
 
International Journal of Industrial Engineering & Production Research December 2021 Vol. 32, No. 4: 1-18 
DOI: 10.22068/ijiepr.32.4.7 

 
 
Economic-Statistical Design of an Integrated Triple-Component 
Model Under Various Autocorrelated Processes 
 
Samrad Jafarian-Namin1, Mohammad Saber Fallahnezhad  ٢ , Reza Tavakkoli-
Moghaddam3, Ali Salmasnia4 & Mohammad Hossein Abooie5 

 
Received 5 June 2020; Revised 12 July 2021; Accepted 2 November 2021;  
© Iran University of Science and Technology 2021 
 
ABSTRACT 
It has recently been proven that integrating statistical process control (SPC), maintenance policy 
(MP), and production could bring benefits for the entire production system. In the literature of 
integrated triple-component models, independent observations have generally been studied. The 
existence of correlated structures in practice put the traditional control charts in trouble. The mixed 
EWMA-CUSUM (MEC) chart has been developed as an effective tool of SPC for monitoring only the 
autoregressive (AR) processes. Nevertheless, it has not been extended for moving average (MA) and 
ARMA processes. Besides, MEC has been designed only based on statistical measures. However, in an 
imperfect production system, the decision variables of MEC together with the other components should 
be determined according to the resulting costs and satisfaction of some criteria. This paper proposes 
an integrated triple-component model by applying the MEC chart for monitoring various 
autocorrelated processes. Due to the complexity of the model, a particle swarm optimization (PSO) 
algorithm is employed to reach optimal solutions. The applicability of the model is investigated via an 
industrial example. The effects of model parameters on the solutions are studied through a sensitivity 
analysis. Moreover, extensive comparisons and a real data set are provided for more investigations. 
 
KEYWORDS: Statistical process control; Production; Maintenance policy; Autocorrelated process; 
Meta-heuristic algorithm. 
 

1. Introduction1 
In today’s world of competition, it is essential to 
provide appropriate planning for manufacturing 
systems to survive. The component of the 
economic production quantity (EPQ) has 
classically been pursued by minimizing the 
production and inventory costs to respond to the 
demand of a customer [1]. In such perfect 
production systems that only consider EPQ, the 
process is basically faultless. Due to various 
reasons, the process perhaps deteriorates over 
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time in reality. The related costs and losses are 
ignored in the category of perfect production. The 
statistical process control (SPC) and maintenance 
policy (MP) are commonly used to raise the 
quality and efficiency of production systems by 
decreasing the proportion of non-conforming 
products. Simultaneous consideration of EPQ, 
SPC, and MP forms the category of imperfect 
production systems.  
Separately modeling of triple components, 
including EPQ, SPC, and MP, leads to 
suboptimal results because of their interaction [2-
4]. Detecting such dependency can reduce the 
operational cost and improve the efficiency of 
manufacturing systems. Hadidi et al. [5] reviewed 
the researches of such models in two directions: 
(1) interrelated models, in which one component 
is considered as the objective and the others are 
taken into account as constraints, and (2) 
integrated models, in which two or more 
components are simultaneously considered as the 
objective and some required constraints are 
defined. The relationships among the triple 
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components have motivated scholars to study the 
integrated models more than before. Recently, 
Farahani and Tohidi [6] reviewed the literature 
on integrated optimization. Their results indicate 
that 63% of the researches are related to the 
integration of SPC and MP, and 31% is related to 
the integration of triple components. The current 
study also considers the integrated triple-
component models that need more attention.  
Among those components, SPC aims to improve 
quality through variability reduction. The control 
chart is among the seven tools of SPC. It is 
mainly applied to identify the variations of the 
process before producing defective items in 
higher volumes. Numerous control charts have 
been developed for monitoring processes under 
various assumptions to attain specific intentions 
[7]. The independence of the sampled data over 
time is usually assumed. Among recent studies 
under this assumption, the designs of the 
acceptance control chart (ACC) were presented 
with Duncan’s cost function [8] and with 
Lorensen and Vance’s (L&V) cost function [9]. 
The reader can see [10] for integrating the EPQ 
and SPC, [11] for integrating SPC and MP, and 
[3, 4] for the integrated triple-component models 
under the assumption of independence.  
However, the independence assumption can be 
violated when: (1) autocorrelation is induced by 
sampling in high frequency from some processes, 
and (2) it inherently exists among the process 
data [12]. The ignored autocorrelation can lead to 
significant effects on the statistical performance 
of traditional monitoring techniques [13]. Indeed, 
it leads to numerous false alarms in the in-control 
state or makes the classical control charts react 
slowly to detecting out-of-control state. Several 
control charts have been extended for this reason 
under two main approaches, including the 
residual control charts and the modified control 
charts [14]. The main advantages of modified 
control charts include: (1) directly monitoring the 
autocorrelated data and (2) more straightforward 
interpretation by the operator. Accordingly, 
modified control charts are selected for 
monitoring in this study. 
Among the modified charts, the mixed EWMA-
CUSUM chart (MEC) was developed in [15] for 
monitoring only AR(1) process data under 
various sizes of mean shifts. For positively 
autocorrelated processes with smaller mean 
shifts, the results indicated that MEC was slightly 
better than the other existing modified charts 
such as the Shewhart, CUSUM, EWMA, 
combined Shewhart-CUSUM, and combined 
Shewhart-EWMA schemes. However, MEC has 

not been extended for ARMA and MA processes. 
Moreover, its design and performance have been 
investigated only based on statistical criteria. 
Whereas in an imperfect production system, 
determining the decision variables of MEC needs 
attention to other components and the resulting 
costs.  
On the other hand, the ARMA control chart is an 
appropriate monitoring technique for ARMA(1,1) 
and AR(1) processes [16]. It benefits from 
allowing a more flexible choice of parameters for 
the underlying process. The statistical 
performance of the ARMA chart is superior to 
the performance of the SCC and EWMAST 
charts [16]. The design of the ARMA chart has 
been studied by a few researchers. Economical 
designs (ED) of the ARMA chart for optimal 
selection of decision variables were presented in 
[17, 18] by respectively minimizing the Duncan’s 
and L&V’s cost functions. Because of the poor 
statistical properties of EDs, the decision 
variables of the ARMA chart were optimally 
determined through the economic-statistical 
design (ESD) based on L&V’s cost function [19, 
20]. After reviewing the literature in [21, 22], it 
was concluded that autocorrelation was not 
incorporated into the integrated models. For the 
first time, integrated models of double and triple 
components with three scenarios [21] and ten 
scenarios [22] were recently studied by 
considering autocorrelation. They applied the 
ARMA control chart for monitoring. Their results 
indicated that integrated triple-component models 
were superior to double-component ones in terms 
of total cost reduction. Accordingly, this study 
also considers a model by integrating triple 
components.  
Despite successful applications of MEC and 
ARMA charts compared to the other ones, there 
is not any research to suggest which one is 
superior. It needs more investigations to realize a 
better monitoring technique. Attempting in this 
regard can be more realistic in the framework of 
imperfect production systems, especially when 
optimizing an integrated model of triple 
components is considered. To the best of our 
knowledge, MEC has not been applied to (1) the 
other autocorrelated processes, such as 
ARMA(1,1) and MA(1), and (2) the integrated 
models under autocorrelated processes. 
Accordingly, this study aims at bridging the 
existing gaps in the literature by: 

 Applying MEC chart for an imperfect 
production system under autocorrelated 
processes, 

 Finding the significant factors that affect 
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on the optimal results, 
 Comparing the results of MEC and 

ARMA charts for the proposed model, 
 Investigating various autocorrelated 

processes, and,  
 Using different designs of setting decision 

variables in a real application. 
The rest of this paper is organized as follows. In 
the next section, various autocorrelated structures 
are briefly described. Section 3 is dedicated to the 
introduction of the MEC and ARMA charts as 
well as proposing procedures for calculating the 
performance measures. Section 4 presents an 
imperfect production process, including three 
scenarios together with its cost function of triple 
components. Section 5 proposes the integrated 
model in detail. Section 6 proposes and explains 
the solution approach based on PSO. Section 7 
provides the experimental results, including 
industrial examples, sensitivity analysis, and 
extensive comparisons. Finally, Section 8 
provides a conclusion and further perspectives. 
 

