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KEYWORDS ABSTRACT
AHP, Nowadays, interval comparison matrices (ICM) take an important role
Fuzzy DM, in decision making under uncertainty. So it seems that a brief review

Comparison matrix,
Interval weight

on solution methods used in ICM should be useful. In this paper, the
common methods are divided into four categories that are Goal

Programming Method (GPM), Linear Programming Method (LPM),
Non-Linear Programming Method (NLPM) and Statistic Analysis (SA).
GPM itsdf is divided also into three categories. This paper is a review
paper and is written to introduce the mathematical methods and the
most important applications of ICM in decision making techniques.
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1. Introduction

ICM is a way to compute the weights in the
presence of uncertainty in decision making techniques.
In traditional methods, each preference ratio in the
comparison matrix (aij) is assumed to be deterministic.
In real life, in most times the preference ratios are
interval numbers. Two type methods are applied which
one of them calculates the weights accurately while
another one calculates the weightsintervally.
Most real world decision problems involve multiple
criteria that are often in conflict in general and it is
some times necessary to conduct trade-off analysis in
multiple criteria decision analysis (MCDA).As such,
the estimation of the relative weights of criteria plays
an important role in a MCDA process. Among many
frameworks developed for weight estimation, pair wise
comparison matrices provide a natural frame work to
elicit preferences from decision makers and have been
used in several weight generation methods. However,
due to the complexity and uncertainty involved in real
world decision problems and the inherent subjective
nature of human judgments, it is sometimes unrealistic
and infeasible to acquire exact judgments. It is more
natural or easier to provide fuzzy or interval judgments
for parts or al of the judgments in a pair wise
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comparison matrix. A number of techniques have been
developed to use such a fuzzy or interval comparison
meatrix to generate weights.

Differences of each method according to input data
type (interval comparison matrix) and output data type
(achieved weights) are exhibited in the table 1 in
appendix1.

2. Definitions
2.1. Comparison Matrices
In the conventional AHP, a judge estimates (by
filling out a questionnaire, say) ratios of priorities,
which are arranged in the upper triangle of a pair wise
comparison (Saaty) matrix:

1 a, - &,
a 1 ... a
A=(ay) = :21 2n D
ay ay;, ... 1

Each element a; of the upper triangle in Eq. (1)

represents an estimate of the ratio of preferences «;
and «; of theith and the jth objects. That is,

aj=—, i=L.,n; j=Ll.,n 2
&
The elements in the lower triangle of matrix (1) are

taken asfollow:


mailto:amakui@iust.ac.ir
mailto:mfathi@iust.ac.ir
mailto:mnarenji@iust.ac.ir.
https://ijiepr.iust.ac.ir/article-1-102-en.html

[ Downloaded from ijiepr.iust.ac.ir on 2025-07-19 ]

140  Ahmad Makui, Mehdi Fathi & Masoud Narenji

Interval Weighted Comparison Matrices— A Review

aj=—, j=L.,n; i=l..,n 3
The priority vector &is estimated as the right
eigenvector for the maximal eigenvaue k in the
following eigen problem (Saaty, 1980):

Aa =1a (4)

2-2. Interval Comparison Matrices

Suppose the decision maker provides interval
judgments instead of precise judgments for a pair wise
comparison. For example, it could be judged that

criterion | is between Iij and U; times as important as
criterion j with |;;and U, being non-negative real
numbers andl; <u;; . Then, an interval comparison
matrix can be represented by:

1 [li2, U] - [y Ugnl
A= (8 ) = [|21’:U21] 1 P v:u2n] (5)
[lnllunl] [|n2run2] 1
Where I'] :1/u” and ulj :1/||J and|| <ai]- SU” .

j _
About the above interval comparison matrix, we give
the following definition and theorem:

Let A=(q;),, is an interva comparison matrix
defll’led by (5) W|th Ilj Sa” Su” and Iii =a“ ZU“ :1
for i,j=1...,n. If the convex feasible region

is nonempty, and then A is said to be a consistent
interval comparison matrix.

2-3. Consistency of Interval Comparison Matrix
A=(a;),., |sa consistent interval comparison

matrix if and only if it satisfies the following inequality
constraints:

iklkj

mlza\x(l )srnkin(uikukj), for all i, j,k=1...,n.  (6)
Proof . If A is a consistent interval comparison
matrix, then the convex feasible region S, is

nonempty, which means that there is no contradiction
among the following inequality constraints:

Iik SWI/WI( Sulk, i,k:].,...,n (7)

Ik] SWk/WJSUk], |,J:1,,n (8)

Multiplying (7) by (8) leads to the following implied
indirect inequalities:

Since (9) holds for anyk =1,...,n, it follows that

Conversely, if (6) holds forvi,j,k then
lij <w; fwj <u; holds for anyi,j=1,....,n. So,
S,, cannot be empty. By definition, A is a consistent
interval comparison matrix.

2-4. The Degree of Preference

The degree of preference of aover b (ora>b) is
defined as:

_ max(0,a, —b;) —max(0,a, —b,)
(8, —ay) + (b, —by)

The degree of preference of b over a(orb > a) can be
defined in the same way. That is:

P(a>b) (10)

max(0,b, —a,) — max(0,b, — a,)
(ap —a) + (b, —by)

P(b>a) = (12)

Let a=[a,a,] and b=[b,b,] be two interva

weights, whose possible relationships are as shown in
Fig.1l. We refer to the degree of one interval weight
being greater than another one as the degree of
preference. Accordingly, we have the following
definitions and properties.

a<b
a—b a—-b L a—b
a>b
° a-b a—b a-b
a<b a>b
a—b ° a-b a—b
Fig. 1. Relationships be;\;]v;eg two interval weightsa

It is obvious tha P(a>b)+P(b>a)=1 and
P(a>b)=P(b>a)=05 when a=b, i.e. a;=b;, and

a,=b,.
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e If P(a>b)>P(b>a),thenaissaid to be superior

to b to the degree of P(a>b), denoted by

P(a>b)
a > b;

e If P(a>b)=P(b>a)=0.5, then ais said to be
indifferent to b, denoted by a ~b;
e If P(b>a)>P(a>b), then ais said to be inferior

to b to the degree of P(b>a), denoted by

P(a>b)
a < b.

Propertyl. P(a>b)=1 ifandonlyif a>Db.
Property2. If @ >b, and a,>b,, then
P(a>b)>05and P(b>a)<0.5.

Property3. If bisnested ina, i.e. a; <bjand a, >b,,

then P(a > b) > 0.5 if and only if a1+2a2 > by +2b2 .
Property4. If P(a>h)>05 andP(b>c)>0.5,

thenP(a>c)>0.5.

2.5. Multiplicative Constraint

n
The multiplicative constraint, i [ [inw =1
i=1

n
which is eguivalent to mei:o. Such
i=1

multiplicative  constraint is widely wused in
multiplicative AHP.

