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Keywords                                         ABSTRACT 
 

 

In this paper Semi-Markov models are used to forecast the triple 
dimensions of next earthquake occurrences. Each earthquake can be 
investigated in three dimensions including temporal, spatial and 
magnitude. Semi-Markov models can be used for earthquake 
forecasting in each arbitrary area and each area can be divided into 
several zones. In Semi-Markov models each zone can be considered 
as a state of proposed Semi-Markov model.  At first proposed Semi-
Markov model is explained to forecast the three mentioned 
dimensions of next earthquake occurrences. Next, a zoning method is 
introduced and several algorithms for the validation of the proposed 
method are also described to obtain the errors of this method. 
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11..  IInnttrroodduuccttiioonn∗∗  

The Monrovian models can be used in analyzing 
many natural events. In each event, the states of 
Monrovian model can be defined accordingly. In this 
paper the error of proposed Semi-Monrovian model is 
analyzed where each zone is considered as a state. 
Generally, earthquake occurrences follow Monrovian 
models [1], [2]; hence a Semi-Markov model is used 
for earthquake forecasting. The earthquakes can be 
investigated as both mathematical and physical 
modeling [3]. In this paper, we consider a 
mathematical model of earthquakes.  
The earthquake occurrences can be modeled by some 
probabilistic techniques [4] but applying Semi-Markov 
models in earthquake modeling is interest because 
Semi-Markov model is able to consider temporal 
dimension for earthquakes while simple Monrovian 
models cannot consider it easily. During the past few 
years, there have been some studies on earthquakes 
modeling using Monrovian models [5], [6], [7]. There 
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is also some research on Semi-Monrovian models [1], 
[2], [8].   
One of the advantages of our proposed model is that 
the model considers three dimensions such as time, 
space and magnitude, simultaneously. This could be 
considered as an advantage since the most of recent 
studies investigated only one or two dimensions. [9-
12]. The validation of this proposed model can be 
evaluated by two methods and Nava et al. [13] also 
used another method for the validation of earthquake 
forecasting.  
Some other advantages of Semi-Monrovian models in 
comparison to other models have been explained by 
[1]. In the following sections, the proposed model and 
its validation will be explained, and then the 
dimensions of the future earthquakes are forecasted 
using this model in a zoning method proposed by 
Karakaisis based on seismic points. The errors of this 
method are calculated. Iran is used as a case study in 
this paper. 
 

22  MMooddeelliinngg  
Semi-Markov model [14], [15] for forecasting the 

dimensions of the earthquakes has been examined in 

Semi-Markov 
Model, 
Probabilistic 
Forecasting Matrix, 
Forecasting Error, 
Karakaisis zoning 
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[2] and [8], completely. One of the most important 
elements of the Semi-Markov processes is the interval 
transition probability matrix. The probability of a 
transition from state i to state j in the interval ],0[ n  

requires the process to make at least one transition 
during the interval. Interval transition probability 
matrix can be determined in the following matrix form: 
 

0

0

( ) ( ) ( ) ( )

           ( ) ( ) ( ) ; 0,1,2,

n

m

n

m

F n GW n G T m F n m

GW n C m F n m n

=

=

= + ⊗ − =

+ − =

∑

∑ …

 (1) 

 

where )(nGW  is a diagonal matrix whose i th element 

is equal to )(nGwi , and )(nGwi  term is the 

probability that the waiting time in state i is greater 

than n . The interval transition probability )(nF  is 

obtained by a recursive procedure. Since )0(T  is 

equal to zero, )(nF  is obtained for the 

interval nm ≤≤1 . In case 0=n , )(nF  is equal to 

the Kronecker Delta or identity matrix defined as 
follows: 

⎩
⎨
⎧

≠
=

=
ji

ji
Fij 0

1
)0(  

In Eq. (1) G is a transition matrix that ijG  is the 

probability that last step is in state i and the next step is 

in state j . In other words, ijG  is the probability of 

motion from state i  to state j . Also )(mT  is the 

holding time matrix and is defined as follows: 
 

where n  is the number of time intervals, )(mC  is the 

core matrix and is defined as follows: 
 

 
 

where N  is the total number of states in the system. 

In the earthquake phenomenon, )(nF can be used for 

studying earthquake hazards and evaluating seismic 
hazards risk.  
Two interval transition probability matrices such as 

nkkFR ,,1)( …=∀  for region to region transitions 

and nkkFM ,,1)( …=∀  for magnitude to magnitude 
transitions can be determined by Eq. (1). If the last 

earthquake is occurred in region 0r  with magnitude 0m , 

then the matrix of probability forecasting after 
nkk ,,1; …=∀  time periods ( nkkFRM ,,1)( …=∀ ) 

is obtained by the following formula: 
 

0 0
( ) ( ) ( )

1, , ; 1, , ; 1, ,
i j i jr m r r m mFRM k FR k FM k

i r j m k n

= ×

∀ = = =… … …

           (2) 

 
where r  is the number of considered zones of the 
supposed area and m  is the number of considered 
partitions for all magnitudes. 
Also ( ) 1, , ; 1 1, , ; 1 1, ,

i jr mFRM k i r j m k n∀ = = = = =… … …  

is the probability that an earthquake occurs in region 

ir  with magnitude jm  after k  time periods. Fig. 1 

demonstrates the described comments more clearly: 

 
 
 
 
 
 

 
 
 

Fig. 1. The manner of determining FRM matrix 

 
In this way, forecasting the dimensions of the 
following earthquakes is possible as by determining 
probability forecasting matrixes ( nkkFRM ,,1)( …=∀ ).   
 