2. Autocorrelated Structures 
Supposing that the measured quality variable at 
time t, indicated by Xt, follows a Normal 
distribution with in-control mean µ0 and variance 
σ2, the first-order autoregressive moving average 
process or ARMA(1,1) is mathematically 
expressed by: 
 

2
1 1 , (0, ),t t t t t aX C uX a va a N                   (1) 

 
where C=µ0(1-u) is a constant term, and u and v 
are the autoregressive and moving average 
coefficients with conditions |u|<1 and |v|<1, 
respectively. Moreover, the sequence of random 
variables at, at-1, at-2, … is called the white noise 
process. If v=0, a particular type of ARMA(1,1) 
process, called the first-order autoregressive 
process or AR(1) is achieved as follows: 
 

1 .t t tX C uX a                                                 (2) 
 
Another particular type of ARMA(1,1) process, 
called the first-order moving average process or 
MA(1) is attained by setting u=0 as follows: 
 

1.t t tX C a va                                                  (3) 
 
The variance of the ARMA(1,1) process is 
calculated by: 
 

2
2 2

2
1 2

( ) ,
1

t X a
uv v

V ar X
u

 
 

 
                           

 (4) 

Note that the variances of AR(1) and MA(1) 
processes can be obtained by setting u=0 and v=0 
in the above formula, respectively. 
By applying a special cause, a positive shift size 
of δσX is introduced into the autocorrelated 
process. It leads to a shift in the in-control mean. 
The shifted observations (Wt) originated from the 
shifted ARMA process are obtained by: 
 

1 1t t X t t t XW X uX a va                      (5) 
 
with the following characteristics: 
 

1 0( ) ,t XE W                                            (6) 
2

2 2 2
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3. Control Charts 

In this section, two monitoring techniques are 
introduced from the category of modified control 
chart. Both MEC and ARMA charts monitor the 
observations instead of residuals. Moreover, two 
procedures are proposed to calculate the in-
control and out-of-control performance measures 
through simulations.  
 
3.1. MEC chart 
The MEC chart was modified by [15] for 
autocorrelated observations. The effectiveness of 
the MEC control chart has been proven for 
monitoring AR(1) process. However, 
investigating its performance for other types of 
autocorrelated data has remained without any 
extensions. In this study, ARMA(1,1) and MA(1) 
processes are investigated by the MEC control 
chart in addition to the AR(1) process. This chart 
utilizes two statistics for monitoring the process 
data as shown below: 
 

1max(0, ),t t tM EC Z K M EC 
                      (8) 

1max(0, ),t t tM EC Z K M EC 
                    (9) 

 
where the reference value and decision interval 
value are defined by K=kcσz and H=hcσz, 
respectively. kc and hc are related coefficients that 
are sought as decision variables in this study. The 
values of positive and negative MECt are initially 
set to zero. Moreover, the EWMA statistic Zt and 
its asymptotic variance are respectively defined 
by: 
 

1(1 ) ,t c t c tZ W Z                                         (10) 
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 (11) 

 
where λc is the smoothing parameter, and ρi is the 
autocorrelation function Xt at lag i. m is an integer 
value. It is suggested to be 25 in general [23]. 
This chart signals an out-of-control state if at 
least one of the MEC statistics exceeds the 
decision interval value: 
 

t tM EC H or M EC H                                (12) 
 
For obtaining average run length (ARL) values, 
the ARMA simulation (AS) procedure is 
proposed for the MEC chart in the following 
steps (note that the procedure is adapted to AR(1) 
process by setting v=0): 
Step 0. Consider pre-assumed values of µ0, σX

2, 
u, and v, and then calculate σa

2. 
Step 1. In each column of j=1,…, S scenarios, 
generate series ai,j, Xi,j, Wi,j, and Zi ,j for i=1,…, M  
measurements. 
Step 2. Set related decision variables (i.e., sample 
size (n), sampling interval (h), hc, kc, and λc). 
Step 3. Calculate σZ

2, the reference value K=kcσz 
and the decision interval value H= hcσz. 
Step 4. Compute RL values for j=1,…, S: 
 Compute RL0j until ,t tM EC H or M EC H  

by obtaining MEC statistics based on Xi ,j, 
 Compute RL1j until ,t tM EC H or M EC H  

by obtaining MEC statistics based on Wi,j. 
Step 5. Calculate ARL0 and ARL1 by averaging 
them for S=500 times from Step 4. 
 
3.2. ARMA chart 
The ARMA chart was developed in [16]. The 
sample statistic to be monitored by this chart at 
time t is represented by: 
 

1 0 1 0 0, , 1t t t tZ Z X X                                       
                                                                         (13) 
 
where ϕ and θ are the autoregressive and the 
moving average parameters, respectively. Note 
that the conditions |ϕ|<1 and |θ|<1 must be 
satisfied to guarantee reversibility and stationary 
of the process being monitored. The mean of the 
sample statistic is µ, and the corresponding 
steady-state variance is as follows: 
 

2 22( )(1 )
1 .

1Z X
  

 


 
 



 
                                

 (14) 

 

The upper and lower control limits are calculated 
by (l is the control limit coefficient): 
 
   , .ZL C L U C L l                                       (15) 
 
The AS procedure introduced in the previous 
subsection is adapted to the ARMA chart to 
calculate ARL values. The steps of the procedure 
are summarized as follows: 
Step 0. Consider pre-assumed values of µ0, σX

2, 
u, and v, and then calculate σa

2. 
Step 1. In each column of j=1,…, S, generate 
series ai ,j, Xi,j and Wi,j for i=1,…, M 
measurements. 
Step 2. Set related decision variables: n, h, l, ϕ, θ.  
Step 3. Obtain the value of steady-state variance 
σZ

2, and the control limits UCL and LCL. 
Step 4. Compute RL values for j=1,…, S: 
 Compute RL0j until LCL≤Zi,j≤UCL, by 

obtaining Zi,j based on Xi,j,  
 Compute RL1j until LCL≤Zi,j≤UCL, by 

obtaining Zi,j based on Wi,j. 
Step 5. Calculate ARL0 and ARL1 by averaging 
them for S=500 times from Step 4. 
 

4. Integrated Cost Function 
In this section, an imperfect production process 
of triple components is introduced. It operates in 
the in-control or out-of-control states. The related 
cost function is explained according to the 
problem at hand. Accordingly, the main 
assumptions are introduced in the first 
subsection. Then, three scenarios to include 
different states of the process are defined. 
Finally, the structure of the cost function is 
described.  
 