3.Solution Methods
3.1. Goal Programming Based M ethods
3.1.1. Goal Programming
a.Model (1)

Ying-Ming Wang and Taha M.SElhag 0
developed a method for deriving interval weight based
on goal programming. Suppose a decision maker (DM)
provides an interval judgment instead of precise
judgment for a pair wise comparison matrix. For
example, the importance of criterion i in respect to

criterion j, lies between Iij and U;, with Iij and

U, being non-negative real numbers andl; <u;. An
interval comparison matrix can be expressed as the
matrix (1). Where I; =1/u; and u; =1/1;. For
ali, j=1,...,n;i # j. The above interval comparison
matrix can be split into two crisp nonnegative matrices:

O 1 up - Uy,
N B L
Inl In2 1 U Up2 1

Where Al <A<A, . Notethat A , A, areno longer

the reciprocal matrices.
For the interval comparison matrix A, there should
exis a normaized interval weight vector,

W = ([wy, W, ,....[wh,wd )T which is close to A in
the sense that ay =[;;,u;]~[w",w’ ]/[W}',WLJ-’]for
ali,j=21..,nji=j.

According to 0, the interval weight vector W is said to
be normalized if and only if:

ZWiU —mjax(wﬁJ W) =1, (13)

2w+ max (w) -wi)<1 (14)
i I

Which can be equivalently rewritten as:

wh > w2, i=1-,n, (15)
j=Lj=i

w o+ ijLsL i=1--,n (16)
j=Lj=

As is known, if the interval comparison matrix A is
the precise comparison about the interval weight vector

W, namely, a; =[l ’uij]E[WiL'VViU ]/[W;',W?] and

then A can be written as follows:

L wow] o ww]

[Wsws]  [wy,wy ]

wews] o [whws]
A=t wh ] wewsl| @9

[wo ol [, W ] L

L U L U
[wr wr ] [wy,w; ]

According to the division operation rule on interva
numbers, i.e.[b ,b,]/[d, ,dy]=[b /d,.b, /d.],
where [b_,b,]and [d,,d,]are two positive interval

numbers, the interval comparison matrix A defined by
(17) can be further rewritten as:

L[] [ww
w W W wgy

e ow) wow]l 9
A= w "w W wgy
L e | [wh g |
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This can be split into the following two crisp
nonnegative matrices:

pWw g W
wooowh wooow
o, oW v, W) (19
Ak e b S
wow wow
(W W ] W W ]
It is easy to prove that
AW, =W, +(n-DW, (20)
AW =W +(n-DW,, (21)
Where W, =(W,..,w5) andW, = (W ,..,w2).

Relations (20) and (21) are important links between the
lower and the upper bounds of the interval weight
vector W.

Due to the presence of subjectivity and uncertainty, the
DM’s subjective judgments cannot be 100% exact.
Therefore, Relations (20) and (21) may not hold
precisely. Based on such an analysis, consider the
following deviation vectors:

E=(A - W, - (n-DW, (22)
= (A, - W, - (n-DW,, (23)

WhereE = (g,...,&1) " . T = (71,..,7,) " and | isann X
n unit matrix whose elements on the leading diagonal
are 1, and al the other elements are 0.

It is most desirable that the absolute values of deviation
variables should be kept as small as possible, which
leads to the following optimization model to be
constructed:

n
Minimiz 3 =" (&|+[n)
i=1

(AL— W, —(n-W,_ - E =0,
(Ay =)W, —(n=DW, —T =0,
n (24)

wh + ZWL]’ >1, i=1--,n,

j=1, j#i

st N

WiU + ZWIJ-‘Sl, i=1--,n,

j=1, ) #i
W, -W, >0,
W, , W, >0,

Where the first two constraints are relations (22) and
(23), the middle two constraints are the normalization
constraints on the interval weight vector W, and the last
two constraints are those on the lower and upper
bounds of W.

Let

and gi:_‘g‘Tﬂg‘l, i=1.,n (25

8i+=gi +|éi]|
2

. _n+nl __—n+nl

7i > and 7 > i=L1---,n (26)
Then

E* = (s, ,60)" 2

E = (o e,) 2

T =@ ) 2

T™ =@ rn) 2

Based onand & and &, & and |g;| can be expressed
as

|‘9i|: & +e, i=L..,n

|5i|:5i+ -&, i=1.,n

Where ¢ & =0 for i=1..,n. ¥, and |;/i|can be
expressed as

|7i|:7’i++7f, i=1..,n

|7’i|:7i+ -7, i=Ll..n

Where 7"y =0 for i=1,..,n. Accordingly, the
optimization model (24) can be rewritten as
n
Minimiz J:Z(q*+q’+yﬁ+y():eT(E*+E+r* +IM)
i=1
(A -IW, —-(n-IW —E"+E =0,
(A=W —(n-IW, -T" +T" =0,

w -+ i‘“}f >1, i=1-n (27)
st. =LA
W+ im#ﬂ =140
=i
W, -W >0,

W, W ,E"E, T, >0,

Wheree' =(1..]), & and & as wel as y and

7i cannot be simultaneoudly the basic variables in the

simplex method. This method for obtaining interval
weights from an interval comparison matrix is referred
as the GP method (GPM). Since crisp comparison
matrices are a specia case of interval comparison
matrices, the above GP model (27) is also applicable to
Ccrisp comparison matrices.

3.1.2. Numerical Example
Consider the following comparison matrix:

1 [3.5] [%,4]
[%%} 1 [2.4]
BALR P/
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We have:
1
13 2 1 5 4
AL—151 2 Ay =Y 1 4
yl 1 2 Yo
4 /4

r=(n7r273)

By wusing model (27) the following linear
programming is obtained:

P + + ., - - -
ming " +&," +é3' +& +éy +ég

+y1+ + 72+ + 7/3+ + 71_ + 7/2_ + 73_
st

u,l u
3W2 +=W, —2W1

L +
23 o

1 +gl_=0

1.U U L+, —_
gwl +2W3 —2W2 &y +éy =0

1 u, 1 U L + _
—W +ZW2 —2W3 —&3 +ég =0

L U + -
5W2 +4w3 —2w1 -7 tn =0

1L L U + - _
3 +4w3 —2W2 —79 *7p =0

L
W~ — Wy >0

W ET,E-,rt.T” >0

u W

L

The solutions of the above model are the [w",w" |

for i =1,..,n. They are asfollow:
[w",w” ] =[0.4208,0.7035

[w,",w,” ] =[0.2208,0.2208]

[w",w’ | =[0.0757,0.3583]

It is worth while pointing out here that for a crisp
comparison matrix, Bryson [17] developed a different
goa programming (GP) method for generating priority
Vectors.

Consider the following theorems on the above model.

Theorem1. Let W, and W, be the optimal solution of
the GP model (27). If Ais a crisp consistent
comparison matrix, then we havew, =W, =W,
where W" isthe principal right eigenvector of A.

