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KKEEYYWWOORRDDSS                                  ABSTRACT 
 

 

Nowadays, interval comparison matrices (ICM) take an important role 
in decision making under uncertainty. So it seems that a brief review 
on solution methods used in ICM should be useful. In this paper, the 
common methods are divided into four categories that are Goal 
Programming Method (GPM), Linear Programming Method (LPM), 
Non-Linear Programming Method (NLPM) and Statistic Analysis (SA). 
GPM itself is divided also into three categories. This paper is a review 
paper and is written to introduce the mathematical methods and the 
most important applications of ICM in decision making techniques. 
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11..  IInnttrroodduuccttiioonn  

ICM is a way to compute the weights in the 
presence of uncertainty in decision making techniques. 
In traditional methods, each preference ratio in the 
comparison matrix (aij) is assumed to be deterministic. 
In real life, in most times the preference ratios are 
interval numbers. Two type methods are applied which 
one of them calculates the weights accurately while 
another one calculates the weights intervally. 
Most real world decision problems involve multiple 
criteria that are often in conflict in general and it is 
some times necessary to conduct trade-off analysis in 
multiple criteria decision analysis (MCDA).As such, 
the estimation of the relative weights of criteria plays 
an important role in a MCDA process. Among many 
frameworks developed for weight estimation, pair wise 
comparison matrices provide a natural frame work to 
elicit preferences from decision makers and have been 
used in several weight generation methods. However, 
due to the complexity and uncertainty involved in real 
world decision problems and the inherent subjective 
nature of human judgments, it is sometimes unrealistic 
and infeasible to acquire exact judgments. It is more 
natural or easier to provide fuzzy or interval judgments 
for parts or all of the judgments in a pair wise 
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comparison matrix. A number of techniques have been 
developed to use such a fuzzy or interval comparison 
matrix to generate weights. 
Differences of each method according to input data 
type (interval comparison matrix) and output data type 
(achieved weights) are exhibited in the table 1 in 
appendix1. 
 

2. Definitions 
2.1. Comparison Matrices 

In the conventional AHP, a judge estimates (by 
filling out a questionnaire, say) ratios of priorities, 
which are arranged in the upper triangle of a pair wise 
comparison (Saaty) matrix: 
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Each element ija of the upper triangle in Eq. (1) 

represents an estimate of the ratio of preferences i  

and j of the ith and the jth objects. That is, 
 

.,...,1;,...,1, njnia
j

i
ij 




                           (2) 

The elements in the lower triangle of matrix (1) are 
taken as follow: 
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.,...,1;,...,1,

1
ninj

a
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ij
ji                             (3) 

The priority vector a is estimated as the right 
eigenvector for the maximal eigenvalue k in the 
following eigen problem (Saaty, 1980): 
  

 A                                            (4) 

 
2-2. Interval Comparison Matrices 

Suppose the decision maker provides interval 
judgments instead of precise judgments for a pair wise 
comparison. For example, it could be judged that 

criterion i  is between ijl and iju times as important as 

criterion j with ijl and iju being non-negative real 

numbers and ijij ul  . Then, an interval comparison 

matrix can be represented by: 
 



















 

1],[],[

],[1],[

],[],[1

)(

2211

222121

111212









nnnn

nn

nn

nnij

ulul

ulul

ulul

aA         (5) 

 
Where ijij ul /1  and ijij lu /1  and ijijij ual  . 

About the above interval comparison matrix, we give 
the following definition and theorem: 
Let nnijaA  )(

 
is an interval comparison matrix 

defined by (5) with ijijij ual   and 1 iiiiii ual  

for .,...,1, nji   If the convex feasible region 
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 is nonempty, and then A  is said to be a consistent 
interval comparison matrix. 

 
2-3. Consistency of Interval Comparison Matrix 

nnijaA  )(  Is a consistent interval comparison 

matrix if and only if it satisfies the following inequality 
constraints: 
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(6) 

 
Proof . If A  is a consistent interval comparison 

matrix, then the convex feasible region wS  is 

nonempty, which means that there is no contradiction 
among the following inequality constraints: 
 

nkiuwwl ikkiik ,...,1,,/                             (7) 

 
njiuwwl kjjkkj ,...,1,,/                             (8) 

Multiplying (7) by (8) leads to the following implied 
indirect inequalities: 
 

nkjiuuwwll kjikjikjik ,...,1,,,./.               (9) 

 
Since (9) holds for any nk ,...,1 , it follows that 

)(min)(max kjik
k

kjik
k

uull  holds for all nkji ,...,1,,  . 

Conversely, if (6) holds for kji ,,  then 

ijjiij uwwl  /  holds for any nji ,...,1,  . So, 

wS cannot be empty. By definition, A is a consistent 

interval comparison matrix. 
 
2-4. The Degree of Preference 

The degree of preference of a over b (or ba  ) is 
defined as: 
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The degree of preference of b over a (or ab  ) can be 
defined in the same way. That is: 
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Let ],[ 21 aaa   and ],[ 21 bbb   be two interval 

weights, whose possible relationships are as shown in 
Fig.1. We refer to the degree of one interval weight 
being greater than another one as the degree of 
preference. Accordingly, we have the following 
definitions and properties. 
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Fig. 1. Relationships between two interval weights a 

and b 
 
It is obvious that 1)()(  abPbaP  and 

5.0)()(  abPbaP  when ba  , i.e. 11 ba   and 

22 ba  . 
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 If )()( abPbaP  , then a is said to be superior 

to b to the degree of )( baP  , denoted by 

ba
baP )( 

 ;  

 If 5.0)()(  abPbaP , then a is said to be 

indifferent to b, denoted by ba ~ ;  
 If )()( baPabP  , then a is said to be inferior 

to b to the degree of )( abP  , denoted by 

ba
baP )( 

 . 

 
Property1. 1)(  baP  if and only if ba  . 

Property2. If 11 ba   and 22 ba  , then 

5.0)(  baP and 5.0)(  abP . 

Property3. If b is nested in a, i.e. 11 ba  and 22 ba  , 

then 5.0)(  baP  if and only if 
22

2121 bbaa 



. 

Property4. If 5.0)(  baP  and 5.0)(  cbP , 

then 5.0)(  caP . 

 
2.5. Multiplicative Constraint 

The multiplicative constraint, i.e. 1 ln
1




n

i

iw  

which is equivalent to 
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n

i
iw

1

0ln . Such 

multiplicative constraint is widely used in 
multiplicative AHP. 