4.1. Assumptions 
The considered assumptions for simplifying 
mathematical modeling are listed as follows: 
1. The measured variable follows a normal 

distribution N(µ, σ). 
2. The autocorrelation structure among data is 

of the types AR(1), MA(1), and ARMA(1,1). 
3. The cycle always starts from the in-control 

state. 
4. The in-control time of process follows a 

truncated Weibull distribution (with scale 
parameter λ>0 and shape parameter w>0 as): 

 
1 ( )

( ( 1) )

( )( | ( 1) ) ,
1

w

w

w t

k h

w t ef t k h
e





   

 
 


                    (16) 

 
5. Occurring a special cause changes the 

process state to the out-of-control as µ1= 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ie
pr

.iu
st

.a
c.

ir
 o

n 
20

25
-0

7-
18

 ]
 

                             4 / 18

https://ijiepr.iust.ac.ir/article-1-1082-en.html


5 Economic-Statistical Design of an Integrated Triple-Component Model Under Various 
Autocorrelated Processes 

 

International Journal of Industrial Engineering & Production Research, December 2021, Vol. 32, No. 4 

µ0+δσ. 
6. Two types of maintenance policies can be 

performed according to the following 
conditions: 

a. If after the k-th sampling interval no signal is 
detected due to falling a point outside the 
control limits, preventive maintenance (PM) 
is implemented at the end of the interval 
(k+1), 

b. If the process shifts to the out-of-control state 
in the sampling interval between (0<l<k), the 
search for the assignable cause begins. Then, 
reactive maintenance (RM) is implemented to 
restore the process to the initial condition, 

7. Whenever RM is performed after a true 
signal from the control chart or sampling 
(k+1) is implemented (each one occurs 
earlier), the production cycle is completed. 

 
4.2. Scenario description 
The production process starts from the in-control 
state, and due to an assignable cause, it shifts to 
the out-of-control (Ooc) state after a while. Three 
possible scenarios, as indicated by Scr, r=1,2,3 in 
Figure 1, may occur in an imperfect production 
process [3].  
Sc1 occurs when the process remains in control 
until the end of the cycle. Then, PM is 

implemented to ensure the reliability of the 
production process. If the process shifts to an out-
of-control state, and then this deviation is 
identified before the end of the cycle, Sc2 occurs. 
Therefore, RM is implemented to restore the 
process state to the initial condition. In Sc3, the 
process shifts to an out-of-control state as well. 
However, the control chart cannot identify the 
shift until the end of the cycle. At this time, the 
shift is detected, and thus, PM is replaced by RM. 
The probability of occurrence for each scenario 
Pr(Scr) as well as the expected values of in-
control time E(Tin) and out-of-control time E(Tout) 
are presented in Table 1. The notations are as 
follows:  
F(.) : cumulative function of the 

truncated Weibull distribution, 
P(signaling| 
Ooc state)  

: probability of triggering an 
alarm when the process shifts 
to the Ooc state, 

E : time to sample and chart one 
item, 

T1 : time to detect the assignable 
cause, and 

τ : expected time between the 
assignable cause occurrence 
and the next inspection. 

 
 

 
Fig. 1. Graphical representation of scenarios 

 
Tab. 1. Probability and expected time values of occurring each scenario 

r Pr(Scr) E(Tin|Scr) E(Tout|Scr) 

1 ( ( 1) )1 (( 1) )
vk hF k h e      ( 1)k h  0 

2 ( ) ( | )F kh P signaling Ooc state  
0

( | ( 1) )kh t f t k h dt   1 1h A RL nE T     

3 (( 1) ) ( ) ( | )F k h F kh P signaling Ooc state   ( 1)
0

( | ( 1) )
k h

t f t k h dt


   3( 1) ( | )ink h E T Sc   
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4.3. Structure of cost function 
The expected total cost is presented as follows: 

( ) ( ) ( ) ( ).QIMET C E Q E S E M E I                   (17) 
where it includes the quality loss cost E(Q), 
sampling cost E(S), maintenance cost E(M), and 
inventory-related costs E(I). Before describing 
the mentioned items, it is necessary to define the 
following notations:  
Qin : quality loss cost in the in-control state, 
Qout : quality loss cost in the out-of-control 

state, 
p : production rate, 
Cf : fixed cost of sampling, 
Cv : variable cost of sampling, 
Cy : false alarm cost, 
Cpm : preventive maintenance cost, 
Crm : reactive maintenance cost, 
s : expected number of samples when the 

process is in the in-control state, 
B : inventory holding cost per unit time, 
d : daily demand, 
A : ordering cost, and 
E(T) : process cycle time. 
The detailed information about the constituents of 
ETC are described as follows [21]: 
1. The quality loss cost is expressed as: 
2.  

3

1
( ) ( | ) Pr( ),Q r r

r
E Q E C S c S c


                         (18) 

with expected quality loss cost for each scenario 
as: 
 

( | ), 1
( | )

( | ) ( | ), 2,3
in in r

Q r
in in r out out r

Q p E T Sc r
E C Sc

Q p E T Sc Q p E T Sc r
  

      

                                                                        
 (19) 

 
3. The sampling cost per cycle time is 

formulated as: 
 

3

1
( ) ( | ) Pr( ),S r r

r
E S E C S c S c


                          (20) 

 
with expected sampling cost per cycle time for 
each scenario as: 

( ) , 1,3
( | )

( )( ( | ) ( | ))/ , 2
f v

S r
f v in r out r

C C n k r
E C Sc

C C n E T Sc E T Sc h r
 

       
 (21) 

 
4. The maintenance cost per production cycle is 

computed as: 
 

3

1
( ) ( | ) Pr( ),M r r

r
E M E C S c S c


                       (22) 

 

with expected maintenance cost per production 
for each scenario as: 

 

0

0

, 1
( | )

, 2,3

y
pm

M r
y

rm

k C
C r

ARL
E C Sc

s C
C r

ARL


 

    


                 (23) 

 
5. The inventory holding and ordering costs are 

respectively formulated as: 
 

( ) ( ) ,
2

B E T p dIHC   
                                (24) 

.
( )

D AOC
p E T





                                               (25) 

 
According to the total cost function, the 
mathematical model is presented in the next 
section. Moreover, the economic production 
quantity can be computed by: 
 

( ).Q p E T                                                     (26) 
 

5. Proposed Model 
This section explains the proposed mathematical 
model according to the defined problem. It 
includes an objective function based on the 
expected total cost subject to some constraints as 
follows: 
 

0 0

1 1

M in 
s.t.

Q IM

m in

m ax

Int

m in m ax m in m ax

c m in c c m ax m in m ax

c m in c c m ax c m in c c m ax

E T C

A R L A R L
A R L A R L
k h R
nE h
n n n , h h h
h h h , k k k
k k k ,






   
   
        

(27) 

 
where the first and the second constraints 
maintain reasonable ARL0 and ARL1 values. The 
continuity of the process is ensured by the third 
constraint. Moreover, the fourth one guarantees 
the solutions that their time of taking and charting 
samples is lower than the sampling interval (h). 
Besides, the decision variables are set between 
the limits that may be determined according to 
the process requirements or suggested by the 
decision-maker (DM), who has expertise in 
quality engineering and process control. 
Recently, a similar model has been validated for 
autocorrelated processes [21]. We altered the 
model by considering the MEC control chart. Six 
decision variables, including n, h, hc, k, kc, and λc, 
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are determined through optimizing the proposed 
model. We also use the ARMA chart. For this 
reason, the constraints of hc, kc, and λc are 
respectively replaced by lmin≤l≤lmax, θmin≤θ≤θmax, 
and ϕmin≤ϕ≤ϕmax in the model. In the next section, 
an approach to optimize the proposed model is 
provided. 
 