Proof. If A is a crisp consistent comparison matrix,
then there exists the eigenvalue equation: AW=nW,
namely, (A-nl)W =0. Let W =W and W, W . It is easy
to find that W =W, =W is a feasible solution of the GP
model 27). Accordingly, we have
E=(A ~1)W, —(n-DW =(A-n)W =0

and E= (A, —1)W —(n-IW, =(A-nl)W =0, which

n
leads t0 3= (5] +|,)=0. That is to say, W =W, =W’
i=1
is also the optimal solution to the GP model (21). So,
W, =W =W,

b. Model (2)

Sugihara et al. 0 developed the goal programming for
deriving interval weight. They deal with interval
judgments in two ways. One is caled the lower
approximation and the other is called the upper
approximation. For the lower approximation, it is
required that:

- WY
W, = W_IUW ca =[ljul, Vi) (29
i

This can be rewritten as

L wY
ﬁz l;  and ﬁg U,
] ]
Or
ml}:-hjvxgi >0 and \Al}f-qjm]b >0, Wij@=j). (30)

vij (i #]) (29)

For the upper approximation, it isrequired that
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U

U U’
WI=[W,,‘3V‘—U];aj=[IiJ,uiJ1, vij =), (3D)
i i

This can be rewritten as

L u’
W and M su i =) (32)
wY I Wi 1l

i i
Or

w -l <0 and w—uwk 20, ¥i,j (i), (33

The lower and upper approximation models are
respectively constructed as follows:

n
Maximize J. =" ) -wF)
i=1
we —lwe 20, Vi, (=),

wiLf —uijoL* <0, Vi,j(@i=]),

wi':+ iwu >1 Vi (34)

s.t.

n
Minimize 3" =Y (w’ —wf)

wh—lywi <0, Vi, j (i # ),
wl —uywh 20, Vi, (i),
n (35)
who+ > w21 Vi
st j=1, j=i
o n
wY o+ ZWIL <1, Vi,
=1, j#i
w’ —wh >0 Vi
W,U, >¢ Vi

And ¢ isasmall positive real number.

Compared with the above lower and upper
approximation models, the GP model (27) differs from
them in the following ways:

First of al, the GP model considers an interval
comparison matrix as a whole and does not consider
each judgment element individualy, which makes the
GP model to have less constraint, whereas the lower
and upper approximation models deal with each
judgment individually and therefore have more
constraints than the GP model.

Second, the GP model (27) is applicable to any crisp
and interval comparison matrices ho matter whether
they are consistent or not, while the Ilower
approximation model is only applicable to consistent
comparison matrices (crisp or interval) because there is
no feasible solution that can be found for any
inconsistent comparison matrix or inconsistent interval
comparison matrix.
Next, the upper approximation model aims at finding
an interval weight vector
W= (wi oWy L W Wi DT

* Eow”
aj =[lj,uj]eW =[—5,—5] for Vi, j(i#])

Wi W

Due to the fact that the DM’s judgments are subjective
and cannot always be 100% precise, there is no
guarantee that the DM’s judgments will certainly fall
within and will not exceed the real interval

W {WL W} Where W = (', @], -+ [ 7Y ])T

Y] n

W
isan unknown real weight.
On the other side, the GP model aims at finding an

interval weight vector W= ([w,w'],...[w5,wP])" such

that W =[$}J,'L,\3VI'L:] are close to DM’s judgments, but

I I
there is no requirement that W must involve or be

sounds to be more logical and natural.
Finaly, the lower and upper approximation models

require extra constraints: vvi': >gor w- >g for

i =1..,nto avoid the occurrence of zero weights,
while the GP model has no such requirements.

c. Global Interval Weights
Suppose that [wj,wi'] is the normalized interval

weight for criterion j (j =1...m) and [wy,w; ] the

normalized interval weight of aternative A with
respect to the criterion j(i =1,...,n; j =1,...,m) obtained

using the GPM, as shown in Table 2. They satisfy the
following normalization constraints:

wi o+ ZWLKJ >1, j=1,---,m,
k=1k=j
m
L
Wy + Zwk <1 j=L--,m,
k=Lk# | (36)
m
wi + ZWH >1, i=1--,n;j=1--,m,
K=Lk# |
m
wi + ZWE <1,  i=1--,mj=1--,m
K=TK# |
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Salo and Hamalainen 0 show by an example that
interval arithmetic is unsuitable for the synthesis of
interval weights. They propose a hierarchical

decomposition method that decomposes a hierarchical
composition problem into a series of linear
programming problems over the feasible regions.

Tab. 2. Synthesis of interval weights

Composite weights Criterionn Criterion 2 Criterion 1 Alternatives
(Wi W] [w; w1 [w,w]
L L
[W ’V\/,;i] [Wlmi\,\/]\_Jm] [WlLZIV\é_JZ] [WlLl’V\éJl] 'A‘l
L L L L
(W, W] [Wzps War] [Wa ool (W, W3] A,
L L L
[Wk ’ WXZ] [an’V\/r;Jm] [WnZ’V\ﬁnJZ] [Wnl'Ml] A1
Bryson and Mobolurin 0 suggest a linear programming o o
method, which seems simpler and is therefore adopted ZWA <1 and Z Wa 21
here. Their method treats the weights of criteria as i=1 i=1
decision variables and captures respectively the lower . S ) (38)
and upper bounds of the composite weight of each Wa, + .ZYVAJ 2L i=L-n,
dternative A (i =1,...,n) by constructing the following I=Li=
. . n
pair of LP models: Wli‘ N Z:W/LAJ <1 i=1--.n
j=1, j#i
m ~ ~ ~
Minimize — wy :Zwijij (379) Proof. Let W =(wi,...,wm)' €Q,, be an abitrary
=1 feasible solution, which may be not optimal to any of
st. WeQy, (37b) Wy andW), (i =1,...,n). Then, we have:
- U_~\ wh = Min 3 wWhw <Zm:w-L\Tv-
Maximize Wy :Z\N}fwj (370) A= o 2 MM =2
j=1
st. WeQy, (37d) "‘}/i :\ng Z Pw, ZZ b,
W=l =1
Where W, is the decision variable for the j th criterion | . : o : . . (39)
weight (j =1,...,m) and Wi <N Wi, :Z[ V\/,JLJ\TVJ <> W =1
i=1 i=1 j=1 j=1\i=1 =1
(W= TWL< <V\Pm —l'—l n n m _ m n _ m~
Oy =W = (Wh,. )" [ W < Wy < ,jZ_l:wj =1j=1..m S =YYW =Y S (w s> -1
= i=1 i=1 j=1 j=1\i=1 j=1

The above pair of LP models resultsin aglobal interval
weight for each adternative A  denoted

by[wj ,Wj 1(i =1...,n) . The following theorem shows
that the global interval weights are always normalized.