33..  TThhee  MMooddeell  VVaalliiddaattiioonn  
In this section, we explain the validation procedure. 

Suppose )(ˆ kMRF is a probability forecasting matrix 

where its elements are the estimated probabilities of the 

next earthquake occurrences by our proposed model 
during the next k  time periods, and )(kFRM is a 

deterministic matrix defined as follows: 
Here there are two fundamental questions:  
The first question is to determine the likelihood 
estimation of the earthquake occurrences. In other 

words, can MRF ˆ  forecast the next earthquake 
occurrences successfully. 
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The next question is to see whether MRF ˆ  can also be 
used for forecasting the next earthquake occurrences 
deterministically and not only probabilistically. The 
response for the first question can be found in methods 
1, 2 and 3, and the response for the second question is 
explained in method 3.  
 
Method 1: applying Mean Square Error (MSE) and 
Mean Absolute Deviation (MAD) [16] 
 
Method 2: Mean Absolute Percent Error (MAPE) [17]  
 
Method 3: an innovative plan for determining both 
probability forecasting error and deterministic 
forecasting (in this paper it is named zero and one 
method technically) 
In methods 1 and 2, if the total history data is equal 

to n , the first 1n  data are used for forecasting the next 

2n  data, and the next  2n  data are used to determine 

the forecasting error ( 21 nnn += ). While all of the 

n  data have occurred previously and are available, the 
forecasting errors can be calculated. In method 3, the 

first 1n  data are used for forecasting the next 2n  data 

along with benchmarking and the first 21 nn +  data 

are used for forecasting the next 3n  data along with 

determining  the forecasting error ( 321 nnnn ++= ), 

in case the whole n  data have already occurred and 
are available; the forecasting errors can be calculated.  
In these methods, calculation of the forecasting error 
can be performed in two forms: by using both 
subsequent data and random data within the set of 

whole data. In the first form, the first 1n  data are used 

for forecasting the next 2n  data, ( 21 nnn += ), while 

in the second form the 2n  data within the main n  data 

are eliminated randomly and then these 2n  data will 

be forecasted by their previous data. 
 

33--11..  MMeetthhoodd  11  
In this method equations based on Mean Square Error 
(MSE) and Mean Absolute Deviation (MAD) can be 
used. For this goal an algorithm is presented for MSE, 
which can be used with some changes for MAD and 
method 2. 
 

Algorithm I: 
This algorithm could be used to determine the 
forecasting error by MSE as follows: 
Step 0: Begin 

Step 1: 0)0(2 =n  
 

Step 2: 0=i  
 

Step 3: Use the first )(21 inn +  data to determine 

FRMMRF ,ˆ  ( 1n  is the number of first data which 

can be used for forecasting the next data and )(2 in  is 

the number of data occurred during i  time periods 

after the first 1n  data) 
 

Step 4: Determine FRMMRF ,ˆ  
 

Step 5: 

mr

MRFFRM

iMSE

r

i

m

j
ijij

×

−
=+
∑∑

= =1 1

2))1(ˆ)1((

)1(             (3) 

 

Step 6: 1+= ii  
 

Step 7: If njnn
i

j

<+∑
=1

21 )(  then go to step 3  

else go to step 8 ( n  is the number of total data) 

Step 8: 
i

kMSE
MSE

i

k
∑

== 1

)(
  

 

Step 9: End 
To calculate the forecasting error by MAD, use 
algorithm (I) and only substitute steps 5 and 8 in 
algorithm (I) by considering the steps as follow:  
To calculate the forecasting error by MAD, use 
algorithm (I); just be careful to substitute steps 5 and 8 
in algorithm (I) by considering the following steps:  
 
Step 5:  

mr

MRFFRM

iMAD

r

i

m

j
ijij

×

−
=+
∑∑

= =1 1

|)1(ˆ)1(|

)1(        (4) 

 

Step 8: 
i

kMAD
MAD

i

k
∑

== 1

)(
  

 

For each forecasting if the past data are more complete, 
the forecasting results are more accurate. Therefore 

applying )(ˆ
2kMRF  after )(ˆ

1kMRF  gives more 

accurate information than )(ˆ
21 kkMRF + . Accordingly, 

only )1(ˆMRF  and )1(FRM  are used in Eq. (3) and (4). 

If an earthquake occurs in region ir  with magnitude jm  in k th time period 

 
Otherwise 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ie
pr

.iu
st

.a
c.

ir
 o

n 
20

25
-0

5-
21

 ]
 

                             3 / 11

https://ijiepr.iust.ac.ir/article-1-7-en.html


6600                RR..  SSaaddeegghhiiaann,,  GGhh..RR..  JJaallaallii--NNaaiinnii,,  JJ..  SSaaddjjaaddii  &&  NN..  HHaammiiddii  FFaarrdd//      AAppppllyyiinngg  SSeemmii--MMaarrkkoovv  MMooddeellss  ffoorr  ffoorreeccaassttiinngg  ……  

 
For the remaining equations, )1(ˆMRF  and )1(FRM are 

also used.  
 