6. Solution Approach 
It is needed to solve nonlinear programming 
(NLP) together with some constraints. The 
decision variables hc, λc, and kc for the MEC chart 
and l, θ, and ϕ for the ARMA chart are merely 
applied to obtain ARL values. Thus, ETC is 
indirectly affected by those variables. On the 
other hand, the simultaneous presence of both 
continuous and discrete decision variables leads 
to the non-convex solution space. Accordingly, 
exact methods cannot be suitable since the model 
is not solvable or needs much more time to run. 
Using metaheuristic algorithms is suggested 
under such conditions to attain near-optimal 
solutions in a reasonable time (refer to [8], [21, 
22], and [24]).  
Of those, PSO, as a stochastic population-based 
algorithm with powerful searching capacity by 
combining local and global searches, is chosen to 
optimize the model. The computational efficiency 
and easy execution are the other advantages for 
its wide applications [25]. It has been suitably 
applied in discontinuous space for solving NLP 
models [3, 4]. There exist three constraints in the 
proposed model. Using PSO needs to convert the 
model into an unconstrained one. Accordingly, a 
penalized objective function (fp) is defined to add 
any violations from the constraints for pushing 
back the solution to the feasible region: 

1 2 3(1 ),QIMfp ETC viol viol viol     (28) 
where viol1=max(0, 1-(ARL0/ARL0

min)), 
viol2=max(0, 1-(kh/RInt)), and viol3=max(0, 
(nE/h)-1) are the violations from the 
corresponding constraints. Figure 2 shows the 
flowchart of the optimization procedure. 
According to the calibrating results for 
optimizing a similar model in [21], we set the 
PSO parameters by considering inertia weight 
w=1.2, recognition, and social learning factors 
c1=c2=2, population size N=80, and iteration 

number m=150. The steps of the PSO algorithm 
to optimize the proposed model are employed as 
follows: 
Step 1. Initialization. Set the bounds in the model 
according to DM’s considerations and the PSO 
parameters. Each solution (particle) is shown by 
position Xi

t=[n, h, hc, k, λc, kc] and velocity Vi
t in 

the iteration t (note that discrete variables 
including n, and k are transformed to continuous 
ones). Then, for each particle i=1, …, N: 

 Based on Uniform distribution, generate 
the initial value of position for each 
particle using a random vector Xi~U(bl, 
bu) and the initial value of velocity 
according to Vi~U(-|bu- bl|, |bu- bl|), where 
bl and bu are indications of lower and 
upper limits of the search space, 
respectively. 

 Initialize the pbest of each particle equal 
to its initial position as pbesti→Xi (note 
that pbest, called personal best, is the 
best value experienced by the ith

 particle). 
 If fp(pbesti)≤ fp(gbest), update 

gbest→pbesti (the best solution found so 
far, called global best, is indicated by 
gbest). 

Step 2. Repetition. Since the behavior of any 
particle is affected by the current velocity, the 
personal best, and the global best, it is necessary 
to update the velocity and the position in each 
iteration. In other words, for each particle i=1, …, 
N and the dimension of each particle di=1, …, 
ndi: 

 Generate random numbers rp and rg from 
U(bl, bu). 

 Update the particle velocity by Vi
t=wVi

t-

1+c1rp(pbestit-1-xi
t-1)+c2rg(gbesti

t-1-xi
t-1), 

 Update the particle position by xi
t =xi

t-

1+Vi
t, 

 If fp(xi) fp(pbesti), update pbest of each 
particle, 

 If fp(pbesti) fp(gbest), update gbest. 
Step 3. Stopping. If a predetermined number of 
iterations is achieved, stop. The latest gbest holds 
the best solution achieved. Otherwise, go back to 
Step 2. 
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Fig. 2. Procedure of the PSO algorithm 

 
7. Experimental Results 

For achieving the optimal decision variables 
related to the production cycle, the cost function 
of the proposed model needs to be minimized, 
subject to some constraints. In this regard, an 
industrial example is extended for the problem at 
hand to indicate the model’s applicability using 
both monitoring techniques. Then, a 
comprehensive sensitivity analysis to study the 
effect of model parameters on the solutions is 
implemented by considering the MEC chart 
(similar analysis can be found in [21] using the 
ARMA chart). Next, some comparisons are made 
in detail between those monitoring techniques. 
Finally, a real data set is provided for 
investigating the issue of separately setting some 
decision variables against the simultaneous 
determination of those variables. 
 
7.1. Numerical example 
For illustrating the determination of decision 
variables through optimization of the proposed 
model, an industrial example is adapted from 
[21]. A company with 125 working days per year 
sells a particular food product to a wholesaler in 
packages marked with a specific weight. Table 2 
shows the nominal values of the parameters. 
Moreover, the number of simulation runs is set to 
500 to compute the values of the average run 
length. The bounds of the constraints are assigned 
to limit the feasible space, as shown in Table 3. 

Accordingly, the statistically acceptable lower 
and upper bounds are considered for ARL0 and 
ARL1. The time interval for implementing the PM 
policy is limited by considering a lower bound of 
5 hours. In addition, economic and statistical 
considerations necessitate setting limits on the 
decision variables. The maximum values of 
sample size, sampling interval, and the number of 
samplings are set in this regard. Since the 
required time to sample and plot each observation 
is about 0.01 hours, h is limited by the lower 
bound of 0.01. Generally, K is defined as one-
half the size of the shift in terms of standard 
deviation [26]. Assuming δ=2, it is reasonable to 
set kc between 0.25 and 2.00. The smoothing 
parameter is not allowed to go beyond the 
defined interval. Besides, H is mainly defined as 
five times the standard deviation of an underlying 
process (hc=5). However, for autocorrelated 
processes in [15], there were cases with optimal 
values of about 42 for hc. Thus, we bounded it 
between 1 and 80.  
After implementing the codes written in 
MATLAB (R2016b) software, the optimal sets of 
decision variables are attained respectively for 
the MEC and ARMA charts as follows: 
   , , , , , 1, 0.19, 8.34, 26, 0.809, 0.651 ,c c cn h h k k   
   , , , , , 1, 0.23, 2.74, 22, 0.000, 0.617 .n h l k     
According to the results of the MEC chart, it is 
proposed to set the decision interval value at 
8.34σz. Moreover, a single sample should be 
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inspected every 0.19 hours, and after inspecting 
26 samples consecutively, PM should be 
implemented. Table 4 shows the results of using 
both charts regarding cost, time, and production 
values. Focusing on the results of MEC, it is 
understood that the EPQ of 518 is optimally 
obtained with an expected total cost of 4944.79. 
Therefore, the total demand of 10000 can be 
produced after about 19.31 production cycles 
(10000 divided by 518).  
On the other hand, a lower ETC value of 4934.12 
is experienced using the ARMA chart [21]. 
Moreover, since its in-control time as Tin =5.11 is 

higher than Tin=5.06 of using MEC, more 
quantity (Q) is produced. The out-of-control time 
of the ARMA chart is also lower. The total 
demand of 10000 can be produced after 19.10 
production cycles. It is lower than 19.31 
production cycles obtained by MEC. In this 
particular case, it is suggested to use the ARMA 
monitoring technique because of earlier response 
to the demand with a lower expected total cost. In 
subsection 7.3, comprehensive comparisons are 
provided between two monitoring techniques to 
find the preferred one. 