Theorem2. Let [wy,wy](i=1..,n) be the global

interval weights obtained by the LP models (34)—(37).
Then there exist

m
L L,*
Wa = Z Wi Xjj
=1

m m
U U, * L R L L,* U
wa, = E Wi Yij, Wa, = Min szjo < E Wiy and wp
j=1 Welw 1 =1

Furthermore, we have

Denote by X; =(X3,.-Xm)' €Qy and Y =(y,,...y ) €Q,
the optimal solutions of the LP model (37a), (37b) for
Wy and the LP model (37c), (37d) respectively.
Obviously, X, =(X;,-.X)" ad Y, =(Ya,...y.,) are not
necessarily optimal W5 or w%, j =1,...,nm; j #i

So, we have .

m m

2 : U 2 : U, *

= W > AV

WM%X ij W] = ij yu
=1 j
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wa, = [ZWEXGJZZ[ZWHJX”
k=1,k=i k=1,k=i\ j=1 j=1\k=1,k=i (40)
n n m . m n
IRTAEND ) DX TIZEED U STl ¥
k=1,k=i k=1,k=i j=1 j=1\ k=1,k=i
By (36c) and (36d), we get
m . m n m .
WA + ZWA ZZ ijxij +Z[ ZW ]u _ZW”X” +Z(1 w,])xIJ inj =1,
k=1k#i =1 i=1\k=1k#i j=1
(41)
n m
e T 3y +z[ zwk,jy., S -3, 0w - 3, -2
k=1,k=i k=1,k=i j=1

In the same way, we can derive similar inequalities for
al other intervals[wy, Wyl (j=1...mj=i). So

inequalities (38b) and (38c) hold for ali =1,...,N.

3.1.2. Lexicographic Goal Programming M ethod

According to Arbel O, Arbel and Vargas O
interpretation, interval judgments may be considered as
congtraints on weights. Accordingly, (1) may be
expressed as

i <w /w; <uy, 0, j=1,..,n (42

ij

Inequality (42) or (43) holds only for consistent
judgments, but they does not hold for conflicting
(inconsistent) judgments. In the presence of conflicting

judgments, deviation variables o; and Qj; could be
introduced into (43), which lead to:

Liwj — Py SW <uyw; +g;, 0, j=1,...,n (44)

Where [; and Q; are both nonnegative real numbers,
but can't be positive at the same time, i.e. p;.0; =0.
It is desirable that the deviation variables [; and

q; are kept to be as small as possible, which leads to

the following lexicographic goal programming (LGP)
model

nl n
Min J:ZZ(nj+qj)

i=1 j=i+1
st w-lw+p; 20 i=1..p-% j=i+l..n
W-uw —q; 20, i=1..n-1 j=i+l..n (45)
Dw=1
i=1
W, p;.q; =0, foralli andj.

The LGP model considers only the upper triangular
judgments of interval comparison matrices when
generating weights because no new information is
embodied in the lower triangular judgments. It will be
proved in the next section that LGP models are in
general not equivalent when the upper or lower
triangular judgments are used.

3-1-3. Two-Stage Logarithmic Goal Programming
M ethod

Ying-Ming Wang et a 0 ,applied multiplicative
constraint to interval comparison matrix in AHP and
developed the following goal programming models to

n
estimate weights. Multiplicative constraint HI nw =1
i=1

is equivalent to i'“wi —o- Since interval judgments
i=1

may be interpreted as constraints on weights,

accordingly, (1) may be expressed as

I” <W /w <uj, i,j=1,...,n (46)

That can be expressed as the following:

Inly <Inw; —Inw; <Inuy, i,j=1,..,n 47

ij =

Inequality (47) holds only for consistent judgments. To
generate a set of unified inegquality constraints holding
for both consistent and inconsistent judgments,

deviation variables ; and (; areintroduced into the
following relation:

Il — pj <Inw; —Inw; <Inu; +¢q;, i,j=1...,n (48)

Where p; and q are both nonnegative real numbers,
but only one of them can be positive, i.e. p;.q; =0.
For consistent judgments, both p; and q; are set to be

zero. In the presence of inconsistent judgments, only
one of p; or ¢; may be unequa to zero. So, (48)
holds for both consistent and inconsistent judgments. It
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is desirable that the deviation variables p; and ¢}; are

kept to be as smal as possible, which means to
minimize the inconsistency of interval comparison
matrices, thus leading to the following objective
function and goal programming (GP) model:

Since the value of |nw, isnonnegative when w, >1 and
negative when w <1, the following nonnegative
variables are introduced:

Inw +|Inw;|
Xi =, |:l...,n’
. I 2 50)
Min J _Ezz(p” *G;) —Inw +[iInw|
i=1 j=1 yl =, I = -, N
st. Inw —Inw; +p; >Inly, 0, j=1--.n, 2
g =i gy <lnuy, L j=den (49) Basedon X and Y, , Inw can be expressed as
n .
D inw Inw, =x -y, i=1..,n
i1 Where x;.y; =0. Thus, the above GP model (49) can
P;j o =0 and P Gij =0, i,j=1---,n be expressed and simplified as
n-1 n
Min J :Z Z(pij +0j)
i=1 j=i+1
St. Xi_yi_xj+yj+pij2|n|ij, i=1---,n=-1, j=i+1--,n,
n (51)
Z(Xi - V) =0,
i=1
Xi,¥i 20, Xy =0, i=1--,n,
Py =20, pyg; =0,  i=L1--,n-1 j=i+l-,n
Or
n i-1
Min J :ZZ(pij +05)
i=2 j=1
St Xi_yi_xj+yj+pij2|n|ij' i:2,"',n, j:].,"‘,i—l,
XI—yI—X]+yJ—q|JS|nU”, i:2,"',n, j:].,"',i—l, (52)
n
i=1
X,y 20, Xy =0, i=1--,n,
pij,qijZO, pi,-qijzo, i=2,--,n, j=1,,i-1.

About the above GP models, there exist the following
theorems.

Theoreml. A= (a)n., IS a condstent interval

comparison matrix if and only if J° =0, where J"is
the optimal value of objective function (51a) or (52a).

Proof. If A isaconsistent interval comparison matrix,
then the convex feasible region S, is nonempty, which

o< <u.
means that I'J _W/WJ =4 holds for all the judgments,
equivaently, Inl; <Inw —Inw; <Iny;, i,j=1,...,n. So
;=0 ,9;=0 for al the judgments, which is equivalent
toJ =0. If J° =0, then p; =0 and g =0 hold for all

i,j=1,...,n. Accordingly, inequality (47) holds for

all the judgments. This means that (46) holds for all
i,j=1,...,n. In other words, there is no contradiction
among al the judgments. So, the convex feasible
region S, cannot be empty when J'=0. By

Definition 6, A is a consistent interval comparison
matrix .