33--22..  MMeetthhoodd  22  
One of the disadvantages of this method is that MSE 
and MAD neither have any mathematical interpretation, 
nor is there any benchmark for the goodness degree.  
In method 2, one equation is used similar to algorithm 
(I). However we replace steps 5 and 8 in algorithm (I) 
as follows: 
In this method, a similar equation to algorithm (I) is 
used, yet steps 5 and 8 in algorithm (I) are substituted 
by the following intended steps: 
 
Step 5:  

100
.

)1(

|)1(ˆ)1(|

)1(
1 1 ×

−

=+
∑∑

= =

mr

FRM

MRFFRM

iMAPE

r

i

m

j ij

ijij

     (5) 

 

Step 8: 
i

kMAPE
MAPE

i

k
∑

== 1

)(
 

where MAPE is Mean Absolute Percentage Error. 
MAPE is a useful equation since it specifies the error 
percentage, which is both comprehensible and 
interpretable for everyone. Therefore, this method will 
be concentrated upon in this study.  
 
33--33..  MMeetthhoodd  33  
Definition 
i  th order maximum: 
The i  th element in a sorted as well as decreased list, 
in which none of the elements are equal to each other, 
is named i  th order maximum.  
This method is an innovative plan which can be used 
for two goals. 

a) Determining the Forecasting Error 
b) Deterministic Forecasting of Earthquake 
Occurrences 

 

a) Determining the Forecasting Error 
In this section we present an algorithm to determine the 
forecasting error. This algorithm has two sections. The 
first section of the algorithm is devoted to 
benchmarking and the second section is assigned to 
determining the forecasting error. The algorithm is 
made of the following several steps:  
 

Algorithm II: 
Step 0: Begin  

Step 1: 0)0(2 =n  

Step 2: 0=i  

Step 3: Use first )(21 inn+  data for determining FRMMRF ,ˆ   

Step 4: Determine FRMMRF ,ˆ  
 

Step 5:  
)1()1(1),1(ˆ)1(1ˆ FRMiFRMMRFiMRF =+=+  

 

Step 6: 1+= ii  
 

Step 7: If 3
1

21 )( nnjnn
i

j

−<+∑
=

 then go to step 3  

           else ik =1  and go to step 8 ( 3n  is the number 

of data used to determine the forecasting error) 

Step 8: For 1=i  to 1k  do  

 OiMRF =)(2ˆ  ( O  is a zero matrix) 

 

 100
.

)(1

|)(2ˆ)(1|

)(2
1 1 ×
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iMRFiFRM
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j ij
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Step 9: 
1

1

1

)(2
)0(

k

kMAPE
MAPE

k

k
∑

==  

 

Step 10: 1=i  
 

Step 11: =ijM i th order maximum in 
1,,1),(1ˆ kjjMRF …=∀  

 

Step 12: 
1,,1,

)(1ˆ
)(2ˆ kj

M

jMRF
jMRF

ij

…=∀
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=   

([ a ] obtains the greatest integer number smaller than 
the real number a ) 
 

Step 13: All of the elements greater than or equal to 1 

in 1,,1)(2ˆ kjjMRF …=∀ , are replaced by 1. 
 

Step 14:  

1

1 1
,,1,100

.

)(1

|)(2ˆ)(1|

)(2 kj
mr

jFRM

jMRFjFRM

jMAPE

r

p

m

q pq

pqpq
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−

=
∑∑
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Step 15: 
1

1

1

)(2

)(
k

jMAPE

iMAPE

k

j
∑

==  

 

Step 16: 1+= ii  
 

Step 17: If i th order maximum is available in 

1,,1),(1ˆ kjjMRF …=∀  then go to step 11  

             else go to step 18 
 

Step 18: If ( 1)MAPE t + is the first element greater 

than the obtained MAPE in method 2 the t th order 
maximum is the most proper one to be considered as a 
benchmark to calculate errors.  

Step 19: 0)0(3 =n  
 

Step 20: 0=i  
 

Step 21: Use the first )(321 innn ++  data to determine 

FRMMRF ,ˆ  ( 1n  is the number of the first data which 
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can be used to forecast the next 2n  data and 2n  is the 

number of data used in benchmarking section and 

)(3 in  is the number of data occurred during i  time 

periods after the first 21 nn +  data) 
 

Step 22: Determine FRMMRF ,ˆ  
 

Step 23: )1()1(1),1(ˆ)1(1ˆ FRMiFRMMRFiMRF =+=+  
 
Step 24: 1+= ii  
 

Step 25: If njnnn
i

j

<++ ∑
=1

321 )(  then go to step 21  

               else ik =2  and go to step 26 
 

Step 26: =jM { t th order maximum in 

2,,1),(1ˆ kjjMRF …=∀ } 
 

Step 27: 
2,,1,

)(1ˆ
)(2ˆ kj

M

jMRF
jMRF

j

…=∀
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=   

([ a ] obtains the greatest integer number smaller than 
the real number a ) 
 

Step 28: All elements greater than or equal to 1 in 

2,,1),(2ˆ kjjMRF …=∀  are replaced by 1.  
 