 
33..SSoolluuttiioonn  MMeetthhooddss  

3.1. Goal Programming Based Methods 
3.1.1. Goal Programming 
a. Model (1) 

Ying-Ming Wang and Taha M.S.Elhag �0 
developed a method for deriving interval weight based 
on goal programming. Suppose a decision maker (DM) 
provides an interval judgment instead of precise 
judgment for a pair wise comparison matrix. For 
example, the importance of criterion i in respect to 

criterion j, lies between ijl
 

and iju , with ijl
 

and 

iju being non-negative real numbers and ijij ul  . An 

interval comparison matrix can be expressed as the 
matrix (1). Where ijij ul /1

 
and ijij lu /1 . For 

all jinji  ;,...,1, . The above interval comparison 

matrix can be split into two crisp nonnegative matrices: 
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(12) 

Where UL AAA   . Note that UL AA ,  are no longer 

the reciprocal matrices. 
For the interval comparison matrix A, there should 
exist a normalized interval weight vector, 

TU
n

L
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UL wwwwW ]),[],...,,([ 11  which is close to A in 

the sense that ],[],[],[ U
j

L
j

U
i

L
iijijij wwwwula  for 

all jinji  ;,...,1, . 

According to �0, the interval weight vector W is said to 
be normalized if and only if: 
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Which can be equivalently rewritten as: 
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As is known, if the interval comparison matrix A  is 
the precise comparison about the interval weight vector 

W, namely, ],[],[],[ U
j

L
j

U
i

L
iijijij wwwwula  and 

then A  can be written as follows: 
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According to the division operation rule on interval 
numbers, i.e. ]/,/[],/[],[ LUULULUL dbdbddbb  , 

where ],[ UL bb and ],[ UL dd are two positive interval 

numbers, the interval comparison matrix A  defined by 
(17) can be further rewritten as: 
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This can be split into the following two crisp 
nonnegative matrices: 
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It is easy to prove that 
 

,)1( LUUL WnWWA                                          (20) 
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L
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U
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U
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Relations (20) and (21) are important links between the 
lower and the upper bounds of the interval weight 
vector W. 
Due to the presence of subjectivity and uncertainty, the 
DM�s subjective judgments cannot be 100% exact. 
Therefore, Relations (20) and (21) may not hold 
precisely. Based on such an analysis, consider the 
following deviation vectors: 
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Where T
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nE ),...,(,),...,( 11   and I is an n  

n unit matrix whose elements on the leading diagonal 
are 1, and all the other elements are 0.  
It is most desirable that the absolute values of deviation 
variables should be kept as small as possible, which 
leads to the following optimization model to be 
constructed: 
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Where the first two constraints are relations (22) and 
(23), the middle two constraints are the normalization 
constraints on the interval weight vector W, and the last 
two constraints are those on the lower and upper 
bounds of W. 
Let  
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Based on and 

i and 

i , i and i  can be expressed 

as 
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(27) 

 

Where )1,...,1(Te , 
i  and 

i as well as 
i  and 


i cannot be simultaneously the basic variables in the 

simplex method. This method for obtaining interval 
weights from an interval comparison matrix is referred 
as the GP method (GPM). Since crisp comparison 
matrices are a special case of interval comparison 
matrices, the above GP model (27) is also applicable to 
crisp comparison matrices. 
 
3.1.2. Numerical Example 

Consider the following comparison matrix: 
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We have: 
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 By using model (27) the following linear 
programming is obtained: 
 

min 1 2 3 1 2 3
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1
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The solutions of the above model are the ,L U
i iw w    

for 1,...,i n . They are as follow: 
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It is worth while pointing out here that for a crisp 
comparison matrix, Bryson [17] developed a different 
goal programming (GP) method for generating priority 
vectors.  
Consider the following theorems on the above model. 
  
Theorem1. Let *

LW and *
UW be the optimal solution of 

the GP model (27). If A is a crisp consistent 

comparison matrix, then we have *** WWW UL  , 

where *W  is the principal right eigenvector of A . 
 
Proof. If A  is a crisp consistent comparison matrix, 

then there exists the eigenvalue equation: ** nWAW , 

namely, 0)( *
 WnIA . Let ** WWL   and ** WWU  . It is easy 

to find that *** WWW UL  is a feasible solution of the GP 

model (27). Accordingly, we have 

0)()1()( *
 WnIAWnWIAE LUL  

and 0)()1()( *
 WnIAWnWIAE ULU , which 

leads to 




n

i
iiJ

1

0)(  . That is to say, *** WWW UL   

is also the optimal solution to the GP model (21). So, 
*** WWW UL  . 

 
b. Model (2) 
Sugihara et al. �0 developed the goal programming for 
deriving interval weight. They deal with interval 
judgments in two ways. One is called the lower 
approximation and the other is called the upper 
approximation. For the lower approximation, it is 
required that: 
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This can be rewritten as 

 

)(  ,         ,      and      
*

*

*

*

jijiu
W

W
l

W

W
ijL

j

U
i

ijU
j

L
i 

 

             (29)

 
 

Or 

).(  ,        0,    and    0 **** jijiwuwwlw L
jij

U
i

U
jij

L
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      (30) 
 

For the upper approximation, it is required that 
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This can be rewritten as 
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(33) 

 
The lower and upper approximation models are 
respectively constructed as follows: 
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And   is a small positive real number. 
Compared with the above lower and upper 
approximation models, the GP model (27) differs from 
them in the following ways: 
First of all, the GP model considers an interval 
comparison matrix as a whole and does not consider 
each judgment element individually, which makes the 
GP model to have less constraint, whereas the lower 
and upper approximation models deal with each 
judgment individually and therefore have more 
constraints than the GP model. 