Theorem2. GP models (51) and (52) are equivalent.
Proof. Consider a reciproca pair of interval

judgments, say, lj <& <uj and % <ag; s}l/ By
] ij

introducing the deviation variables, the above
reciproca pair of interval judgments can be
transformed to the following par of inequality
constraints:

Inlj — pj <Inw; —Inw; <Inu; +q; (53)
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—Inu — pj <Inw;, —Inw; <-Inl +qj
Inequality (53a) may be further written as
Inu; —q; <Inw; —Inw; <Inl; + pj; (54)

Let p;=q; and q;=p;. Then, inequality

congtraints (53a) and (40) are indeed equivalent.
Bedides, since p; +q; = p; +d;, the contributions

of deviation variables P> dji and pj +qj to their

respective objective functions are aso equivalent.
Since the above discussion can be applied to al the
reciprocal pairs of interval judgments, it can be

Min/Max Inw =x -,

concluded that models (51) and (52) are in fact
equivalent.

Note that Theorem 1 shows how to check if an interval
comparison matrix is consistent or not. Theorem 2
ensures that using the upper or lower triangular
judgments of an interval comparison matrix will
always lead to the same results, Since Models (51) and
(52) are equivalent in nature, we will consider only GP
model (51) in the rest. Generally speaking, there may
be multiple solutions to the GP model, which leads to
intervals of weights. In order to find a feasible interval
for each weightw, = (i =1,---,n), we keep the optimal
objective function value unchanged and use it as a
congtraint to construct the following pairs of GP
models:

(55)

st. X =y, =X +y;+p; 2Inly, i=L-n-1 j=i+l--n,
X =Y =X +y;-q <Iny, i=L--n-1 j=i+Ll.-n,
Z(Xi_yi)zof
i=1
n-1 n "
ZZ(pij+qij):J )
i=1 j=i+l
X,¥; =20, xy =0, i=1---,n,
P;.G; 20, p;q; =0, i=L-n-1 j=i+l--n

Where Jis the optima value of the objective
function of the GP model (51). Note that the
complementary constraints x;y; =0( p;g; =0) can
always be satisfied without X and Y, (p; andQ;)

being simultaneously selected as basic variables in a
simplex method. The optimal objective values of the
above pairs of GP models (55) consist of the possible
intervals of the logarithmic weights Inw; (i =1,...,n),

which are denoted by the logarithmic weight intervals
[Inw", Inw ] (i =1,...,n) accordingly, the weight intervals
W W] can be obtained from logarithmic weight
intervals, where w- =exp(Inw) and w” =exp(inw?).
Since the whole solution process for generating
weights includes two stages, the method is thus

referred to as the two-stage logarithmic goal
programming (TLGP) Method.

Theorem3. If J" =0, then TLGP degenerates to
solving the following pairs of GP models:
Min/Maxrw =x -y,
St x=y—X+y 2In;, i=L--sn-1 j=i+l--3n (56)
X =Y =% +Y, <Iny;, i=1--sn-1 j=i+l--sn

26-%)=0
i=l
)g’yizor )ﬁy,ZO, i:l...,n

The proof of Theorem 3 is straightforward. This
theorem shows that if an interval comparison matrix
A already been known to be consistent, then only the
GP model of the second stage will need to be solved.

3.2. Linear Programming Method

There are several methods that can be used to
derive priorities from interval comparison matrices.
Arber's preference programming method is the
simplest yet most effective way to derive priorities
from consistent interval comparison matrices. The
method can generate consistent interval weights that
can satisfy al judgments in a consistent interval
comparison matrix.
S0, it is recommended to use the theorem 1 to judge if
an interval comparison matrix is consistent or not.
The method was originally developed to find the
vertices of the convex feasible region,

n

Sy={W=(,... Wl <w/w <y;, > W=1w >0 j=1...5}

i=1

If al the vertices prefer W, tow,(I,k=1---,n), then
any convex linear combination of al the vertices would
prefer W, toW, . Usualy, the priority vector was

generated as a convex linear combination of all the
vertices. Since the convex combination produces only a
point estimation of priorities, we propose to generate
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interval weights as the fina priorities, which can be
obtained by solving the following pairs of linear
programming (LP) models:
Min/Max w

(57)
st. WeSy,

Where W = (W;,W,,...,w,)". The solutions to the
above pairs of LP models form the weight intervals
denoted by [w",w” ](i =1,---,n).

3.2.1. Numerical Example
Consider the following comparison matrix:

1 [%2] K]
722l 1 a3
esl a1

As can be seen, the above matrix is consistent.

{Dl%ﬁ(liklkj) = krpl!zns(uikukj)

The linear programming models for w; ,for example, is
asfollows:

min/ max w,
st
I.ow_,
2w,
1w _g
6w,
1w,
2w
1w g
3w,
1_w g
3w,

W, +w, +w, =1
w,,w,,w, >0

The objective function minw, , leads to w,"and the
objective function max w;, leadstow,” .
Theinterval for wisasfollows: [V\&L,V\{U]z[o.llo.B].

3.3. Nonlinear Programming M ethod

If an interval comparison matrix is judged to be
inconsistent using Theorem 1, it appears particularly
important to derive the priorities with pre-determined
consistency requirements being met. The literature
review shows that this problem has not been addressed.
This subsection is devoted to investigating this

problem and proposing an Eigenvector Method (EM)-
based nonlinear programming method, which can be
used to generate satisfactory interval weights from
inconsistent interval comparison matrices.

From the principal right eigenvector method, it is
known that

AW = 2,0 W (58)

Where Ais a Crisp comparison matrix; A, is the

maximum eigenvalue of the comparison matrix A ; W
is the principal right eigenvector corresponding
t0 A - The relationship between A, and the

consistency ratio (CR) can be described by:
Cl  Amx n

CR=—- _n/RI:ﬂ“maX_ , (59)
R n-1 (n—DRI

Where RI is an average random consistency index [15]
that depends on the particular AHP scale used. It is
suggested that if CR <0.1 the comparison matrix is
believed to have satisfactory consistency and to be
acceptable and that if CR > 0.1 it has poor consistency
and needs to be revised. Formula (59) may be further
written as:

Amax =N+ (N—DRI.CR. (60)
Substituting (10) into (8) produces
AW =[n+ (n—1)RI.CRW. (61)

Relation (61) is derived from crisp comparison
matrices and can be extended to the interval
comparison matrices. Suppose Az(éij)nxn is a crisp
comparison matrix, which is randomly generated from
the interval comparison matrix A with I <§; <u; and

a;; =1/a;; . Then relation (61) holds for A. Thus, the

following pairs of nonlinear programming models,
which are based on Saaty's principa right eigenvector
method, can be developed to generate the weight
intervals with satisfactory consistency:

Min/Maxw
i-1 n
st 3o (n-)a+RILCRY+ Y AW =0 i=L-n
j=1 qj j=5H4
n
ZW -1 (62)
i=l
CR<,

Where (61b) is the expansion of (61) and the (62c) is
interval constraints, d is the level of satisfactory
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consistency (eg.0<0.1), CR, w(=1..n) and
g(i=1.,n-Lj=i+1..,n) ae al decison
variables. The purpose of imposing constraint
condition (62d) on the above NLP models is to derive
the weights satisfying the level of satisfactory
consistency. The optimal objective values of the above
pair of NLP models consist of the possible interval

of W, that are denoted by[w;",w"]. Repeating the
above solution process for each weightw, (i =1,...,n),
all the priority intervals that meet the requirement of
the satisfactory consistency can be obtained.