Step 29:  

2

1 1
,,1,100

.

)(1

|)(2ˆ)(1|

)(2 kj
mr

jFRM

jMRFjFRM

jMAPE

r

p

m

q pq

pqpq

…=∀×

−

=
∑∑

= =

  

Step 30: 
2

1

2

)(2

k

jMAPE

MAPE

k

j
∑

==  

 
Step 31: End 
 
Note that in algorithm (II), MAPE can be substituted by 
either MSE or MAD but because of the aforementioned 
reasons, MAPE is preferred.  

 
bb))  DDeetteerrmmiinniissttiicc  FFoorreeccaassttiinngg  ooff  EEaarrtthhqquuaakkee  OOccccuurrrreenncceess  
The section (a) of method 3 can also be used for 
deterministic forecasting of the earthquake occurrences 
by probability forecasting matrixes, such as MRF ˆ . 
Considering algorithm (II) and using the following 
steps, it is possible to forecast the earthquake 
occurrences in the next several time periods 
deterministically (i.e. one and zero; so that one means 
that an earthquake has occurred and zero means that 
any earthquake has occurred).  

Algorithm III: 
Step 0: Begin  
 
Step 1: Use the past n  data to determine MRF ˆ  ( n  is 
the number of total data)  
 
Step 2: Determine MRF ˆ  
 

Step 3: kiiMRFiMRF ,,1)(ˆ)(1ˆ
…=∀=  (is the 

number of predictable time periods in future) 
 
Step 4: =jM  { t th order maximum in 

kjjMRF ,,1),(1ˆ
…=∀ } 

 

Step 5: kj
M

jMRF
jMRF

j

,,1,
)(1ˆ

)(2ˆ
…=∀

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=  

 ([ a ] obtains the greatest integer number smaller than 
the real number a ) 
 
Step 6: Replace any element(s) greater than or equal to 

1 in kjjMRF ,,1),(2ˆ
…=∀  by 1 and name the 

resulted matrices kjjFRMD ,,1),( …=∀  

 
Step 7: If 1)( =jFRMDrm  then an earthquake in 

region r with the magnitude m  in j th time period will 
occur otherwise any earthquake in region r with the 
magnitude m  in j th time period will not occur.  
Step 8: End 
 

44..  AApppplliiccaattiioonn  
In this section, the proposed methods of this paper 

are studied using the actual data gathered in Iran. Next, 
the earthquake occurrences are forecasted 
deterministically and the forecasting error for the 
mentioned zoning method is determined. A zoning 
method of Iran area is considered consisting of Zoning 
by Karakaisis. Iran is selected as the area of 
investigation. This is bounded by longitudes 

EE °° 33.63,23.44  and latitudes NN °° 78.39,05.25 . 

The data have been collected from United States 
Geology Sciences Center website1. After filtering and 
removing the unsuitable data according to Table 1 [18], 
3179 data related to earthquakes occurred during 1973-
2007 are used. The maximum time interval between 
the times of earthquake occurrences is 45 day, so by 
considering each of 10 days as one time unit, 

forecasting the next 5
10

45 =⎥⎥
⎤

⎢⎢

⎡  time units in each 

forecasting will be possible. Also each zone in each 
zoning method is considered as a state of a Semi-
Markov model and the magnitude of total occurrences 

                                                 
1 Data taken from United States Geology Sciences Center website at  
http://neic.usgs.gov/neis/epic/epic.html 
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is divided into 5 partitions, and each partition of 
magnitudes is considered as a state of a Semi-Markov 
model. 
 

Tab. 1. A reference for distinguishing foreshocks 
and aftershocks from main-shocks 

Magnitude 
(mb) 

Space 
Distance 

(Km) 

Time 
Interval 
(Days) 

2.5 19.5 6 
3 22.5 11.5 

3.5 26 22 
4 30 42 

4.5 35 83 
5 40 155 

5.5 47 290 
6 54 510 

6.5 61 790 
7 70 915 

7.5 81 960 
8 94 985 

 
  

55..  ZZoonniinngg  bbyy  KKaarraakkaa  IIssiiss::  
Karaka isis, a researcher in geosciences, in his 

work divided Iran area into 21 zones [19]. In this 
section his zoning method is applied. Karaka isis has 
not considered the center of Iran as a zone; hence we 
use the zoning to divide Iran into 22 zones, i.e. 21 
zones by Karaka isis plus one central part, similar to 
Fig. 2.  

