigid circular tube with a local 
smooth constriction is assumed. For the sake of simplicity 
the constriction profile and the input pulse profile are 
considered the sinusoidal. Besides, the blood density is 
assumed to be constant and three rheology models 
(Newtonian, Power law and Quemada) are employed to 
simulate blood rheology by estimating the apparent 
viscosity. 

7. Verification 
To ensure validity and correctness of the enhanced code, 
obtained results in two different cases including two-
dimensional axisymmetric non-Newtonian/Newtonian 
steady flow in a sinusoidal stenosis and two-dimensional 
axisymmetric Newtonian pulsatile flow in a trapezoidal 
stenosis are verified with numerical [4] and experimental 
[5] results[14]. In this paper only the comparison of the 
pulsatile results are presented. Pulsatile results were 
computed for 45% stenosis with a trapezoidal profile 
(Fig.5) and sinusoidal pulsation (Eq. (2)) with mean 
Reynolds number of 575 and an amplitude variation of 
360. The considered Womersley number is 7.5. Flow 
input waveform and three assumed time points for 
velocity profiles characterization are shown in Fig. 6. 

30 o 45
o

1.5 mm

 
Fig. 5.  Trapezoidal Stenosis Schematic. 
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Fig. 6. Sinusoidal Pulsation of input Flow and three 

Assumed time Points for Velocity Profiles 
Description. 

 
Measured and computed velocity profiles for three 
different time points are compared in Figs. 7-9. In all the 
figures presented in this paper ** , ru  and *z  are non-
dimensional velocity based on area-averaged velocity, 
non-dimensional radius based on tube radius and non-
dimensional distance from mid-stenosis based on tube 
diameter respectively, 

(13-a) Uuu =*  
(13-b) 0

* rrr =  
(13-c) Dzz =*  

For T1 three velocity profiles at three different distances 
from mid-stenosis are plotted in Fig. 7. As T1 is located in 
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decelerating portion of the flow, both computational and 
experimental results indicate separation at the wall for 

1* =z . Velocity profiles at T2, near the lowest flow rate, 
correspond well with measured profiles for all axial 
locations (Fig. 8). For a location near the peak flow rate 
(T3) velocity profiles are plotted in Fig. 9. At the first 
axial location, 1* =z , the computed centerline velocity is 
less than the measured one. These discrepancies are due 
to the existence of an additional acceleration near the 
zenith of the experimental input pulse.For other axial 
location, 5.2* =z  and 3.4 , the predicted results match 
well with the experimental results. 

 
   8. Hemodynamic Wall Parameters 

The goal of the hemodynamic definition is to achieve 
concise but useful information about disturbed blood flow 
and clearly elucidate the effects of the flow field. As 
mentioned, it is proved that hemodynamics parameters 
play important roles in access and progression of arterial 
diseases. Historically, the wall shear stress is one of 
hemodynamic parameters which is frequently used in 
disturbed blood flow as hemodynamic wall parameter [1].  
 
 
 

Several widespread hypotheses exist like the (high) wall 
shear stress theory and the low (wall) shear stress theory 
based on the wall shear stress concept which link non-
uniform hemodynamics with abnormal biological events 
and arterial progression shows the importance of the wall 
shear stress [1,3]. The high shear stress theory says that 
acute shear stresses may cause endothelial dysfunctions; 
hence, it may be responsible for local plaque formation. 
On the other hand, the low shear stress theory suggests 
that early atheroma occurs in low shear stress regions, not 
in high shear stress regions. Other arguments have been 
made that suggest the high wall shear stresses may be 
protective [1]. Time-averaged and non-dimensional 
hemodynamic wall parameters are considered here. The 
wall shear stress is defined as follows [1,10]: 

(10) ∫=
T

wdt
UT

WSS
0

2
1 τ

ρ
  

In Eq. (10) the wall shear stress is expressed as time-
averaged of the flow field force exerts on the arterial wall 
per unit area. In general for three-dimensional problems, 

wτ  is a vector and WSS  is calculated by integrated the 
magnitude of shear stress vector. But in a two-
dimensional problem (like this study) wτ is a scalar value. 
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Fig. 7.  Velocity Profiles in three Different Axial Locations at  T1 = 0.174. 
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Fig. 8.  Velocity Profiles in Three Different Axial Locations at  T2 = 0.522. 
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Fig. 9.  Velocity Profiles in Three Different Axial Locations at  T3 = 0.870. 

 
For indicating the changes in shearing forces, and hence 
‘aggravating effects’ on the endothelium of arterial wall, 
the all shear stress gradient is used.  
Furthermore, this parameter represents locally disturbed 
flow. The wall shear stress gradient is defined as [1,10]: 

(11) ∫ 
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Where s  is the local coordinate along the wall. In Eqs. 
(10) and (11) UT ,, ρ and D are period time, density, 
area-averaged velocity of mean Reynolds number and 
tube diameter respectively. 
The final hemodynamic wall parameter is oscillatory 
shear index which characterizes the transient nature of 
vascular flow fields. The definition has recently been 
revised by He and Ku (cf. [1]) into a more usable form as 
[1, 10]: 

(12) 
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The OSI  varies between 0 and 0.5 and is effective at 
locating points of time-averaged separation and 
reattachment [10]. The maximum of OSI  shows the 
location time-averaged reattachment point in flow pattern.  
For the case of this study OSI  has two maximum, one 
closely after mid point of stenosis and the another one far 
from the mid point. Near the mid point OSI  increases 
because of decreasing flow area and increasing the 
velocity and its gradient. Therefore, the second maximum 
shows the location of time-averaged reattachment point. 
 