The numerical value of & in (62d) may be determined
or adjusted according to the actual requirements of
decision analysis. Moreover, the following NLP model,
which minimizes the inconsistency of an interva
comparison matrix, may also be utilized to derive the
weights from an inconsi stent interval matrix:

Min CR
i—lW n
st. Z%—(n—])(l+RI.CR)A{+ Zé\jwj =0, i=1--n,
= j=i+l (63)

n
2=t
i=1

|Ijsaqu]’ i:l"',n—].; j:i+l"',n.

Interval Comparison Matrix

Consistent”?

Yes No
Generating Generating
Consistent Interval Satisfactory Interval
Wrights by LPM Wrights by NLPM

Fig. 2. Processfor generating priority from interval
comparison matrices

Such a NLP model usually leads to one crisp set of
weights, which has the minimum inconsistency. The
whole process introduced above for generating interval
weights from interval comparison matrices is
summarized in Fig.2.

3.4. Stochastic Approach

Stan Lipovetsky and Asher Tishler, 1999 treat the
elements of the pairwise comparison matrices as
realizations of random variables and discusse about the
strongest features of the AHP that generates numerical
priorities from the subjective knowledge expressed in
the estimates of pairwise comparison matrices.
For this purpose, they propose that the values given by
the judge for the ratios of priorities are considered as

the random variables. Clearly, if a; inrelation (2) isa

random variable, so a; 1 is aso a random
variable. Lipovetsky and Tishler 0, analyze the AHP
for five types of random variables (distributions):
triangle, beta, normal, Laplace, and Cauchy. They
show that the probability density function (p.d.f.) of

= is not the same as the p.d.f. of &; when the
distribution of a; isnormal, triangle, Laplace, or beta.

If, however, the p.d.f. of aji is Cauchy, then the p.d.f.

of the random variable a;; Eai is also Cauchy [8].
1]

This property of the Cauchy p.d.f. is crucia to the

analysis of a Saaty matrix, because the ratios of the

priorities defined in relation (2) and evaluated by a

judge depend on the order in which the pairs of objects

were compared, which is arbitrary. That is, the judge

could either be asked to assess the value of 2i , or the

a;

value of &L, But, it is reasonable to suppose that the
a .

i
distribution function of the priority ratio should not
depend on the order in which the objects are presented
for consideration. That is to say, if the Cauchy p.d.f.

accurately describes the process by which the judge
estimates the value a,, (the ratio of the priorities of the
first and second objects), then the p.d.f. of the random
variable, a,,, in the lower triangle of the Saaty matrix

will aso be Cauchy.

We believe that the use of other distribution functions
such as the normal, Laplace, triangle or beta
distribution to generate the priority ratios in the lower
triangle of the Saaty matrices is less desirable; since
the p.d.f. of the priority ratios derived using these
distributions depends on the order in which the objects
were presented to the judge. Note aso that if the
priorities «; and «a, are drawn from a normally

distributed population, then the margina p.d.f. of the

ratio 2L is Cauchy [8]. The p.d.f. of the inverse, %2 ,
(24

2 o
is adso Cauchy. Thus, if the priorities are normally
distributed, their ratios - the values a@; and a; in

relations (1)-(3) are described by a Cauchy distribution.
Specifically, each element of the upper triangle of
matrix (1) is assumed to be a random variable with the
following p.d.f.:

=t (64
1+[X—a}
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The mode (maximal probability) of the p.d.f. (64) is at
the central point X = a, and the parameter b serves as
amean deviation from the central value.

We shall consider only positive values of x in order to
obtain meaningful (positive) elementsin relation (1).
Since each element in the upper triangle (1) is a
random variable distributed according to relation (64),
then each element in the lower triangle of relation (1)
(obtained by relation (3)), is also arandom variable.
The p.d.f. of each element of the lower triangle of
relation (1) is derived as follows. Let x be a random
variable. Then itsinverseis given by

y=u(x) E% (65)

The p.d.f. of the random variable y in relation (65) is
given by [8].

g(y) = flwiy)]w'(y) (66)

The inverse function of y is denoted by x=w(y) ,and

its derivative is %:w’(y). For the functionyzi,
y X

the inverse and the derivative are le, and %:i

y dy ¥
respectively. Thus, the p.d.f. (66) can be written as
following:

9y =— f[3] (67)
y y

The p.d.f. (67) of the inverse of the variable, whose
probability distribution is given by relation (64), is as
follows. First, to ssimplify the analysis and ensure that
the a; s in relation (1) are positive, we introduce the

following notation:

Zan (68)
552,09531 (69)

Assume that the range of n in relation (69) is [0] that
implies that a, the center of the random variable
representing the evaluations of the priorities, is in the
range[0;2a], ad b<a. This assumption ensures that
the evaluations in relation (1) are non-negative, and
that the deviations are symmetrically distributed
around the center of a. transforming the Cauchy p.d.f.
(64), using formula (67), yields the following p.d.f. for
the inverse random variable (65).

£@+£?) 1 0. (70
ey %

aly)=a

Comparison of relation (64) with relation (70) shows
1

that X and — possessasimilar form.
X

In practice, the elements of the lower triangle in
relation (1) are not estimated directly by a judge.
Rather, they are assumed to be the reciprocals of the
values in the upper triangle of (1). Thus, if the values
of the elements of the upper triangle of the Saaty
matrix are functions of random variables which are
described by the distribution (64), then their
reciprocals, the elements of the lower triangle of the
Saaty matrix, must be estimated using the
corresponding p.d.f. in relation (70).

Thus, we suggest the following procedure to estimate

the &; sin (1). Itis usually assumed that the parameter

of the center of the p.d.f., that coincides with the point
of the maximum probability of the p.d.f., isequal to the
vaue of the random variablex=a=a;. That is, it
coincides with the value given by the judgeto the & in

the upper triangle of the matrix (1). Thus, we propose
to estimate the center of the inverse variable, y = 1 , by
X

the mode, or the maximal probability, of y. The point
of maximal probability of the p.d.f. (70) is obtained by

solvi ng%(y): 0. For the transformed Cauchy p.d.f.

we have:
* 1
Z'=——, 0<¢<l (72)
1+¢
Clearly, the maximal probability of i*:y* =% s
X a

less than = for all &>0. A similar result is obtained
a

for the beta, normal, triangle and Laplace distributions
0. This result implies that the centers of the random
variables in the lower triangle of (1) are generally not
reciprocally symmetric with the centers of the original
random variables in the upper triangle of the pairwise
comparison matrix (1).