 
 
 
 
 
 

 
 
 
 

 

Also, the magnitudes of past occurrences are divided 
into five classes as follows:  
 

mbM

mbM

mbM

mbM

mbM

<
≤<
≤<
<<

≤

3.6:

3.64.5:

4.58.4:

8.46.3:

6.3:

5

4

3

2

1

               (6) 

 

These partitions have been obtained by Agglomerative 
Nesting (AGNES) method that is a technique for 
clustering data [2], [20]. The minimum of the 
considered magnitudes is 3.1 mb and their maximum is 
7.1 mb. In the proposed model for each partition is 
considered as a state of a Semi-Markov model.  
With respect to the Karakaisis zoning in Fig. 2 and Eq. 
(1) and (2) and (6) the transition probability matrix for 
both region to region and magnitude to magnitude 
transitions are obtained as Tables 1 and 2. By applying 
Tables 2 and 3 Interval transition probability matrices 
in both region to region and magnitude to magnitude 
transitions have been determined and by using these 
transition matrices and Eq. (1), probabilistic 
forecasting matrix for the next 5 time periods (i.e. next 
50 days) after normalizing are determined.(see Table 
4). The number of the total data is 3179. We have used 
3000 data for the forecasting the next 179 earthquake 
occurrences and used 179 data for determining the 
forecasting error. 

 
 
 
 
 
 
 

 
 

Fig. 2. The siesmogenic source areas of Iran proposed by Karaka isis  
 

Tab. 2. Transition probability matrix of magnitude to magnitude transitions in zoning by Karaka isis 
  1M 

2M 3M 4M 
5M 

 1M 0.0482 0.9157 0.0241 0.0120 0.0000 

2M 0.0275 0.8368 0.1108 0.0222 0.0026 
=MG 

3M 0.0112 0.8123 0.1317 0.0448 0.0000 

 4M 0.0260 0.7532 0.1948 0.0130 0.0130 

 5M 0.0000 1.0000 0.0000 0.0000 0.0000 
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In zoning by Karaka isis, the values of error of 
different algorithms have been calculated as follows:  
 

MSE = 0.022 
MAD = 0.05 
MAPE = 5.00 % 
 

Note that MAPE is suitable when (1)ijFRM  is not 

equal to zero, while in the matrices that we have 
obtained there are also some elements which are equal 
to zero. In this case the total interval of errors replacing 
the elements can be used.  
The total interval of errors is equal to 1; hence the 
denominator of Eq. (5) is equal to 1, therefore the 
equation is similar to the MAD equation. In method 3, 
all of data are divided into three clusters. The data 
ranging from 1 to 3000 are used for forecasting the 
next 104 data as benchmarking, according to algorithm 
(II) in validation section. The data ranging from 3001 
to 3104, equal to 28 time periods (each time unit is 
equal to 10 days), then the data are used for 
deterministic forecasting of the data ranging from 3105 
to 3179, which are the data later used for determining 
the forecasting error, of course in the case of the 
forecast to be deterministic.  

In this way, according to algorithm (II) in the 
validation section t is equal to 5. This value means that 
if the element(s) greater than the 5 th order maximum 
in forecasting matrixes are replaced by 1 and the other 
elements are replaced by 0, then the deterministic 
forecasting is the nearest forecasting to the real 
occurrences and its error is the least. However by 
considering 5t = in this zoning method its MAPE gets 
equal to 2.398%. 

 
66..  DDiissccuussssiioonn  

With respect to investigated zoning method, the 
percentages of earthquake occurrences in each zone are 
shown as Fig. 5. Also the percentages of earthquake 
occurrences in each class of magnitudes are as Fig. 6. 
The transition probability matrices in magnitude to 
magnitude transitions (Table 2) show that the 
maximum and the minimum probabilities in transitions 

are related to the transitions from 5M to 2M (1.00) 

and from 2M to 5M (0.0026) (except to the non zero 

elements), respectively, which by considering Fig. 6 
these results are clear 

 
Tab. 3. Transition probability matrix of region to region transitions in zoning by Karaka isis 

  1R 
2R 

3R 
4R 

5R 
6R 

7R 
8R 

9R 
10R 

11R 

 1R 0.000 0.028 0.000 0.083 0.000 0.000 0.000 0.028 0.000 0.000 0.000 

 2R 0.000 0.000 0.045 0.091 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 3R 0.069 0.000 0.034 0.034 0.000 0.000 0.034 0.000 0.000 0.000 0.138 