Second, the GP model (27) is applicable to any crisp 
and interval comparison matrices no matter whether 
they are consistent or not, while the lower 
approximation model is only applicable to consistent 
comparison matrices (crisp or interval) because there is 
no feasible solution that can be found for any 
inconsistent comparison matrix or inconsistent interval 
comparison matrix. 
Next, the upper approximation model aims at finding 
an interval weight vector 
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Due to the fact that the DM�s judgments are subjective 
and cannot always be 100% precise, there is no 
guarantee that the DM�s judgments will certainly fall 
within and will not exceed the real interval 
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Where TU
n

L
n

UL wwwwW ]),[,],,([ 11   

is an unknown real weight.  
On the other side, the GP model aims at finding an 

interval weight vector TU
n

L
n

UL wwwwW ]),[],...,,([ 11  such 

that ],[
L
j

U
i

U
j

L
i

ij
w

w

w

w
W  are close to DM�s judgments, but 

there is no requirement that ijW must involve or be 

included within ],[ ijijij ula  . So, the GP model 

sounds to be more logical and natural. 
Finally, the lower and upper approximation models 

require extra constraints: L
i

w * or 
*L

iw  for 

ni ,...,1 to avoid the occurrence of zero weights, 
while the GP model has no such requirements. 

 
c. Global Interval Weights 
Suppose that ],[ U

j
L
j ww  is the normalized interval 

weight for criterion ),...,1( mjj   and ],[ U
ij

L
ij ww  the 

normalized interval weight of alternative iA
 

with 

respect to the criterion ),...,1;,...,1( mjnij   obtained 

using the GPM, as shown in Table 2. They satisfy the 
following normalization constraints:  
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Salo and Hamalainen �0 show by an example that 
interval arithmetic is unsuitable for the synthesis of 
interval weights. They propose a hierarchical 

decomposition method that decomposes a hierarchical 
composition problem into a series of linear 
programming problems over the feasible regions. 

 
Tab. 2. Synthesis of interval weights 

Alternatives  Criterion 1 Criterion 2 � Criterion n Composite weights 
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Bryson and Mobolurin �0 suggest a linear programming 
method, which seems simpler and is therefore adopted 
here. Their method treats the weights of criteria as 
decision variables and captures respectively the lower 
and upper bounds of the composite weight of each 
alternative ),...,1( niAi  by constructing the following 

pair of LP models: 
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Where jw is the decision variable for the j th criterion 

weight ),...,1( mj  and 
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The above pair of LP models results in a global interval 

weight for each alternative iA  denoted 

by ),...,1](,[ niww U
A

L
A ii

 . The following theorem shows 

that the global interval weights are always normalized. 
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L
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interval weights obtained by the LP models (34)�(37). 
Then there exist 
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Proof. Let W
T

mwwW  ),...,(
~

1

~~
 be an arbitrary 

feasible solution, which may be not optimal to any of 
L
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Denote by W
T

imii xxX  ),...,( **
1

*  and W
T

imii yyY  ),...,( **
1

*  

the optimal solutions of the LP model (37a), (37b) for 
L
Aiw  and the LP model (37c), (37d) respectively. 

Obviously, T
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Furthermore, we have 
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By (36c) and (36d), we get 
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In the same way, we can derive similar inequalities for 

all other intervals ],[ U
Aj

L
Aj ww  );,...,1( ijnj  . So, 

inequalities (38b) and (38c) hold for all ni ,...,1 . 

 
3.1.2. Lexicographic Goal Programming Method 

According to Arbel �0, Arbel and Vargas �0 
interpretation, interval judgments may be considered as 
constraints on weights. Accordingly, (1) may be 
expressed as 
 

njiuwwl ijjiij ,...,1,,/                                (42) 
 

njiwuwwl jijijij ,...,1,,                               (43) 

 
Inequality (42) or (43) holds only for consistent 
judgments, but they does not hold for conflicting 
(inconsistent) judgments. In the presence of conflicting 

judgments, deviation variables ijp and ijq could be 

introduced into (43), which lead to: 
 
 

njiqwuwpwl ijjijiijjij ,...,1,,              (44) 
 

Where ijp  and ijq  are both nonnegative real numbers, 

but can't be positive at the same time, i.e. 0. ijij qp . 

It is desirable that the deviation variables ijp  and 

ijq are kept to be as small as possible, which leads to 

the following lexicographic goal programming (LGP) 
model 
 

. and  allfor           ,0,,          

,1          

,,...,1   ;1,...,1       ,0          

,,...,1   ;1,...,1       ,0s.t       

)(Min     

1

1

1 1

jiqpw

w

nijniqwuw

nijnipwlw

qpJ

ijiji

n

i
i

ijjiji

ijjiji

n

i

n

ij
ijij



















 

  

(45) 

The LGP model considers only the upper triangular 
judgments of interval comparison matrices when 
generating weights because no new information is 
embodied in the lower triangular judgments. It will be 
proved in the next section that LGP models are in 
general not equivalent when the upper or lower 
triangular judgments are used. 
 
3-1-3. Two-Stage Logarithmic Goal Programming 
Method 

Ying-Ming Wang et al �0 ,applied multiplicative 
constraint to interval comparison matrix in AHP and 
developed the following goal programming models to 

estimate weights. Multiplicative constraint 




n

i

iw
1

1ln  

is equivalent to 




n

i
iw

1

0ln . Since interval judgments 

may be interpreted as constraints on weights, 
accordingly, (1) may be expressed as  
 

njiuwwl ijjiij ,...,1,,/                           (46) 
 
That can be expressed as the following: 
 

njiuwwl ijjiij ,...,1,,lnlnlnln                 (47) 
 

Inequality (47) holds only for consistent judgments. To 
generate a set of unified inequality constraints holding 
for both consistent and inconsistent judgments, 

deviation variables ijp  and ijq  are introduced into the 

following relation:  
 

njiquwwpl ijijjiijij ,...,1,,lnlnlnln 
   

(48) 

 

Where ijp  and ijq are both nonnegative real numbers, 

but only one of them can be positive, i.e. 0. ijij qp . 

For consistent judgments, both ijp  and ijq are set to be 

zero. In the presence of inconsistent judgments, only 

one of ijp  or ijq  may be unequal to zero. So, (48) 

holds for both consistent and inconsistent judgments. It 
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is desirable that the deviation variables ijp  and ijq  are 

kept to be as small as possible, which means to 
minimize the inconsistency of interval comparison 
matrices, thus leading to the following objective 
function and goal programming (GP) model:  
 

.,,1,    ,0      and      0,        

ln        

,,,1,    ,lnlnln        

,,,1,     ,lnlnln    s.t.