 
Tab. 2. Values of the parameters in the numerical example 

Parameter µ σx
2 u v δ λ w 

Value 100 10 0.475 0.01 2 0.01 1 
Parameter E T1 p d D A B 
Value 0.01 1 100 80 10000 60 10 
Parameter Cin Cout Cf Cv CY Cpm Crm 

Value 115 950 1 0.2 200 2400 5000 
 

Tab. 3. Assigned values on the bounds of the constraints 
Bound ARL0

min nmin nmax hmin hmax hc min hc max 

Value 200 1 20 0.01 6 1 80 
Bound ARL1

max kmin kmax λc min λc max kc min kc max 

Value 10 1 70 0.001 0.999 0.25 2.00 
Bound RInt lmin lmax θmin θmax ϕmin ϕmax 

Value 5 0.001 5 0.001 0.999 0.001 0.999 
 
Tab. 4. Comparison between the MEC and ARMA charts through cost, time, and production 

terms 
Control chart E(Q) E(S) E(M) E(I) ETC Tin Tout Q 

MEC 692.86 31.10 2547.73 1673.10 4944.79 5.06 0.12 518.0 
ARMA 690.63 26.28 2547.59 1669.63 4934.12 5.11 0.11 523.5 

 
7.2. Sensitivity analysis 
In this subsection, we investigate the effects of 
model parameters on the optimized solutions of 
the proposed model. The sensitivity analysis is 
performed using an orthogonal-array Taguchi 
design. The expected total cost is treated as a 
response variable, and thirteen independent 
variables are considered as factors. Table 5 shows 
the corresponding level plannings. Table 6 shows 
how independent variables are assigned to the 
trials of the L36 array. The optimized value of 
ETC for each trial is shown in the last column of 
Table 6.  
The statistical software Minitab (version 18) is 
used to present analyses. The normality 
assumption of the ETC values is confirmed using 
the Anderson-Darling (AD) test with the p-value 

of 0.522. Table 7 shows the Minitab output for 
the expected total cost per hour. A significance 
level of 0.05 is assumed. Thus, the factors w, Cin, 
and Cpm are detected significant. Figure 3 shows 
the impacts of factor levels on the mean of ETC 
values. The lowest mean values of ETC are 
desired. Accordingly, when a larger shape 
parameter of the truncated Weibull distribution is 
considered, the value of ETC is expected to 
reduce. Moreover, the smaller values of the 
quality loss cost in the in-control state and the 
preventive maintenance cost lead to the decreased 
expected total cost. 
Due to the significant effect of some input factors 
on the optimal ETC results, and that the 
estimation of those factors is more likely to 
fluctuate because of various internal and external 
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issues, the role of management in decision-
making and attention to costs becomes more 

noticeable. 

 

 
Fig. 3. Main effects plot on the mean of ETC 

 
Tab. 5. Level plannings of factors for the sensitivity analysis 

Factor A B C D E F G H J K L M N 
Notation δ u λ w Cin Cout Cf Cv Cpm Crm CY E T1 
Level 1 1 0.00 0.01 0.5 50 100 0.5 0.2 1000 2500 50 0.01 0.1 
Level 2 4 0.25 0.03 1.0 115 950 1.0 0.5 2400 5000 200 0.05 1.0 
Level 3 - 0.75 0.05 2.0 700 1500 4.0 2.0 4000 7500 500 0.20 2.0 

 
Tab. 6. Levels of factors and optimization outputs for generated trials with the Taguchi L36 

design 
Trial Levels of factors ETC A B C D E F G H J K L M N 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 3315.3 
2 1 2 2 2 2 2 2 2 2 2 2 2 2 6258.0 
3 1 3 3 3 3 3 3 3 3 3 3 3 3 9307.8 
4 1 1 1 1 1 2 2 2 2 3 3 3 3 6361.8 
5 1 2 2 2 2 3 3 3 3 1 1 1 1 3667.2 
6 1 3 3 3 3 1 1 1 1 2 2 2 2 5565.3 
7 1 1 1 2 3 1 2 3 3 1 2 2 3 10660.0 
8 1 2 2 3 1 2 3 1 1 2 3 3 1 3447.2 
9 1 3 3 1 2 3 1 2 2 3 1 1 2 7686.6 
10 1 1 1 3 2 1 3 2 3 2 1 3 2 6597.1 
11 1 2 2 1 3 2 1 3 1 3 2 1 3 8844.7 
12 1 3 3 2 1 3 2 1 2 1 3 2 1 5736.8 
13 1 1 2 3 1 3 2 1 3 3 2 1 2 6184.7 
14 1 2 3 1 2 1 3 2 1 1 3 2 3 4043.6 
15 1 3 1 2 3 2 1 3 2 2 1 3 1 7608.3 
16 1 1 2 3 2 1 1 3 2 3 3 2 1 5184.4 
17 1 2 3 1 3 2 2 1 3 1 1 3 2 9923.8 
18 1 3 1 2 1 3 3 2 1 2 2 1 3 3335.9 
19 2 1 2 1 3 3 3 1 2 2 1 2 3 9153.0 
20 2 2 3 2 1 1 1 2 3 3 2 3 1 6797.8 
21 2 3 1 3 2 2 2 3 1 1 3 1 2 3801.6 
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22 2 1 2 2 3 3 1 2 1 1 3 3 2 9205.0 
23 2 2 3 3 1 1 2 3 2 2 1 1 3 4598.0 
24 2 3 1 1 2 2 3 1 3 3 2 2 1 7214.4 
25 2 1 3 2 1 2 3 3 1 3 1 2 2 5180.6 
26 2 2 1 3 2 3 1 1 2 1 2 3 3 4710.6 
27 2 3 2 1 3 1 2 2 3 2 3 1 1 9023.8 
28 2 1 3 2 2 2 1 1 3 2 3 1 3 7249.6 
29 2 2 1 3 3 3 2 2 1 3 1 2 1 6575.3 
30 2 3 2 1 1 1 3 3 2 1 2 3 2 4458.1 
31 2 1 3 3 3 2 3 2 2 1 2 1 1 8079.2 
32 2 2 1 1 1 3 1 3 3 2 3 2 2 6636.8 
33 2 3 2 2 2 1 2 1 1 3 1 3 3 4260.7 
34 2 1 3 1 2 3 2 3 1 2 2 3 1 5283.4 
35 2 2 1 2 3 1 3 1 2 3 3 1 2 8134.2 
36 2 3 2 3 1 2 1 2 3 1 1 2 3 5998.3 

 
Tab. 7. Minitab output for the expected total cost  

Source D.F. Adj. SS Adj. MS F-value P-value 
Model* 3 101705895 33901965 24.85 0.000 

D: w 1 5896252 5896252 4.32 0.046 
E: Cin 1 66763702 66763702 48.94 0.000 
J: Cpm 1 29045940 29045940 21.29 0.000 

Residual 32 43652639 1364145       
Total 35 145358534          
* ETC = 1847 - 496 D + 1668 E + 1100 J 

 
7.3. Comparing the control charts 
In this subsection, extensive comparisons are 
provided between two monitoring techniques. 
Three sizes of shifts (δ) in the process mean are 
assumed to occur. For each assumed size of δ, 16 
trials are planned by considering various 
combinations of autocorrelation coefficients to 
include processes of types AR(1) when (u≠0, 
v=0), MA(1) when (u=0, v≠0), and ARMA(1,1) 
when (u≠0, v≠0). The other data on the industrial 
example from Table 2 and Table 3 are also used 
here. 
Table 8 shows the results of comparing the ETC 
values. Each trial was optimized two times, and 
then a solution with the lowest ETC value was 
selected. Assuming δ=1 and AR(1) with (u=0.5, 
v=0), the value of ETC is bolded for the ARMA 
chart since it is lower than that of the MEC chart. 
When δ increases in this case, ETC decreases. 
However, it needs more investigations to analyze 
the trends.  
We used Minitab 18 software to provide the 
graphical output in Figure 4. From the boxplots 
of ETC values for the ARMA chart: (1) the 
skewed distributions, and (2) the declining 
variability and central tendency are inferred by 
increasing δ. Similar results are confirmed using 
the MEC chart. By comparing the boxplots of 
both charts, the mean value of the results for the 
ARMA chart is lower than it for MEC. Moreover, 
using the ARMA chart leads to lower variability 