 4R 0.012 0.006 0.018 0.079 0.067 0.012 0.024 0.006 0.018 0.000 0.012 

 5R 0.000 0.000 0.000 0.126 0.264 0.000 0.011 0.000 0.000 0.011 0.011 

 6R 0.000 0.000 0.000 0.000 0.043 0.000 0.000 0.000 0.000 0.000 0.043 

 7R 0.009 0.009 0.000 0.018 0.053 0.000 0.035 0.000 0.035 0.018 0.026 

 8R 0.000 0.000 0.056 0.056 0.000 0.000 0.000 0.000 0.056 0.000 0.000 

 9R 0.015 0.000 0.000 0.090 0.000 0.015 0.030 0.015 0.045 0.000 0.030 

 10R 0.000 0.000 0.000 0.065 0.032 0.000 0.065 0.000 0.000 0.032 0.000 

=RG 11R 0.000 0.000 0.010 0.040 0.010 0.010 0.040 0.000 0.030 0.010 0.280 

 12R 0.000 0.018 0.018 0.018 0.018 0.000 0.054 0.018 0.000 0.036 0.071 

 13R 0.051 0.010 0.010 0.051 0.031 0.010 0.051 0.000 0.010 0.010 0.020 

 14R 0.000 0.000 0.000 0.073 0.000 0.000 0.024 0.000 0.000 0.000 0.024 

 15R 0.000 0.000 0.000 0.048 0.048 0.000 0.000 0.000 0.000 0.048 0.000 

 16R 0.007 0.021 0.010 0.031 0.031 0.010 0.028 0.010 0.031 0.007 0.028 

 17R 0.016 0.000 0.012 0.053 0.016 0.000 0.041 0.016 0.016 0.016 0.012 

 18R 0.015 0.007 0.013 0.046 0.018 0.011 0.037 0.004 0.020 0.000 0.024 

 19R 0.013 0.003 0.006 0.054 0.006 0.006 0.035 0.003 0.028 0.013 0.016 

 20R 0.009 0.003 0.003 0.035 0.009 0.015 0.047 0.009 0.026 0.017 0.032 

 21R 0.004 0.007 0.004 0.067 0.026 0.007 0.049 0.000 0.011 0.007 0.022 

 22R 0.011 0.011 0.008 0.054 0.017 0.003 0.034 0.003 0.025 0.011 0.023 
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  12R 

13R 
14R 

15R 
16R 

17R 
18R 

19R 
20R 

21R 
22R 

 1R 0.000 0.111 0.000 0.000 0.083 0.111 0.222 0.083 0.083 0.056 0.111 

 2R 0.000 0.000 0.000 0.000 0.045 0.091 0.091 0.091 0.227 0.136 0.182 

 3R 0.000 0.103 0.034 0.000 0.034 0.069 0.103 0.069 0.103 0.034 0.138 

 4R 0.018 0.024 0.012 0.012 0.091 0.061 0.140 0.110 0.073 0.061 0.140 

 5R 0.000 0.023 0.023 0.000 0.080 0.080 0.069 0.092 0.057 0.080 0.069 

 6R 0.000 0.000 0.000 0.000 0.043 0.043 0.174 0.000 0.217 0.217 0.217 

 7R 0.035 0.061 0.000 0.009 0.044 0.070 0.167 0.088 0.114 0.088 0.123 

 8R 0.000 0.000 0.000 0.000 0.167 0.056 0.333 0.167 0.111 0.000 0.000 

 9R 0.015 0.060 0.000 0.000 0.075 0.045 0.134 0.134 0.119 0.104 0.075 

 10R 0.032 0.000 0.032 0.000 0.065 0.097 0.065 0.161 0.194 0.000 0.161 

=RG 11R 0.020 0.010 0.010 0.010 0.110 0.030 0.080 0.050 0.080 0.050 0.120 

 12R 0.179 0.036 0.000 0.000 0.018 0.125 0.125 0.000 0.089 0.018 0.161 

 13R 0.031 0.163 0.031 0.010 0.102 0.061 0.082 0.020 0.092 0.071 0.082 

 14R 0.000 0.000 0.098 0.000 0.122 0.049 0.171 0.049 0.073 0.146 0.171 

 15R 0.000 0.095 0.000 0.000 0.190 0.048 0.048 0.190 0.095 0.095 0.095 

 16R 0.010 0.017 0.014 0.007 0.140 0.101 0.143 0.119 0.084 0.056 0.091 

 17R 0.024 0.020 0.012 0.008 0.093 0.093 0.167 0.077 0.114 0.085 0.106 

 18R 0.015 0.020 0.018 0.007 0.094 0.074 0.182 0.098 0.098 0.092 0.107 

 19R 0.009 0.044 0.013 0.006 0.070 0.089 0.130 0.120 0.073 0.108 0.155 

 20R 0.015 0.017 0.009 0.003 0.076 0.084 0.160 0.102 0.172 0.087 0.073 

 21R 0.015 0.015 0.011 0.004 0.086 0.086 0.109 0.101 0.120 0.116 0.131 

 22R 0.011 0.028 0.006 0.014 0.099 0.056 0.152 0.127 0.124 0.076 0.107 

 

Tab. 4. Probabilistic forecasting matrixes during time periods 1 to 5 in zoning by Karakaisis 
 1M 