)(
2

1
Min  
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1 1

njiqpqp

w

njiuqww

njilpww

qpJ

ijijijij
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




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  (49) 

Since the value of 
iwln  

is nonnegative when 1iw  and 

negative when 1iw , the following nonnegative 

variables are introduced: 
 

.,,1   ,
2

lnln

,,,1      ,
2

lnln

ni
ww
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ni
ww

x

ii
i

ii
i






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

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                            (50) 

 

Based on ix and iy , 
iwln  can be expressed as 

niyxw iii ,...,1,ln   

Where 0. ii yx . Thus, the above GP model (49) can 

be expressed and simplified as 

nijniqpqp
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(51) 

Or 
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,,,1         ,0      ,0,        

,0)(        
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(52) 

 
About the above GP models, there exist the following 
theorems. 
 

Theorem1. nnijaA  )(
 

is a consistent interval 

comparison matrix if and only if 0* J , where *J is 
the optimal value of objective function (51a) or (52a). 
 

Proof. If A  is a consistent interval comparison matrix, 

then the convex feasible region wS is nonempty, which 

means that ijjiij uwwl  /
 holds for all the judgments, 

equivalently, njiuwwl ijjiij ,...,1,,lnlnlnln  . So 

0ijp  , 0ijq  for all the judgments, which is equivalent 

to 0* J . If 0* J , then 0ijp  and 0ijq hold for all 

nji ,...,1,  . Accordingly, inequality (47) holds for 

all the judgments. This means that (46) holds for all 
nji ,...,1,  . In other words, there is no contradiction 

among all the judgments. So, the convex feasible 

region wS
 

cannot be empty when 0* J . By 

Definition 6, A  is a consistent interval comparison 
matrix . 
 

Theorem2. GP models (51) and (52) are equivalent. 
Proof. Consider a reciprocal pair of interval 

judgments, say,  ijijij ual   and 
ij

ij
ij lau

11  . By 

introducing the deviation variables, the above 
reciprocal pair of interval judgments can be 
transformed to the following pair of inequality 
constraints: 

ijijjiijij quwwpl  lnlnlnln            (53) 
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jiijjijiij qlwwpu  lnlnlnln  

 

Inequality (53a) may be further written as 
 

jiijjiijij plwwqu  lnlnlnln            (54) 
 

Let jiij qp   and jiij pq  . Then, inequality 

constraints (53a) and (40) are indeed equivalent. 
Besides, since jijijiij qpqp  , the contributions 

of deviation variables 
jijiij qp ,  and jiji qp  to their 

respective objective functions are also equivalent. 
Since the above discussion can be applied to all the 
reciprocal pairs of interval judgments, it can be 

concluded that models (51) and (52) are in fact 
equivalent. 
Note that Theorem 1 shows how to check if an interval 
comparison matrix is consistent or not. Theorem 2 
ensures that using the upper or lower triangular 
judgments of an interval comparison matrix will 
always lead to the same results, Since Models (51) and 
(52) are equivalent in nature, we will consider only GP 
model (51) in the rest. Generally speaking, there may 
be multiple solutions to the GP model, which leads to 
intervals of weights. In order to find a feasible interval 
for each weight ),,1( niwi  , we keep the optimal 

objective function value unchanged and use it as a 
constraint to construct the following pairs of GP 
models: 
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


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

                                                                      (55) 

 

Where *J is the optimal value of the objective 
function of the GP model (51). Note that the 
complementary constraints 0ii yx ( 0ijij qp ) can 

always be satisfied without ix  and iy ( ijp and ijq ) 

being simultaneously selected as basic variables in a 
simplex method. The optimal objective values of the 
above pairs of GP models (55) consist of the possible 
intervals of the logarithmic weights 

iwln ( ni ,...,1 ), 

which are denoted by the logarithmic weight intervals 

]ln,[ln U
i

L
i ww ( ni ,...,1 ) accordingly, the weight intervals 

],[ U
i

L
i ww

 
can be obtained from logarithmic weight 

intervals, where )exp(ln L
i

L
i ww   and )exp(ln U

i
U
i ww  . 

Since the whole solution process for generating 
weights includes two stages, the method is thus 
referred to as the two-stage logarithmic goal 
programming (TLGP) Method. 
 

Theorem3. If 0* J , then TLGP degenerates to 
solving the following pairs of GP models: 
 

.,,1         ,0      ,0,              

,0)(               

,,,1    ,1,,1    ,ln                

,,,1    ,1,,1     ,ln   s.t.         
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


  

(56) 

The proof of Theorem 3 is straightforward. This 
theorem shows that if an interval comparison matrix 
A  already been known to be consistent, then only the 

GP model of the second stage will need to be solved. 
 
3.2. Linear Programming Method 

There are several methods that can be used to 
derive priorities from interval comparison matrices. 
Arber's preference programming method is the 
simplest yet most effective way to derive priorities 
from consistent interval comparison matrices. The 
method can generate consistent interval weights that 
can satisfy all judgments in a consistent interval 
comparison matrix.  
So, it is recommended to use the theorem 1 to judge if 
an interval comparison matrix is consistent or not. 
The method was originally developed to find the 
vertices of the convex feasible region, 






n

i
iiijjiijnw njwwuwwlwwwS

1
1 },...,1,0,1,/|)},...,({

 
 

If all the vertices prefer lw  to ),,1,( nklwk  , then 

any convex linear combination of all the vertices would 

prefer lw  to kw . Usually, the priority vector was 

generated as a convex linear combination of all the 
vertices. Since the convex combination produces only a 
point estimation of priorities, we propose to generate 
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interval weights as the final priorities, which can be 
obtained by solving the following pairs of linear 
programming (LP) models: 

,      s.t.

  Min/Max   

W

i

SW

w


                                                         (57) 

 

Where .),...,,( 21
T

nwwwW   The solutions to the 

above pairs of LP models form the weight intervals 

denoted by ).,,1](,[ niww U
i

L
i    

 
3.2.1. Numerical Example 

Consider the following comparison matrix: 
 

1 11 , 2 ,62 6

1 1,2 1 ,32 3

1 1,6 ,3 16 3

   
    

   
    
 
    
    

 

 
As can be seen, the above matrix is consistent. 

1, 2 ,31, 2 ,3
m ax ( ) m in ( )ik kj ik kj

kk
l l u u


  

The linear programming models for 1w ,for example, is 

as follows: 
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

 

 

The objective function min 1w , leads to 1
Lw and the 

objective function max 1w , leads to 1
Uw . 

The interval for 1w is as follows:  1 1, 0.11,0.6L Uw w    . 