and more precision. From Figure 4(c) using the 
ARMA chart, although the top plot indicates 
increased results by growing u, the bottom plot 
shows this trend in the opposite direction by 
reducing v. Such findings are deduced to some 
extent from Figure 4(d) but with higher 
variability for the MEC chart. Generally, except 
for v=0.25, the ARMA chart shows lower means 
of ETC values in the other cases. 
From Table 8, it is observed that using the 
ARMA chart causes the lowest ETC in 32 cases. 
In comparison, MEC performs better in 18 cases. 
The weak performance of the MEC chart for 
larger shift sizes conforms to the concluding 
results in [15]. For more investigation, the paired 
t-test is used to determine whether the results of 
the two monitoring techniques differ [26]. The 
data in this test are paired to avoid differences 
among various levels of autocorrelation 
coefficients from disturbing the test on the 
difference between the control charts. 
Before performing the test, the normality 
assumption must be confirmed. The top-left plot 
from Figure 5 shows the p-value of the AD test 
for the differences as (ARMA-MEC) is lower 
than 0.05. Accordingly, Johnson's transformation 
is applied to establish the normality assumption. 
After performing that, the assumption is 
statistically confirmed by achieving a p-value of 
0.879. Therefore, the test can be executed on the 
transformed differenced data. Table 9 shows the 
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Minitab output for the paired t-test. From Table 
9(c), the p-value of 0.614 suggests that the results 
are consistent with the null hypothesis. Indeed, 
the equal or better performance of the ARMA 
chart in comparison to the MEC chart can not be 

rejected. This result can help the production 
manager to select the preferred monitoring 
technique for integrating the triple components in 
the presence of autocorrelation. 

 

 
Fig. 4. Graphical output of Minitab: (a) boxplot of ETC using the ARMA chart v.s. δ, (b) 

boxplot of ETC using the MEC chart v.s. δ, (c) effects of autocorrelation coefficients on ETC 
using the ARMA chart, and (d) effects of autocorrelation coefficients on ETC using the MEC 

chart 

 
Fig. 5. Johnson transformation to establish the normal assumption for the differenced data 
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Tab. 8. Comparing the ETC values of the ARMA and MEC charts by considering different 
autocorrelation coefficients  

Autocorrelation coefficients  δ=1   δ=2   δ=4  
u v  ARMA MEC  ARMA MEC  ARMA MEC 
0 0   4961 5805   4969 4928   4897 4897 

 0.25  4943 4944  4906 4919  4884 4901 
 0.5  4962 4975  4898 4897  4901 4895 

  0.75   4940 4921   4897 4892   4880 4899 
0.25 0  5172 5726  4939 4934  4904 4916 

 0.25  5008 4963  4914 4928  4908 4901 
 0.5  4969 5803  4909 4919  4892 4902 

  0.75   4923 4925   4896 4936   4881 4917 
0.5 0  5040 5346  4945 5010  4901 4911 

 0.25  5326 5169  4952 4937  4897 4903 
 0.5  4961 5028  4954 4946  4902 4902 

  0.75   4934 4957   4901 4903   4909 4916 
0.75 0  4912 5130  5017 5091  4890 4916 

 0.25  5065 5057  4999 4998  4894 4917 
 0.5  5203 5089  4934 4997  4890 4915 

  0.75   5008 4976   4969 4926   4894 4896 
 

Tab. 9. Minitab output for the paired t-test 
(a) Descriptive statistics    
Sample N Mean St. Dev. S.E. Mean 
ETC by ARMA 48 4951 87.4 12.6 
ETC by MEC 48 5010 218.2 31.5 
Difference 48 -58.9 193.5 27.9 
(b) Test definition    
µ_difference: mean of (ETC by ARMA – ETC by MEC) 
Null hypothesis H0: µ_difference≤0   
Alternative hypothesis H1: µ_difference>0   
(c) Test results    
Sample Mean St. Dev. t-value P-value 
Transformed Difference -0.043 1.009 -0.29 0.614 

 
7.4. Integrated design versus fixed-
parameter designs 
A real data set, provided by Franco et al. [27], is 
used in this subsection for investigating the issue 
of separately setting some decision variables 
against the simultaneous determination of those 
variables. They examined the process of filling 
125g yogurt containers and defined its weight as 
a variable qualitative characteristic. Due to the 
high production rate (approximately ten 
containers per second), inherent autocorrelation 
among the weights of successive productions has 
been confirmed. The previous studies have 
shown that the existing autocorrelation can be 
expressed with AR(1) by considering u=0.7. In 
addition, the mean and standard deviation 

estimates were respectively estimated as 125g 
and 1g. 
In monitoring this autocorrelated process, some 
recent samples have been detected out of control. 
The nozzle clogging of the filling machine has 
been introduced as the primary cause. The 
resulting non-conforming products and failed 
equipment can incur costs for the entire 
production system. On the other hand, yogurt 
production is based on responding to a demand. 
Therefore, it includes inventory holding and set-
up costs in the framework of EPQ. Obviously, 
such a process requires: (1) implementing MP at 
the appropriate time to restore the process to the 
initial condition, (2) responding to the demand in 
quantity with the lowest production cost, and (3) 
using the descent SPC technique for monitoring 
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the AR(1) data. In fact, it seems necessary to 
study the integrated model in terms of 
autocorrelation due to the imperfectness of the 
production process and the presence of 
autocorrelation among the data.  
Because of the equal or better performance of the 
ARMA chart in comparison to the MEC chart, 
we apply the ARMA chart in this subsection. The 
results of optimization for different fixed-
parameter designs as well as the integrated design 
are presented in Table 10. Note that the fixed 
parameters were set according to [27], and the 
other decision variables were optimally 
determined. It is observed in Table 10 that the 
lowest ETC value is obtained for the integrated 
model, where all decision variables are 
simultaneously determined. It is worth 
mentioning that using the MEC for the integrated 
model results in ETC=4967.46 with {n, h, hc, k, 
λc, kc}={1, 0.1, 9.25, 50, 0.771, 0.91}.  
In Table 11, 120 actual observations are 
presented to examine the statistical performance 

of these designs. The ARMA control chart is 
used to depict different designs in Figure 6 
according to the information from Table 10. The 
change point is assumed to occur in the 14th 
group sampling and the 66th individual sampling. 
Only in sections (c) and (d) of Figure 6, the 
ARMA chart can detect the change. For the 
design with a fixed sample size, this change is 
detected in the 20th sample. Since the time 
interval between samplings is 2.5 hours, it takes 
15 hours to detect after the 14th sample. The same 
change, in the 98th sample with a time interval of 
0.2 hours between samplings, is detected by the 
integrated design in 6.4 hours. Thus, the 
performance of the integrated design by 
simultaneous determination of the decision 
variables is confirmed in terms of economic and 
statistical criteria. In comparison to the designs 
that ignore simultaneous consideration of EPQ, 
SPC, and MP, it is suggested to optimize the 
integrated model of triple components because of 
its explicit benefits. 