In fact, the influence of the elements of the lower
triangle of the Saaty matrix on the estimated priority
vector will be smaller when we compute these
elements using the mode of y; that is,

==z (72)
ij

Instead of the reciprocal values (3) . it can be proved
that Cauchy distribution is very useful for randomizing
data 0. The shape of the Cauchy p.d.f. resembles to a
normal p.d.f., but it diminishes less steeply (exhibits
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“fat tails”). For small deviations,[x—4 < b, expansion

of the p.d.f. by a Taylor series (as afirst approximation
to a Cauchy p.d.f., or to a norma p.d.f.) yields a
parabolic dependence similar to the structure of a beta
distribution. The parameter representing the center of
the Cauchy p.d.f. coincides with the mean value of the
Cauchy p.d.f.. At the modal point,x=a, the vaue

f(a) isegual to % . At the points x=ath, the p.d.f.
equals half the height of the peak, ¢ (a+p) 1 . f(ay .
(2r) 2
Also, f(azzy="@/, and f(azd)= @)/ Thus, the
parameter b can be interpreted as a measure of the
mean deviation from the center of the p.d.f.. Using the

relation (67) to transform a random variable x with a
Cauchy p.d.f. (See relation (64)), we obtain after

simple transformations, the following p.d.f. for y = 1 .
X

1 1 1 1 1
W=F——F == 5 (73)
ﬂb1+[yT—1]2 y© b 1+[%]2

With the following new values for the parameters:

a 1 1

5 - ’
a’+b? a1+’

(749

b 1 ¢
a+b® al+e?’

o
Il

(74 b)

Clearly, formula (73) is another representation of the
Cauchy p.d.f. (70) where the parameter & isdefined in

formula (69). Relations (73) and (74 a) reveals that ::1,

the value of the center of y, is smaler than 1by the
a

term 2 defined in the relation (71). The p.df. of the
inverse variable with the distribution (14) reproduces
the initial Cauchy p.d.f. (64). This can be seen by
applying the transformation (15a), (15b) to the
parametersin relations (74 @) and (74 b):

a _ a a’+b?
aZ+b? a?+b? (a?+b?)?

Q 2

a (75)

Analogously, 6: b. Thus, relations (5) and (14) are
p.d.f.s of mutually reciprocal random variables.

3-4-1. The Construction of Stochastic Salty Matrices
We are now ready to use the Cauchy p.df. to
generate the lower triangle elements of a Saaty matrix.

Accounting the stochastic nature of the process , a
value is assigned to each element &, , and we evaluate

the Saaty matrix (1) for three values: the actual a;,
and a; +b (b represents the mean deviation from the
center a). First, select a vaue for &. For
example,bz% ,§=}é or (see relation (4)). Then,

change each element of the upper triangle of the Saaty
matrix (1) to a number in the range [a—b;a+b]. For

example,
a; >{(1-&)ay; q; L+ )y} ={0.58, &;,1.58;}. (76)

Using relations (73) and (74) we obtain the
corresponding values for the lower triangle of the Saaty

matrix. These values are within the range F\Jr 6; .';1— B} )

and the maximal (minimal) value of a; corresponds

to the minimal (maximal) value of &; in relation (76):

gofiel. 1 1.17¢ Y-atiostoaty.  (77)

1488 1+ 8 1+ g a & a

If al elements are chosen using the same value for n,
then the resulting Saaty matrix obtained by relations
(76) and (77) can be represented as a weighted sum of
the diagonal, the upper triangle and the lower triangle

portions of a Saaty matrix (1):
0 a, .. a, 0
Asiyrk O Enlig%m O (78)
0 ay 8y, ... 0

Where | isan identity diagonal matrix of order n, the

tem 2z is as defined in relation (71), and

a; = 1 (seerelation (3)). Theterms k and g define the
a;

location of the random values, i.e., the left edge, the

center, or the right edge of the range (76) (the right

edge, the center, or the left edge of the range (77)).

Specifically:

left edge center right edge
k=1-¢&; k=1 ; k=1+¢& (79)
q=1+¢ q=1 q=1-¢

The random values in the lower triangle Saaty matrix
are smaler than the inverse of the corresponding
valuesin the upper triangle.

That is, the priorities must be estimated using a
reciprocally nonsymmetrical matrix. Thus, the
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"observed" values- i.e., those given explicitly by the
judge, and arranged in the upper triangle of the pair
wise comparison matrix - seem to play a more
significant role in determining the priority vector than
do the ““unobserved" elements in the lower triangle.
The conventional AHP method of priority evaluation
(4) was constructed specifically for reciprocally
symmetric pair wise comparison matrices (Saaty,
1980). We have just shown that the AHP has to be
modified to account for nonsymmetrical matrices
whose structure is given by relation (78).

3.4.2. The AHP with Reciprocally Nonsymmetrical
Matrices

This section discuss about reciprocally
nonsymmetrical Saaty matrices in four variants of the
AHP.

3.4.2.1. The Conventional AHP

When all the @; s are defined asratios of priorities
(see relation (2)), multiplication of the random matrix
(78) by the vector of priorities yields:

o [1+k(n—1)]ey
A 01:2 [+ k(n—?)+qz*]a2 - D (€0)

a, [1+(n-DqZ ]e,
Where D isthe following diagonal matrix:

D = diag{[1+ k(n—-1),[1+ k(n—2)+qZ"],

. (81)
[+ (n=Dgz 1}.

Since the elements in the matrix (78) are rea
evaluations and not the theoretically exact ratios of
priorities, relation (80) can be replaced by the
generalized eigen problem

Aa = ADa, (82

For which the maximal eigenvalue A can differ from
1 (due to inconsistencies in the judge's estimates of the
initial priority ratios in relation (1)). Elements of the
diagonal matrix D can be written in the general form:

di =1+9z (i-1) +k(n-i), i=1...n (83)
If the matrix A is not random (and hence, it is
reciprocally symmetric), then & =0 (see relation (69)),
Z =1 (see relation (71)) and k=q=1(see relation
(79)). In this case, the matrix D isa scalar matrix with
al the elements given by dij =n, and the generalized

eigen problem (82) reduces to the conventiona AHP
eigen problem (4).