 
3.3. Nonlinear Programming Method  

If an interval comparison matrix is judged to be 
inconsistent using Theorem 1, it appears particularly 
important to derive the priorities with pre-determined 
consistency requirements being met. The literature 
review shows that this problem has not been addressed. 
This subsection is devoted to investigating this 

problem and proposing an Eigenvector Method (EM)-
based nonlinear programming method, which can be 
used to generate satisfactory interval weights from 
inconsistent interval comparison matrices. 
From the principal right eigenvector method, it is 
known that 
 

WWA max
�                                                             (58) 

 

Where A� is a crisp comparison matrix; max  is the 

maximum eigenvalue of the comparison matrix A� ; W 
is the principal right eigenvector corresponding 
to max . The relationship between max and the 

consistency ratio (CR) can be described by: 
 

,
RI)1(

RI
1RI

CI
  CR maxmax











n

n

n

n 
                     (59) 

 
Where RI is an average random consistency index [15] 
that depends on the particular AHP scale used. It is 
suggested that if CR  0.1 the comparison matrix is 
believed to have satisfactory consistency and to be 
acceptable and that if CR > 0.1 it has poor consistency 
and needs to be revised. Formula (59) may be further 
written as: 
 

RI.CR.)1(max  nn                                           (60) 
 
Substituting (10) into (8) produces 
 

.RI.CR])1([� WnnWA                                      (61) 
 
Relation (61) is derived from crisp comparison 
matrices and can be extended to the interval 

comparison matrices. Suppose nnijaA  )�(�  is a crisp 

comparison matrix, which is randomly generated from 
the interval comparison matrix A with ijijij ual  �  and 

ijij aa �/1�  . Then relation (61) holds for A� . Thus, the 

following pairs of nonlinear programming models, 
which are based on Saaty's principal right eigenvector 
method, can be developed to generate the weight 
intervals with satisfactory consistency: 
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,,,1  ;1,,1      ,�                  

,1                  

,,1    ,0�RI.CR)1)(1(
�

              s.t.
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(62) 

 
Where (61b) is the expansion of (61) and the (62c) is 
interval constraints, d is the level of satisfactory 
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consistency (e.g. 1.0 ), CR, ),...,1( niwi   and 

),...,1;1,...,1(� nijniaij   are all decision 

variables. The purpose of imposing constraint 
condition (62d) on the above NLP models is to derive 
the weights satisfying the level of satisfactory 
consistency. The optimal objective values of the above 
pair of NLP models consist of the possible interval 

of iw , that are denoted by ],[ U
i

L
i ww . Repeating the 

above solution process for each weight ),...,1( niwi  , 

all the priority intervals that meet the requirement of 
the satisfactory consistency can be obtained.  
The numerical value of  in (62d) may be determined 
or adjusted according to the actual requirements of 
decision analysis. Moreover, the following NLP model, 
which minimizes the inconsistency of an interval 
comparison matrix, may also be utilized to derive the 
weights from an inconsistent interval matrix: 
 

.,,1  ;1,,1      ,�                  

,1                  

,,,1    ,0�CR) . RI1)(1(
�

     s.t.

CRMin    
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
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















  

(63) 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Process for generating priority from interval 

comparison matrices 
 
Such a NLP model usually leads to one crisp set of 
weights, which has the minimum inconsistency. The 
whole process introduced above for generating interval 
weights from interval comparison matrices is 
summarized in Fig.2. 
 
3.4. Stochastic Approach 

Stan Lipovetsky and Asher Tishler, 1999 treat the 
elements of the pairwise comparison matrices as 
realizations of random variables and discusse about the 
strongest features of the AHP that generates numerical 
priorities from the subjective knowledge expressed in 
the estimates of pairwise comparison matrices.  
For this purpose, they propose that the values given by 
the judge for the ratios of priorities are considered as 

the random variables. Clearly, if jia  in relation (2) is a 

random variable, so 
ij

ji a
a

1
  is also a random 

variable. Lipovetsky and Tishler �0, analyze the AHP 
for five types of random variables (distributions): 
triangle, beta, normal, Laplace, and Cauchy. They 
show that the probability density function (p.d.f.) of 

ija

1
 is not the same as the p.d.f. of ija  when the 

distribution of jia  is normal, triangle, Laplace, or beta. 

If, however, the p.d.f. of jia  is Cauchy, then the p.d.f. 

of the random variable 
ij

ji a
a

1
  is also Cauchy [8]. 

This property of the Cauchy p.d.f. is crucial to the 
analysis of a Saaty matrix, because the ratios of the 
priorities defined in relation (2) and evaluated by a 
judge depend on the order in which the pairs of objects 
were compared, which is arbitrary. That is, the judge 

could either be asked to assess the value of 
i

j




, or the 

value of 
j

i




. But, it is reasonable to suppose that the 

distribution function of the priority ratio should not 
depend on the order in which the objects are presented 
for consideration. That is to say, if the Cauchy p.d.f. 
accurately describes the process by which the judge 

estimates the value 12a (the ratio of the priorities of the 

first and second objects), then the p.d.f. of the random 

variable, 21a , in the lower triangle of the Saaty matrix 

will also be Cauchy.  
We believe that the use of other distribution functions 
such as the normal, Laplace, triangle or beta 
distribution to generate the priority ratios in the lower 
triangle of the Saaty matrices is less desirable; since 
the p.d.f. of the priority ratios derived using these 
distributions depends on the order in which the objects 
were presented to the judge. Note also that if the 
priorities 1  and 2  are drawn from a normally 

distributed population, then the marginal p.d.f. of the 

ratio 
2

1




 is Cauchy [8]. The p.d.f. of the inverse,

1

2




, 

is also Cauchy. Thus, if the priorities are normally 

distributed, their ratios - the values ija  and jia  in 

relations (1)-(3) are described by a Cauchy distribution. 
Specifically, each element of the upper triangle of 
matrix (1) is assumed to be a random variable with the 
following p.d.f.: 
 
 

2

1

11
)(








 




b

axb
xf


                                           (64) 
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The mode (maximal probability) of the p.d.f. (64) is at 
the central point ax  , and the parameter b serves as 
a mean deviation from the central value. 
We shall consider only positive values of x in order to 
obtain meaningful (positive) elements in relation (1). 
Since each element in the upper triangle (1) is a 
random variable distributed according to relation (64), 
then each element in the lower triangle of relation (1) 
(obtained by relation (3)), is also a random variable. 
The p.d.f. of each element of the lower triangle of 
relation (1) is derived as follows. Let x be a random 
variable. Then its inverse is given by 
 

x
xuy

1
)(                                                               (65) 

 
The p.d.f. of the random variable y in relation (65) is 
given by [8]. 
 