2M 
3M 

4M 
5M   1M 

2M 
3M 

4M 
5M 

1R 0.0007 0.0536 0.0190 0.0034 0.0000  1R 0.0018 0.0668 0.0136 0.0018 0.0000 

2R 0.0007 0.0536 0.0190 0.0034 0.0000  2R 0.0018 0.0533 0.0108 0.0018 0.0000 

3R 0.0007 0.0400 0.0142 0.0027 0.0000  3R 0.0018 0.0515 0.0108 0.0018 0.0000 

4R 0.0027 0.2266 0.0807 0.0142 0.0000  4R 0.0108 0.3631 0.0732 0.0117 0.0009 

5R 0.0007 0.0801 0.0285 0.0054 0.0000  5R 0.0045 0.1536 0.0307 0.0045 0.0000 

6R 0.0000 0.0136 0.0047 0.0007 0.0000  6R 0.0009 0.0434 0.0090 0.0018 0.0000 

7R 0.0014 0.1201 0.0427 0.0075 0.0000  7R 0.0081 0.2773 0.0560 0.0090 0.0009 

8R 0.0000 0.0136 0.0047 0.0007 0.0000  8R 0.0009 0.0361 0.0072 0.0009 0.0000 

9R 0.0014 0.1065 0.0380 0.0068 0.0000  9R 0.0045 0.1617 0.0325 0.0054 0.0000 

10R 0.0007 0.0536 0.0190 0.0034 0.0000  10R 0.0018 0.0650 0.0126 0.0018 0.0000 

11R 0.0014 0.1065 0.0380 0.0068 0.0000  11R 0.0054 0.1798 0.0361 0.0054 0.0000 

12R 0.0007 0.0400 0.0142 0.0027 0.0000  12R 0.0036 0.1174 0.0235 0.0036 0.0000 

13R 0.0014 0.1201 0.0427 0.0075 0.0000  13R 0.0072 0.2240 0.0452 0.0072 0.0009 

14R 0.0000 0.0265 0.0095 0.0020 0.0000  14R 0.0018 0.0696 0.0145 0.0018 0.0000 

15R 0.0007 0.0665 0.0237 0.0041 0.0000  15R 0.0018 0.0524 0.0108 0.0018 0.0000 

16R 0.0047 0.4132 0.1479 0.0265 0.0000  16R 0.0199 0.6631 0.1328 0.0208 0.0018 

17R 0.0027 0.2266 0.0807 0.0142 0.0000  17R 0.0154 0.5068 0.1021 0.0163 0.0009 

18R 0.0075 0.6398 0.2286 0.0414 0.0000  18R 0.0307 1.0000 0.2014 0.0316 0.0027 

19R 0.0061 0.5197 0.1859 0.0332 0.0000  19R 0.0226 0.7525 0.1518 0.0235 0.0018 

20R 0.0061 0.4796 0.1716 0.0305 0.0000  20R 0.0253 0.8347 0.1680 0.0262 0.0018 

21R 0.0041 0.3331 0.1194 0.0217 0.0000  21R 0.0181 0.5827 0.1174 0.0181 0.0018 

22R 0.0122 1.0000 0.3575 0.0645 0.0000  22R 0.0271 0.8862 0.1780 0.0280 0.0018 

  )1(ˆMRF      )2(ˆMRF   
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 1M 

2M 
3M 

4M 
5M   1M 

2M 
3M 

4M 
5M 

1R 0.0025 0.0712 0.0109 0.0017 0.0000  1R 0.0025 0.0696 0.0098 0.0016 0.0000 

2R 0.0017 0.0469 0.0067 0.0017 0.0000  2R 0.0016 0.0475 0.0066 0.0016 0.0000 

3R 0.0017 0.0528 0.0084 0.0017 0.0000  3R 0.0016 0.0581 0.0082 0.0016 0.0000 

4R 0.0109 0.3554 0.0536 0.0101 0.0008  4R 0.0106 0.3571 0.0524 0.0106 0.0008 

5R 0.0050 0.1660 0.0251 0.0050 0.0008  5R 0.0049 0.1679 0.0246 0.0049 0.0008 

6R 0.0017 0.0453 0.0067 0.0017 0.0000  6R 0.0016 0.0442 0.0066 0.0016 0.0000 

7R 0.0075 0.2490 0.0377 0.0075 0.0008  7R 0.0074 0.2457 0.0360 0.0074 0.0008 

8R 0.0008 0.0402 0.0059 0.0008 0.0000  8R 0.0008 0.0401 0.0057 0.0008 0.0000 

9R 0.0042 0.1475 0.0226 0.0042 0.0000  9R 0.0041 0.1433 0.0205 0.0041 0.0000 

10R 0.0017 0.0645 0.0101 0.0017 0.0000  10R 0.0016 0.0631 0.0090 0.0016 0.0000 

11R 0.0059 0.1953 0.0293 0.0059 0.0008  11R 0.0057 0.1982 0.0287 0.0057 0.0008 

12R 0.0034 0.1157 0.0176 0.0034 0.0000  12R 0.0033 0.1155 0.0172 0.0033 0.0000 

13R 0.0067 0.2205 0.0335 0.0067 0.0008  13R 0.0066 0.2162 0.0311 0.0066 0.0008 

14R 0.0025 0.0788 0.0117 0.0025 0.0000  14R 0.0025 0.0803 0.0115 0.0025 0.0000 

15R 0.0017 0.0436 0.0067 0.0017 0.0000  15R 0.0016 0.0459 0.0066 0.0016 0.0000 

16R 0.0193 0.6320 0.0964 0.0184 0.0017  16R 0.0188 0.6200 0.0901 0.0180 0.0016 

17R 0.0168 0.5608 0.0855 0.0168 0.0017  17R 0.0164 0.5545 0.0811 0.0156 0.0016 

18R 0.0302 1.0000 0.1517 0.0293 0.0025  18R 0.0303 1.0000 0.1458 0.0287 0.0025 

19R 0.0201 0.6731 0.1023 0.0193 0.0017  19R 0.0197 0.6437 0.0942 0.0188 0.0016 

20R 0.0226 0.7653 0.1165 0.0226 0.0017  20R 0.0221 0.7355 0.1073 0.0213 0.0016 

21R 0.0176 0.5809 0.0880 0.0168 0.0017  21R 0.0172 0.5758 0.0835 0.0164 0.0016 

22R 0.0243 0.8013 0.1215 0.0235 0.0017  22R 0.0229 0.7633 0.1114 0.0221 0.0016 

  )3(ˆMRF      )4(ˆMRF   

 