    9. Results and Discussion 
The hemodynamic wall parameters for three Womersley 
numbers, 5.7,5.12=Wo  and 0.4 , are shown in Figs. 10-
12. As mentioned before these parameters are the wall 
shear stress (WSS ), the wall shear stress gradient (WSSG ) 

and the oscillatory shear index ( OSI ).  
Time-averaged reattachment points are clearly estimated 
by both WSS  and OSI graphs. The axial location which 
WSS  reaches to zero value (Figs. 10(a)-12(a)) or the 
location of second maximum value of OSI  (Figs. 10 (c)-
12(c)) show the time-averaged reattachment point for 
each models.  
Time-averaged reattachment points for the models at 
three considered Womersley numbers are set in Table 2.  
Time-averaged reattachment point shows the interaction 
of viscous and inertial forces and it differs upon the 
model. Reattachment point for the Newtonian and Power 
law models decreases with the Womersley number 
increasing while it is not monotonic for the Quemada 
model. In this model the longest time-averaged 
reattachment point appears at 0.4=Wo  and the shortest is 
belonging to 5.7=Wo . The time-averaged reattachment 
point is maximum for the Newtonian model and 
minimum for the Power law model at each Womersley 
number. But the Quemada model predicted time-averaged 
reattachment point is located between the Newtonian and 
Power law values. 
 
Table. 2.  The time Averaged Reattachment Points for 

Three Different Rheology Models 

Quemada  Power law  Newtonian Wo  
3.056  
2.858  
2.957    

2.891  
2.792  
2.628    

4.175  
3.813  
3.122    

4  
7.5  
12.5    

 
The wall shear stress gradient shows the strength of the 
vertex which has been generated in the flow pattern.  
The strength of primary vortex that is formed distal to the 
stenosis increases with the increase of the Womersley 
number (Figs. 10 (b)-12(b)). So fluid flow with the higher 
Womersley numbers generates stronger vortexes distal to 
the stenosis.  
The vortex strength at each Womersley number has no 
considerable difference between three different rheology 
models. 

 [5]      
  

 [5]      
  

T3 = 0.870 
 z* = 2.5 

T3 = 0.870 
 z* = 4.3 

T3 = 0.870 
 z* = 1.0 

 [5]        
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Fig. 10.  Hemodynamic Wall Parameters at =Wo 4. 
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Fig. 11.  Hemodynamic Wall Parameters at =Wo 7.5. 
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Fig. 12.  Hemodynamic Wall Parameters at =Wo 12.5. 
 

Figs. 10 (c)-12(c) show the OSI  variation along the tube 
axial direction for 5.7,5.12=Wo  and 0.4  respectively. For 
transient flow in a straight tube, the OSI  indicates the 
portion of the cycle where the velocity profiles are 
reserved at the wall. As expected, the amount of OSI  for 
locations proximal to the stenosis, which reserved flow is 
limited the decelerating phase of a period (for one inlet 
flow cycle), is less than locations which reserved flow 
occurs more during a cycle (like distal to and near the 
stenosis). Furthermore, it is predictable that because of 
higher viscosity of non-Newtonian models (than 
Newtonian viscosity) the non-Newtonian OSI  values are 
less than Newtonian ones at the same axial locations. 
 

10. Conclusion 
The hemodynamic wall parameters at three Womersley 
numbers are computed and compared for three rheology 
models in the tubular flow with a smooth local occlusion 
and the following results are obtained: 
1. The modified code can simulate blood flow in the 
vessels with axisymmetric stenosis accurately and would 
be able to use non-Newtonian models as blood rheology. 
2. The maximum of time-averaged reattachment point is 
occurred at 0.4=Wo  for three rheology models. However, 
the time-averaged reattachment point decreases with the 
Womersley number for the both Newtonian and Power 
law models, but it is not monotonic for the Quemada 
model. 
3. The Quemada time-averaged reattachment points are 
always located between the Newtonian model and the 
Power law model at the same Womersley numbers. 
4. The strength of primary vortex which is located distal 
to the stenosis is similar for three rheology models. 
5. The Quemada results, which are located between the 
Newtonian and The Power law results, are closer to the 
Power law model than the Newtonian model. 
6. Qualitative comparison of the hemodynamic wall 
parameters graphs shows that the Power law model forms 
the upper bound, the Newtonian forms the lower bound 
and the Quemada model is located between two cases. 
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12.  Nomenclature 

Tube diameter D  
Constitutive coefficients of Power law model m  
Constitutive coefficients of Power law model  n  
Oscillatory shear index  OSI  
Reynolds number  Re  
Amplitude Reynolds number  ampRe  
Mean Reynolds number meanRe  
Non-dimensional radius of stenosis based on tube 
radius   )(zR  
Non-dimensional radius based on tube radius   *r  
Radius of stenosis  )(zr  
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Tube constant radius  0r  
Local coordinate along the wall  s  
Period time T  
Total time of blood flow t  
Inlet area averaged velocity  U  
Center line velocity before stenosis  )(tU mean  
Non-dimensional velocity based on area-averaged 
velocity  

*u  
Velocity vector  v

r  
Womersley number  Wo  
Wall shear stress WSS  
Wall shear stress gradient WSSG  
Non-dimensional distance from mid-stenosis 
based on tube diameter  

*z  
Stenosis half-length 0z  

 

 

Tube constricted thickness  δ  
Rate of strain tensor  γ

t
&  

shear rate (taken as the second scalar invariant of 
the rate of strain tensor)  γ&  
Viscosity calculated from models η  
Quemada constitutive coefficient  ∞η  
Quemada constitutive coefficient (shear rate 
modifier)  λ  
Viscosity  µ  
Limiting high shear rate Newtonian viscosity ∞µ  
Kinematic viscosity defined based on the 
Newtonian viscosity  ν  
Density  ρ  
Shear stress tensor τ

t  
Constitutive coefficient  0τ  
Wall shear stress tensor wτ  
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