  )()()( ywywfyg                                          (66) 

 
The inverse function of y is denoted by )(ywx   ,and 

its derivative is )(yw
dy

dx
 . For the function

x
y

1
 , 

the inverse and the derivative are 
y

x
1

 , and 
2

1

ydy

dx


 
respectively. Thus, the p.d.f. (66) can be written as 
following: 
 

]
1

[
1

)(
2 y

f
y

yg                                                        (67) 

 
The p.d.f. (67) of the inverse of the variable, whose 
probability distribution is given by relation (64), is as 
follows. First, to simplify the analysis and ensure that 

the ija s in relation (1) are positive, we introduce the 

following notation: 
 

ayz                                                                      (68) 
 

10,  
a

b
                                                       (69) 

 

Assume that the range of n in relation (69) is ]1,0[  that 

implies that a, the center of the random variable 
representing the evaluations of the priorities, is in the 
range ]2;0[ a , and ab  . This assumption ensures that 

the evaluations in relation (1) are non-negative, and 
that the deviations are symmetrically distributed 
around the center of a. transforming the Cauchy p.d.f. 
(64), using formula (67), yields the following p.d.f. for 
the inverse random variable (65). 
 

.0  ,
]1)1([

1)1(
)(

222

2





 z

z
ayg




     (70) 

Comparison of relation (64) with relation (70) shows 

that x  and 
x

1
 possess a similar form. 

In practice, the elements of the lower triangle in 
relation (1) are not estimated directly by a judge. 
Rather, they are assumed to be the reciprocals of the 
values in the upper triangle of (1). Thus, if the values 
of the elements of the upper triangle of the Saaty 
matrix are functions of random variables which are 
described by the distribution (64), then their 
reciprocals, the elements of the lower triangle of the 
Saaty matrix, must be estimated using the 
corresponding p.d.f. in relation (70).  
Thus, we suggest the following procedure to estimate 

the ija s in (1). It is usually assumed that the parameter 

of the center of the p.d.f., that coincides with the point 
of the maximum probability of the p.d.f., is equal to the 
value of the random variable ijaax  . That is, it 

coincides with the value given by the judge to the ija in 

the upper triangle of the matrix (1). Thus, we propose 

to estimate the center of the inverse variable,
x

y
1

 , by 

the mode, or the maximal probability, of y. The point 
of maximal probability of the p.d.f. (70) is obtained by 

solving 0
)(






y

yg
. For the transformed Cauchy p.d.f. 

we have: 
 

.10    ,
1

1
2

*



 


Z                                          (71) 

 

Clearly, the maximal probability of 
a

z
y

x

*
*

*

1
  is 

less than 
a

1
 for all 0 . A similar result is obtained 

for the beta, normal, triangle and Laplace distributions 
�0. This result implies that the centers of the random 
variables in the lower triangle of (1) are generally not 
reciprocally symmetric with the centers of the original 
random variables in the upper triangle of the pairwise 
comparison matrix (1).  
In fact, the influence of the elements of the lower 
triangle of the Saaty matrix on the estimated priority 
vector will be smaller when we compute these 
elements using the mode of y; that is, 
 

*1
Z

a
a

ij
ij                                                                (72) 

 
Instead of the reciprocal values (3) . it can be proved 
that Cauchy distribution is very useful for randomizing 
data �0. The shape of the Cauchy p.d.f. resembles to a 
normal p.d.f., but it diminishes less steeply (exhibits 
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�fat tails�). For small deviations, bax  , expansion 

of the p.d.f. by a Taylor series (as a first approximation 
to a Cauchy p.d.f., or to a normal p.d.f.) yields a 
parabolic dependence similar to the structure of a beta 
distribution. The parameter representing the center of 
the Cauchy p.d.f. coincides with the mean value of the 
Cauchy p.d.f.. At the modal point, ax  , the value 

)(af  is equal to 
)(

1

b
. At the points bax  , the p.d.f. 

equals half the height of the peak, 
2

)(
)2(

1
)( af

b
baf 


. 

Also, 
5

)()2( afbaf  , and  )3( baf  
10

)(af . Thus, the 

parameter b can be interpreted as a measure of the 
mean deviation from the center of the p.d.f.. Using the 
relation (67) to transform a random variable x with a 
Cauchy p.d.f. (See relation (64)), we obtain after 

simple transformations, the following p.d.f. for
x

y
1

 , 

 

,
]~

~
[1

1
~
11

]
1

[1

11
)(

2
2

2
1

b

ayby

b

yb
yg










 

 

            (73) 

With the following new values for the parameters:  

 

,
1

11~
222 





aba

a
a                                       (74 a) 

 

,
1

1~
222 









aba

b
b                                        (74 b) 

 
Clearly, formula (73) is another representation of the 
Cauchy p.d.f. (70) where the parameter   is defined in 

formula (69). Relations (73) and (74 a) reveals that 
~
a , 

the value of the center of y, is smaller than 
a

1
by the 

term 
*z defined in the relation (71). The p.d.f. of the 

inverse variable with the distribution (14) reproduces 
the initial Cauchy p.d.f. (64). This can be seen by 
applying the transformation (15a), (15b) to the 
parameters in relations (74 a) and (74 b): 
 

.
)(

/~~

~

222

22

2222
a

ba

ba

ba

a

ba

a
a 













               (75) 

 

Analogously, bb 


. Thus, relations (5) and (14) are 
p.d.f.s of mutually reciprocal random variables. 

 
3-4-1. The Construction of Stochastic Salty Matrices 

We are now ready to use the Cauchy p.d.f. to 
generate the lower triangle elements of a Saaty matrix. 