  

 
Fig. 6. The performance of different designs: (a) with fixed n, h, k, (b) with fixed n, h, (c) with 

fixed n, (d) with simultaneous determination of all variables 
 

Tab. 10. Comparing the results of different designs using ARMA control chart 
Design n h l k θ ϕ ETC 

Fixed (n, h, l) 5 1.00 3.00 5 0.14 0.60 5142.10 

Fixed (n, h) 5 1.00 2.54 5 0.00 0.58 5114.74 

Fixed (n) 5 2.50 2.48 2 0.00 0.68 5333.09 

Integrated 1 0.20 2.55 25 0.00 0.66 4968.17 
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Tab. 11. The yogurt container weight data set (read up to down, from the left side) 
124.74 127.18 125.37 124.22 125.40 125.79 126.15 124.02 125.03 124.22 124.65 123.59 
126.12 127.38 124.87 124.15 125.14 123.91 125.60 123.78 124.72 125.64 125.45 124.27 
126.45 127.18 123.65 124.14 125.60 124.28 124.26 122.60 123.62 125.19 124.43 123.70 
124.66 126.32 123.16 123.82 123.90 125.19 126.17 122.42 124.99 124.39 124.83 124.62 
125.11 126.55 122.29 124.18 124.92 125.98 126.65 123.26 124.37 125.40 124.34 123.41 
125.56 124.41 124.83 123.91 125.53 124.55 123.54 124.02 125.17 123.35 124.88 124.24 
123.24 124.22 126.62 124.28 125.36 126.61 124.42 123.78 125.10 122.90 125.27 125.87 
123.60 124.29 126.24 126.31 124.24 126.98 123.52 122.60 124.45 122.31 124.73 124.62 
123.77 126.10 125.86 126.06 123.71 126.84 123.53 122.42 124.03 122.42 123.09 125.99 
123.54 124.60 127.53 127.08 123.64 127.60 122.95 123.26 125.11 120.09 123.14 124.19 

 
8. Conclusion 

Intending to consider real production conditions, 
we presented an integrated model in this study by 
incorporating three components of statistical 
process control, maintenance policy, and 
production. Control charts, among SPC tools, 
have mainly been developed to monitor process 
data under the assumption of independence. In 
some production processes, the assumption that 
the observations derived from the process are 
independent may not be valid. The existence of 
autocorrelation among the process data can result 
in a significant effect on the statistical 
performance of control charts if ignored. In 
literature, the ARMA control chart is a suitable 
technique for monitoring autocorrelated 
processes. By applying the ARMA chart, the 
integrated models had been studied in the 
presence of autocorrelation for the first time [21, 
22].  
Nevertheless, it was necessary to use another 
monitoring technique for comparing the results. 
Among the modified control charts, MEC had 
successfully been applied to monitor AR(1) 
process. However, it had not been studied for 
other types of autocorrelation, such as 
ARMA(1,1) and MA(1). In addition, only its 
statistical performance had been investigated. 
While designing MEC requires attention to the 
resulting costs as well. Attempting to bridge the 
mentioned gaps could be more realistic in the 
framework of the imperfect production systems. 
Thus, we presented an integrated model by 
considering the MEC monitoring technique. For 
optimizing the proposed model, the PSO 
algorithm was employed as a solution procedure. 
This procedure was applied through a numerical 
example. Then, sensitivity analysis was 
performed to identify the effects of model 
parameters on the optimal results. Moreover, 
some comparisons were made to compare the 
results of applying MEC and ARMA charts. 
Finally, a real data set was provided for 
investigating the issue of separately setting some 

decision variables against the simultaneous 
determination of those variables. 
In a particular case of an industrial example, it is 
suggested to use the ARMA monitoring 
technique because of the earlier response to the 
demand with a lower expected total cost. The 
results of comparative studies indicated that: (1) 
lower cost values are expected to reach by 
decreasing autoregressive coefficient and 
increasing moving average coefficient, (2) the 
results are less influenced by changing 
autocorrelation coefficients when the ARMA 
chart is used, and (3) except for v=0.25, ARMA 
chart shows lower cost values with smaller 
variability. Accordingly, the ARMA chart can be 
preferred, although the equal performance of both 
charts is not be rejected. The process of filling 
yogurt containers was also examined. It was 
found that the results of integrated design were 
better than designs that ignore simultaneous 
consideration of EPQ, SPC, and MP. In addition, 
the results of the sensitivity analysis confirmed 
that three factors, including the shape parameter 
of the truncated Weibull distribution, the quality 
loss cost in the in-control state, and the 
preventive maintenance cost, were significant.  
Due to the significant effect of some factors on 
the optimal ETC results and that the estimation of 
their values fluctuates because of various internal 
and external conditions, there is a need for 
designing models when such uncertainty exists in 
estimating factors. In [8, 9], robust optimization 
approaches have been proposed only by 
considering SPC in modeling under the 
assumption of independence. Therefore, the 
robust design of the integrated models can be 
pursued in the presence of autocorrelated data. 
Recently, among residual control charts, Chen 
and Yu [28] developed a control chart based on 
deep recurrent neural networks. In the category of 
modified control charts, an EWMA chart based 
on the likelihood-ratio test or ELR chart has been 
proposed to simultaneously monitor the shifts in 
mean and variability [29]. Moreover, Costa and 
Fichera [20] proposed the ARMA control chart 
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with variable sampling intervals. These control 
charts can be applied in similar models to provide 
guidelines in selecting the most compatible 
one(s). For high yield processes, two studies have 
been presented respectively in [30, 31]. Both can 
be extended for optimally selecting the decision 
variables by the integrated triple-component 
model. For the time being, we are trying to 
extend the ACC chart for autocorrelated 
processes.  
 

9. Acknowledgments 
The authors would like to acknowledge editors 
and reviewers of the paper for their important 
guiding and comments. This work was supported 
by the Iran National Science Foundation (INSF) 
[grant number 97015328]. 
 

References 
[1] Cheng, L., Tsou, C.S., Yang, D.Y., 

"Cost-service tradeoff analysis of 
reorder-point-lot-size inventory models", 
Journal of Manufacturing Systems, Vol. 
37, No. 1, (2015), pp. 217-226. 

 
[2] Salmasnia, A., Abdzadeh, B., Namdar, 

M., "A joint design of production run 
length, maintenance policy and control 
chart with multiple assignable causes", 
Journal of Manufacturing Systems, Vol. 
42, (2017), pp. 44-56. 

 
[3] Salmasnia, A., Kaveie, M., Namdar, M., 

"An integrated production and 
maintenance planning model under VP-
T2 Hotelling chart", Computers & 
Industrial Engineering, Vol. 118, (2018), 
pp. 89-103. 

 
[4] Salmasnia, A., Soltani, F., Heydari, E., 

Googoonani, S., "An integrated model 
for joint determination of production run 
length, adaptive control chart parameters 
and maintenance policy", Journal of 
Industrial and Production Engineering, 
Vol. 36, No. 6, (2019), pp. 401-417. 

 
[5] Hadidi, L.A., Al-Turki, U.M., Rahim, A., 

"Integrated models in production 
planning and scheduling, maintenance 
and quality: a review", International 
Journal of Industrial and Systems 
Engineering, Vol. 10, No. 1, (2012), pp. 
21-50. 

[6] Farahani, A., Tohidi, H., "Integrated 
optimization of quality and maintenance: 
A literature review", Computers & 
Industrial Engineering, Vol. 151, (2021), 
p. 106924. 

 
[7] Qiu, P., "Some Recent Studies in 

Statistical Process Control", in Lio, Y., 
Ng, H. K.T., Tsai, T.-R., Chen, D.-G. 
(Eds.) Statistical Quality Technologies: 
Theory and Practice, Springer 
International Publishing, Cham, (2019), 
pp. 3-19. 

 
[8] Jafarian-Namin, S., Fallahnezhad, M.S., 

Tavakkoli-Moghaddam, R., Mirzabaghi, 
M., "Robust Economic-Statistical Design 
of Acceptance Control Chart", Journal of 
Quality Engineering and Production 
Optimization, Vol. 4, No. 1, (2019), pp. 
55-72. 

 
[9] Jafarian-Namin, S., Fallahnezhad, M.S., 

Tavakkoli-Moghaddam, R., Mirzabaghi, 
M., "Robust modeling of acceptance 
control chart to specify best design 
parameters", in Shabazova, S.N., 
Kacprzyk J., Balas V., Kreinovich V. 
(Ed.) Studies in Fuzziness and Soft 
Computing, Springer Nature, 
Switzerland, (2021), pp. 321-332. 