3-4-2-2. The Logarithmic Method

The so-caled logarithmic method (LN), or
multiplicative mode, of estimating priorities in the
AHP isdescribedin[7, 16, and 21].
The LN method yields a solution in which the priorities
are proportional to the geometric mean values of the
elements in the rows of the Saaty matrix (1). That is,

1/n
Q; :[Ha”} y i :l,...,n. (84)
j=1

The reciprocal symmetry of the elements of a
conventional Saaty matrix alows priorities to be
estimated by the LN method using the elements in the

columns of matrix (1). The vector [ is the reciprocal

of the vector ¢ inrelation (84), and is given by (up to
amultiplicative normalization):

a =Bt i=1..n (85)

Using a random matrix (78) instead of relation (1), i.e.,
using a reciprocally nonsymmetrical matrix, results in
the model,

OA(iJ- :%(14‘5”‘), (86)

The elements éﬂ (the random pair wise comparisons)
are represented as ratios of the estimates of the @; s

and the dual estimates, the S s, of the priorities in
the random data eval uation.
The &; s are random relative deviations. Note that the

~

dual vector [ is analogous to the |eft eigenvector (the

eigenvector of a transposed Saaty matrix), which is
also used in the conventional AHP (Saaty, 1980).
Minimizing the objective function:

LN=>" (In(L+#;))* - min (87)
ij
Yields priority estimates that are the geometric means

of the elements in the rows and columns of the random
matrix (78):

1/n

1/n
j=1 i=1

Clearly, a; # Ei’l since relation (3) does not hold.

When only one priority vector is used in relation (86)

we have:

-~  a

o = =-(1+¢&;) (89)
o
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And the solution of the objective function (87) for the
model (89) yields priority estimates of the form

(90)

Thus, if one uses priority ratios as in relation (78), the
LN solution can be written as a geometric mean of the

[xjs and the corresponding reciprocal estimators

B s, where a and f3 are defined in relation (88).

If al the elements of a Saaty matrix are generated with
the same value of & (see relation (69)) (as is done in
relations(78)-(82)), then expressions (88) and (90) can
be represented by a simple form.

Using the elements of the matrix (78) in relation (88)
yields the following evaluations (up to normalization):

G =a(®yh F=pyh

L* i=1...,n (91
k gz

Te o; sand [, sarethe LN solutions (84) and (85) for

the nonrandom data, 2 is as defined in Eqg. (71), and
the parameters K and Qare asin relation (79). Clearly,
the estimates (91) satisfy relation (87), as do the
nonrandom priorities, i.e, a; = ,Bi’l (up to a
normalization). This means that &i in relation (90)

coincides with &i in relation (91). An interesting
property of the LN method with random data is
obtained when the &, sin relation (91)

An interesting property of the LN method with random
data is obtained when the &i s in relation (91) are

evaluated for the edges and the center of the relevant
random values. Using definitions (79) for the location
parameters, yields:

(@) = (%Z*)%; (@) center = i (Z*)%;
e (92)
(@ )rign =4 (m Z*)%‘-

Thus, the priority weights at the center and at the edges
of the random data in the generalized LN method are
connected by the following geometric mean relation:

(@ )ooner =[@ e @ )ugn /2, i=1on (93)
Clearly, asisusualy donein AHP solutions, all the LN

priority vectors need to be normalized (the sum of their
elementsis set equal to 1).

3.4.2.3. The Synthetic Hierarchy Method

In this section we will show how to modify the
Synthetic Hierarchy Method (SHM) 0 to accommodate
random data. The SHM, in linearized form, may be
represented as follows:

Qe =7+, Lk=Ll..,n (94)

Least-squares (LS) estimation of the parameters in
relation (94) is defined by

2

n
ik=1
Subject to the normalizing condition
n
D>yt =1 (96)
i=1
Optimization problems (95) and (96) imply
n
F=LS- A[Z 2 —1} — min. (97)
i=1

The first order conditions of relation (97) yield the
eigen problem:

Sy =24y (98)
Where
S=diag(AA) - A, (99)

A is defined by relation (1), and A=A+ A'. The
SHM can easily be modified to account for random
data by replacing the Saaty matrix A inrelation (1) by
Ainrelation (78). Thefirst order conditions of relation
(97) then yield the eigen problem:

Sy=2Ay (100)
Where
S=nl, +diag(AA) — (A + A) (101)

And | isanidentity matrix of order n.

3.4.24. Nonlinear Approximation of Priority
Ratios

To assess the results of priority evaluation with
random data we use a nonlinear approximation of the
priority ratios in the Saaty matrix. This nonlinear
approximation can be viewed as a regression on
dummy variables. It produces, together with the
priorities, the relevant standard deviations and t-
statistics. Thus, it allows the construction of confidence
intervals for the priorities.
Specifically, consider the following nonlinear model
[14].

Qi

a; =——+g
(04

i ij? (102)
i
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That corresponds to the definition of a pair wise
comparison of the elements @;as ratios of the

priorities of the objects under consideration.
Minimization of the sum of deviations yields the
nonlinear LS problem:

S= Zg,, Z(a”——) —> min (103)

i,j=1 i,j=1

The first order conditions of relation (103) can be
expressed as a system of nonlinear equations.

Clearly, the solution of relation (103) requires some
normalization, due to the homogeneity of degree O of
the parameters in relation (103). One can use, for
example,

a, =1 or Zai =1 or Ziale (104)

Minimization of relation (103) can be described as a
regression on a set of dummy variables. Indeed, all the
elements of matrix (1) can be considered as observed
values of a function y, which is approximated by a
theoretical model of the form

Z—sk, Sy (105)
k, I—l

Where 6,; and 0y are Kronecker delta functions.

The function (104) transforms the ij th element in
relation (103) into the ratio of different pairs of the

.
unknown coefficients—-, which corresponds to the
o.
j
multiplication of al the ratios in relation (104) by the
values of dummy variables. To clarify, consider an
example with a third-order Saaty matrix (1), with six
values of the function y, and six dummy

arguments X, , X,,..., X5 . Using these dummy variables
we construct the following regression model

gy ¢ Py, Pay (Toy  Pay 98, (106)
x> a3 a3 oy ay 2F]

There is no need to use the diagona elements of the

Saaty matrix in relation (105) since al these elements

areequal to 1.

4. Conclusion

The most of decision making problems must be
applied to uncertain real word conditions. Classical
solving methods are not usually proper to these types
of problems. In these paper new methods for interval
weighted comparison matrices are discussed and their
advantages and disadvantages are shown. Some criteria
must be considered in the selection process of methods.
That’s Calculation complexity, CPU time, Precision of
solution and interaction with decision maker.
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Tab. 1. Modelswith different input and output

Output (Weight)

Input (Comparison Matrix)

. . Year M ethod
fuzzy Interval Precise fuzzy Interval Precise
4 1983  Van Laarhoven & Pedryce
v v 1985  Buckley
v v 1996 Xuand Zhai
v v 2000 Leungand Cao
v 4 2001 Buckley et d.
4 4 2001  Csutoraand Buckley
v 4 1987  Saaty and Vargas
v v 1991  Arbd
v v 1995 Sdoetad.
v v 1993  Arbel and Vargas
v v 1993 Morenoet a.
v v 1997 Idameetal.
v v 1998 Haines
v v 2004  Mikhailov
v v 2007  Ying-Ming Wang et a.
v v 2004  Sugiharaet al.
v v 1997  Bryson and Mobolurin
4 4 2005  Ying-Ming Wang et a
v v 1997  Lipovetsky and Tishler
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