Accounting the stochastic nature of the process , a 

value is assigned to each element ija , and we evaluate 

the Saaty matrix (1) for three values: the actual ija , 

and baij   (b represents the mean deviation from the 

center a). First, select a value for  . For 

example, 2
ab  , 2

1  or (see relation (4)). Then, 

change each element of the upper triangle of the Saaty 
matrix (1) to a number in the range ];[ baba  . For 

example, 
 

}.1.5 , ,5.0{})1( ; ;)1{( ijijijijijijij aaaaaaa  
  

(76) 

 
Using relations (73) and (74) we obtain the 
corresponding values for the lower triangle of the Saaty 

matrix. These values are within the range 









~~~~
; baba , 

and the maximal (minimal) value of jia  corresponds 

to the minimal (maximal) value of ija  in relation (76): 
 

}.
1

4.0;
1

8.0 ;
1

2.1{}
1

1

1
;

1

1

1
 ;

1

1

1
{

222
ijijijijijij

ij aaaaaa
a 


















      

(77) 

 

If all elements are chosen using the same value for n, 
then the resulting Saaty matrix obtained by relations 
(76) and (77) can be represented as a weighted sum of 
the diagonal, the upper triangle and the lower triangle 
portions of a Saaty matrix (1): 
 
 









































0...

0

0

0

...

..0

...0

�

21

21*2

112

nn

n

n

n

aa

a
qz

a

aa

kIA


            (78) 

 

Where nI  is an identity diagonal matrix of order n, the 

term *z  is as defined in relation (71), and 

ij
ji a

a
1

 (see relation (3)). The terms k and q define the 

location of the random values, i.e., the left edge, the 
center, or the right edge of the range (76) (the right 
edge, the center, or the left edge of the range (77)). 
Specifically: 
 













































1

1

edgeright 

        ; 

1

1

center

       ; 

1

1

edgeleft 

q

k

q

k

q

k                  (79) 

 
The random values in the lower triangle Saaty matrix 
are smaller than the inverse of the corresponding 
values in the upper triangle.  
That is, the priorities must be estimated using a 
reciprocally nonsymmetrical matrix. Thus, the 
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''observed'' values- i.e., those given explicitly by the 
judge, and arranged in the upper triangle of the pair 
wise comparison matrix - seem to play a more 
significant role in determining the priority vector than 
do the ``unobserved'' elements in the lower triangle. 
The conventional AHP method of priority evaluation 
(4) was constructed specifically for reciprocally 
symmetric pair wise comparison matrices (Saaty, 
1980). We have just shown that the AHP has to be 
modified to account for nonsymmetrical matrices 
whose structure is given by relation (78). 
 
3.4.2. The AHP with Reciprocally Nonsymmetrical 
Matrices 

This section discuss about  reciprocally 
nonsymmetrical Saaty matrices in four variants of the 
AHP. 
 
3.4.2.1. The Conventional AHP 

When all the ija s are defined as ratios of priorities 

(see relation (2)), multiplication of the random matrix 
(78) by the vector of priorities yields: 
 

 












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D
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qznk

nk

A

nn













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





























])1(1[

])2(1[

)]1(1[

 �

*

2
*
1

2

1



                   (80) 

 
Where D  is the following diagonal matrix: 
 

]}.)1(1[ ...,          

],)2(1[),1(1{[diag
*

*

qzn

qznknkD




              (81) 

 
Since the elements in the matrix (78) are real 
evaluations and not the theoretically exact ratios of 
priorities, relation (80) can be replaced by the 
generalized eigen problem 
 

,�  DA                                                        (82) 
 
For which the maximal eigenvalue   can differ from 
1 (due to inconsistencies in the judge's estimates of the 
initial priority ratios in relation (1)). Elements of the 
diagonal matrix D can be written in the general form: 
 

.,...,1          ),()1(1 * niinkiqzd ii            (83) 
 

If the matrix A�  is not random (and hence, it is 
reciprocally symmetric), then 0 (see relation (69)), 

1*
Z  (see relation (71)) and 1 qk (see relation 

(79)). In this case, the matrix D  is a scalar matrix with 
all the elements given by nd ij  , and the generalized 

eigen problem (82) reduces to the conventional AHP 
eigen problem (4). 

3-4-2-2. The Logarithmic Method 
The so-called logarithmic method (LN), or 

multiplicative mode, of estimating priorities in the 
AHP is described in [7, 16, and 21]. 
The LN method yields a solution in which the priorities 
are proportional to the geometric mean values of the 
elements in the rows of the Saaty matrix (1). That is, 
 

.,...,1        ,

/1

1

nia

n
n

j

iji 













 



                               (84) 

 
The reciprocal symmetry of the elements of a 
conventional Saaty matrix allows priorities to be 
estimated by the LN method using the elements in the 
columns of matrix (1). The vector   is the reciprocal 

of the vector   in relation (84), and is given by (up to 
a multiplicative normalization): 
 

.,...,1        ,1 niii 
                                           (85) 

 

Using a random matrix (78) instead of relation (1), i.e., 
using a reciprocally nonsymmetrical matrix, results in 
the model, 

),1(~
~

�
1 ij

i

i
ij 




 


                                                  (86) 

 

The elements ija� (the random pair wise comparisons) 

are represented as ratios of the estimates of the i
~ s 

and the dual estimates, the 1~ 

j  s, of the priorities in 

the random data evaluation. 

The ij s are random relative deviations. Note that the 

dual vector 
~

is analogous to the left eigenvector (the 

eigenvector of a transposed Saaty matrix), which is 
also used in the conventional AHP (Saaty, 1980). 
Minimizing the objective function: 
 

min))1(ln(  LN 2


ij

ij                                   (87) 

 

Yields priority estimates that are the geometric means 
of the elements in the rows and columns of the random 
matrix (78): 
 

nn

i

iji

n
n

j

iji aa

/1

1

/1

1
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


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

















 



                    (88) 

 

Clearly, 1~~ 
 ii   since relation (3) does not hold.  

When only one priority vector is used in relation (86) 
we have: 
 

)1(~

~
~

ij
j

i
ij 




                                                       (89) 
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And the solution of the objective function (87) for the 
model (89) yields priority estimates of the form 
 

2
11

2
1

1

1 )
~~(

�

�

~ 
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

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
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


kk

n

n

i
ik

n

j
kj

k

a

a


                    (90) 

 
Thus, if one uses priority ratios as in relation (78), the 
LN solution can be written as a geometric mean of the 

i
~ s and the corresponding reciprocal estimators 

1~

i s, where ~ and 