 
[10] Mokhtari, H., Fallah Ghadi, H., 

Salmasnia, A., "Simultaneous 
optimization of production and quality in 
a deterioration process", International 
Journal of Industrial Engineering and 
Production Research, Vol. 27, No. 3, 
(2016), pp. 275-285. 

 
[11] Salmasnia, A., Abdzadeh, B., Rahimi, A., 

"Joint optimisation of double warning 
T2-Hotelling chart and maintenance 
policy with multiple assignable causes", 
Journal of Statistical Computation and 
Simulation, Vol. 90, No. 3, (2020), pp. 
465-488. 

 
[12] Jafarian-Namin, S., Goli, A., Qolipour, 

M., Mostafaeipour, A., Golmohammadi, 
A.-M., "Forecasting the wind power 
generation using Box–Jenkins and hybrid 
artificial intelligence: A case study", 
International Journal of Energy Sector 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ie
pr

.iu
st

.a
c.

ir
 o

n 
20

25
-0

7-
18

 ]
 

                            16 / 18

https://ijiepr.iust.ac.ir/article-1-1082-en.html


17 Economic-Statistical Design of an Integrated Triple-Component Model Under Various 
Autocorrelated Processes 

 

International Journal of Industrial Engineering & Production Research, December 2021, Vol. 32, No. 4 

Management, Vol. 13, No. 4, (2019), pp. 
1038-1062. 

 
[13] Alwan, L.C., Roberts, H.V., "The 

Problem of Misplaced Control Limits", 
Journal of the Royal Statistical Society 
Series C, Vol. 44, No. 3, (1995), pp. 269-
278. 

 
[14] Thaga, K., Sivasamy, R., "Single 

Variables Control Charts: A Further 
Overview", Indian Journal of Science and 
Technology, Vol. 8, (2015), pp. 518-528. 

 
[15] Osei-Aning, R., Abbasi, S.A., Riaz, M., 

"Monitoring of serially correlated 
processes using residual control charts", 
Scientia Iranica, Vol. 24, No. 3, (2017), 
pp. 1603-1614. 

 
[16] Jiang, W., Tsui, K., Woodall, W.H., "A 

New SPC Monitoring Method: The 
ARMA Chart", Technometrics, Vol. 42, 
No. 4, (2000), pp. 399-410. 

 
[17] Low, C., Lin, W.Y., "Consideration of 

weibull distribution under the assignable 
causes for economic design of the 
ARMA control chart", Journal of Quality, 
Vol. 17, No. 5, (2010), pp. 365-387. 

 
[18] Lin, S.-N., Chou, C.-Y., Wang, S.-L., 

Liu, H.-R., "Economic design of 
autoregressive moving average control 
chart using genetic algorithms", Expert 
Systems with Applications, Vol. 39, No. 
2, (2012), pp. 1793-1798. 

 
[19] Costa, A., Fichera, S., "Economic 

statistical design of ARMA control chart 
through a Modified Fitness-based Self-
Adaptive Differential Evolution", 
Computers & Industrial Engineering, 
Vol. 105, (2017), pp. 174-189. 

 
[20] Costa, A., Fichera, S., "Economic-

statistical design of adaptive arma control 
chart for autocorrelated data", Journal of 
Statistical Computation and Simulation, 
Vol. 91, No. 3, (2021), pp. 623-647. 

 
[21] Jafarian-Namin, S., Fallahnezhad, M.S., 

Tavakkoli-Moghaddam, R., Salmasnia 
A., Abooie, M.H., "An integrated model 

for optimal selection of quality, 
maintenance and production parameters 
with autocorrelated data", Scientia 
Iranica, (2021).  

DOI: 10.24200/sci.2021.56484.4745. 
 
[22] Jafarian-Namin, S., Fallahnezhad, M.S., 

Tavakkoli-Moghaddam, R., Salmasnia, 
A., Fatemi Ghomi, S.M.T., "An 
integrated quality, maintenance and 
production model based on the delayed 
monitoring under the ARMA control 
chart", Journal of Statistical Computation 
and Simulation, Vol. 91, No. 13, (2021), 
pp. 2645-2669. 

 
[23] Zhang, N.F., "A Statistical Control Chart 

for Stationary Process Data", 
Technometrics, Vol. 40, No. 1, (1998), 
pp. 24-38. 

 
[24] Niaki, S.T.A., Toosheghanian, M., 

Gazaneh, F.M., "Economic design of VSI 
X̄ control chart with correlated non-
normal data under multiple assignable 
causes", Journal of Statistical 
Computation and Simulation, Vol. 83, 
No. 7, (2013), pp. 1279-1300. 

 
[25] Kennedy, J., Eberhart, R.C., Swarm 

Intelligence, Morgan Kaufmann, San 
Francisco, (2001). 

 
[26] Montgomery, D.C., Introduction to 

statistical quality control, Wiley, New 
Jersey, (2019). 

 
[27] Franco, B.C., Castagliola, P., Celano, G., 

Costa, A.F.B., "A new sampling strategy 
to reduce the effect of autocorrelation on 
a control chart", Journal of Applied 
Statistics, Vol. 41, No. 7, (2014), pp. 
1408-1421. 

 
[28] Chen, S., Yu, J., "Deep recurrent neural 

network-based residual control chart for 
autocorrelated processes", Quality and 
Reliability Engineering International, 
Vol. 35, No. 8, (2019), pp. 2687-2708. 

 
[29] Wang, F.-K., Cheng, X.-B., 

"Exponentially weighted moving average 
chart with a likelihood ratio test for 
monitoring autocorrelated processes", 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ie
pr

.iu
st

.a
c.

ir
 o

n 
20

25
-0

7-
18

 ]
 

                            17 / 18

https://ijiepr.iust.ac.ir/article-1-1082-en.html


18 Economic-Statistical Design of an Integrated Triple-Component Model Under Various 
Autocorrelated Processes 

 

International Journal of Industrial Engineering & Production Research, December 2021, Vol. 32, No. 4 

Quality and Reliability Engineering 
International, Vol. 36, No. 2, (2020), pp. 
753-764. 

 
[30] Fallahnezhad, M.S., Jafarian-Namin, S., 

Faraz, A., "Expanded fraction defective 
chart using cornish-fisher terms with 
adjusted control limits to improve in-
control performance", International 
Journal of Industrial Engineering and 
Production Research, Vol. 30, No. 4, 

(2019), pp. 477-488. 
 
[31] Fallahnezhad, M.S., Golbafian, V., 

Rasay, H., Shamstabar, Y., "Economic-
statistical design of a control chart for 
high yield processes when the inspection 
is imperfect", International Journal of 
Industrial Engineering and Production 
Research, Vol. 28, No. 3, (2017), pp. 
241-249.  

 
 

Follow This Article at The Following Site: 
 
Jafarian-Namin S, Fallahnezhad M S, Tavakkoli-Moghaddam R, Salmasnia A, 
Abooei M H. A Comparative Study on a Triple-Concept Model of Two Techniques 
for Monitoring the Mean of Stationary Processes. IJIEPR. 2021; 32 (4) :1-18 
URL: http://ijiepr.iust.ac.ir/article-1-1082-en.html 

 

 

 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ie
pr

.iu
st

.a
c.

ir
 o

n 
20

25
-0

7-
18

 ]
 

Powered by TCPDF (www.tcpdf.org)

                            18 / 18

https://ijiepr.iust.ac.ir/article-1-1082-en.html
http://www.tcpdf.org