 1M 
2M 

3M 
4M 

5M 

1R 0.0025 0.0712 0.0099 0.0025 0.0000 

2R 0.0017 0.0480 0.0066 0.0017 0.0000 

3R 0.0017 0.0613 0.0083 0.0017 0.0000 

4R 0.0108 0.3634 0.0522 0.0108 0.0008 

5R 0.0050 0.1722 0.0248 0.0050 0.0008 

6R 0.0017 0.0464 0.0066 0.0017 0.0000 

7R 0.0075 0.2500 0.0356 0.0075 0.0008 

8R 0.0008 0.0406 0.0058 0.0008 0.0000 

9R 0.0041 0.1440 0.0207 0.0041 0.0000 

10R 0.0017 0.0637 0.0091 0.0017 0.0000 

11R 0.0058 0.2028 0.0290 0.0058 0.0008 

12R 0.0033 0.1175 0.0166 0.0033 0.0000 

13R 0.0066 0.2185 0.0315 0.0066 0.0008 

14R 0.0025 0.0836 0.0116 0.0025 0.0000 

15R 0.0017 0.0464 0.0066 0.0017 0.0000 

16R 0.0190 0.6283 0.0894 0.0182 0.0017 

17R 0.0166 0.5629 0.0803 0.0166 0.0017 

18R 0.0298 1.0000 0.1424 0.0298 0.0025 

19R 0.0199 0.6523 0.0927 0.0190 0.0017 

20R 0.0224 0.7434 0.1060 0.0215 0.0017 

21R 0.0174 0.5828 0.0828 0.0174 0.0017 

22R 0.0232 0.7740 0.1101 0.0232 0.0025 

  ˆ (5)FRM   
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With respect to zoning by Karakaisis in Table 3, it is 
clear that the maximum and the minimum probabilities 
in this table are related to 

8 18R R→  (0.333) and 

22 6 22 8,R R R R→ → (0.0028), respectively.  

Forecasting probabilities for the future five time 
periods in zoning by Karaka isis are shown in Table 4. 
The mentioned tables show that in zoning by Karaka 
isis the maximum probability of earthquake 

occurrences is related to 222MR  in time period 1 and 

218MR  in time periods 2, 3, 4 and 5. By considering 

the errors by method 3, it is obvious that the minimum 
error is related to 5t =  in zoning by Karaka isis and. 
In other words, for obtaining the minimum error, it is 
sufficient to replace all of the first t maximum elements 
by 1 and the other elements by 0 in all probabilistic 
forecasting matrices. In this manner the forecasting 
error is the least and the deterministic forecasting is 
available. 
 

 
Fig. 3. The percentages of occurrences in each 

region of zoning by Karaka isis 

 

 
Fig. 4. The percentages of occurrences in each class 

of magnitudes 
  

77..  CCoonncclluussiioonn  
In this paper in addition to explaining a forecasting 

method by Semi-Markov models, the zoning method 
by Karaka isis and several methods for calculating the 
forecasting errors were introduced.  
The first, Semi-Markov models for the forecasting 
earthquake occurrences in their three dimensions in 

Iran were used. Iran was divided into 22 zones and 
each zone was considered as a state of the proposed 
Semi-Markov model.  
Next, a zoning method by Karaka isis was introduced 
and then forecasting errors of the proposed method 
were calculated by several algorithms. The obtained 
errors show that the MAPE in Karaka isis zoning is 
equal to 5%.  
With respect to method 3 in calculating the forecasting 
errors deterministically, this method can forecast the 
next earthquake occurrences deterministically. The last 
earthquake considered in this paper occurred in March 

26th, 2007 with magnitude 4.9 mb, 3M , and in region 

22R  in Karakas isis zoning. In this manner, 

deterministic forecasting during the future five time 
periods, equal to the future 50 days, for Karaka isis 
zoning are determined as shown in Table 5:  
 

Tab. 5. Deterministic forecasting matrix during 1 to 
5 time periods in zoning by Karaka isis 

Periods Karaka isis zoning method 

1 to 5 222220219218216 ,,,, MRMRMRMRMR  
 

After 50 days, it has been specified that the occurred 
earthquakes in zoning method by Karaka isis are as 
follow: 
 

Tab. 6. Real occurrences during next 5 time periods 
after last earthquake occurrences 

Periods Karaka isis zoning method 
1 

16 2 20 2 21 2, ,R M R M R M  

2 
2 2 13 2 14 2, ,R M R M R M  

3 
7 2 17 2 18 2 19 2 22 2, , , ,R M R M R M R M R M  

4 
12 2 18 1 18 2 19 2 20 3, , , ,R M R M R M R M R M  

5 20 2 21 2 22 3, ,R M R M R M  

These obtained results show that in zoning by Karaka 
isis 42% of earthquakes have truly been forecasted. 
The places of 16% of earthquakes have correctly been 
forecasted but not their magnitudes. 16% of the 
forecasted earthquakes occurred in their neighborhood 
but their magnitudes were right and also 26% of 
earthquakes were never forecasted.  
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