~

are defined in relation (88). 

If all the elements of a Saaty matrix are generated with 
the same value of  (see relation (69)) (as is done in 

relations(78)-(82)), then expressions (88) and (90) can 
be represented by a simple form. 
Using the elements of the matrix (78) in relation (88) 
yields the following evaluations (up to normalization): 
 

ni
qz

k

k

qz n
ii

n
ii ,...,1          ,)(

~
          ,)(~ 1

*

1*

 

   

(91) 

 

Te i s and i s are the LN solutions (84) and (85) for 

the nonrandom data, *z is as defined in Eq. (71), and 
the parameters k and q are as in relation (79). Clearly, 

the estimates (91) satisfy relation (87), as do the 

nonrandom priorities, i.e., 1~~ 
 ii   (up to a 

normalization). This means that i
~ in relation (90) 

coincides with i
~ in relation (91). An interesting 

property of the LN method with random data is 

obtained when the i
~ s in relation (91) 

An interesting property of the LN method with random 

data is obtained when the i
~ s in relation (91) are 

evaluated for the edges and the center of the relevant 
random values. Using definitions (79) for the location 
parameters, yields: 
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


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




   

(92) 

 
Thus, the priority weights at the center and at the edges 
of the random data in the generalized LN method are 
connected by the following geometric mean relation: 
 

  .,...,1         ,)~(,)~()~( 2
1

rightleftcenter niiii         (93) 
 

Clearly, as is usually done in AHP solutions, all the LN 
priority vectors need to be normalized (the sum of their 
elements is set equal to 1). 

3.4.2.3. The Synthetic Hierarchy Method 
In this section we will show how to modify the 

Synthetic Hierarchy Method (SHM) �0 to accommodate 
random data. The SHM, in linearized form, may be 
represented as follows: 

 

.,...,1,       , nkia ikikik  
 
                      (94) 

 

Least-squares (LS) estimation of the parameters in 
relation (94) is defined by 
 

min)( LS

2

1,

2
 



n

ki
ikika                        (95) 

 

Subject to the normalizing condition 

1.
1

2




n

i
i                                          (96) 

Optimization problems (95) and (96) imply 
 

min.1LS 
1

2















 



n

i
iF                                 (97) 

 

The first order conditions of relation (97) yield the 
eigen  problem: 
 

 S                                                                 (98) 
 

Where 
 

,)diag( AAAS                                                     (99) 
 

A  is defined by relation (1), and AAA  . The 
SHM can easily be modified to account for random 
data by replacing the Saaty matrix A  in relation (1) by 

A� in relation (78). The first order conditions of relation 
(97) then yield the eigen problem: 
 

 S
~

                                                                 (100) 
 

Where 
 

)��()��diag(
~

AAAAnIS n                              (101) 
 

And nI is an identity matrix of order n. 

 
3.4.2.4. Nonlinear Approximation of Priority 
Ratios 

To assess the results of priority evaluation with 
random data we use a nonlinear approximation of the 
priority ratios in the Saaty matrix. This nonlinear 
approximation can be viewed as a regression on 
dummy variables. It produces, together with the 
priorities, the relevant standard deviations and t-
statistics. Thus, it allows the construction of confidence 
intervals for the priorities. 
Specifically, consider the following nonlinear model 
[14]. 
 

,ij
j

i
ija 




                                                        (102) 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ie
pr

.iu
st

.a
c.

ir
 o

n 
20

25
-0

7-
19

 ]
 

                            16 / 18

https://ijiepr.iust.ac.ir/article-1-102-en.html


AAhhmmaadd  MMaakkuuii,,  MMeehhddii  FFaatthhii  &&  MMaassoouudd  NNaarreennjjii               IInntteerrvvaall  WWeeiigghhtteedd  CCoommppaarriissoonn  MMaattrriicceess  ��  AA  RReevviieeww               155  

 
That corresponds to the definition of a pair wise 

comparison of the elements ija as ratios of the 

priorities of the objects under consideration. 
Minimization of the sum of deviations yields the 
nonlinear LS problem: 
 

min)(
1,

2

1,

2
 



n

ji j

i
ij

n

ji

ij aS



                       (103) 

 
The first order conditions of relation (103) can be 
expressed as a system of nonlinear equations. 
Clearly, the solution of relation (103) requires some 
normalization, due to the homogeneity of degree 0 of 
the parameters in relation (103). One can use, for 
example, 
 

1or        ,1or      ,1
i

2

i
  iin                (104) 

Minimization of relation (103) can be described as a 
regression on a set of dummy variables. Indeed, all the 
elements of matrix (1) can be considered as observed 
values of a function y, which is approximated by a 
theoretical model of the form  

,�

1,
ljki

n

lk l

k
ijy 







                                                 (105) 

Where ki and lj are Kronecker delta functions. 

The function (104) transforms the ij th element in 
relation (103) into the ratio of different pairs of the 

unknown coefficients
j

i




, which corresponds to the 

multiplication of all the ratios in relation (104) by the 
values of dummy variables. To clarify, consider an 
example with a third-order Saaty matrix (1), with six 
values of the function y, and six dummy 

arguments 621 ,...,, xxx . Using these dummy variables 

we construct the following regression model 
 

6
2

3
5

1

3
4

1

2
3

3

2
2

3

1
1

2

1� xxxxxxy

























  
(106) 

 

There is no need to use the diagonal elements of the 
Saaty matrix in relation (105) since all these elements 
are equal to 1. 

 
4. Conclusion 

The most of decision making problems must be 
applied to uncertain real word conditions. Classical 
solving methods are not usually proper to these types 
of problems. In these paper new methods for interval 
weighted comparison matrices are discussed and their 
advantages and disadvantages are shown. Some criteria 
must be considered in the selection process of methods. 
That�s Calculation complexity, CPU time, Precision of 
solution and interaction with decision maker.  
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Appendix 1. 

Tab. 1. Models with different input and output 

Input (Comparison Matrix) Output (Weight) Method Year 
Precise Interval fuzzy Precise Interval fuzzy 

Van Laarhoven & Pedryce 1983         

Buckley 1985         
Xu and Zhai 1996         
Leung�and Cao 2000         
Buckley et al. 2001         
Csutora and Buckley 2001         
Saaty and Vargas 1987         
Arbel 1991         
Salo et al. 1995         
Arbel and Vargas 1993         
Moreno et al. 1993         
Islame et al. 1997         
Haines 1998         
Mikhailov 2004         
Ying-Ming Wang et al. 2007         
Sugihara et al. 2004         
Bryson and Mobolurin 1997         
Ying-Ming Wang et al 2005         

Lipovetsky and Tishler 1997         
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