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Abstract

In this research, the decision on belief (DOB)  approach was employed to analyze and classify the states of uni-variate quality control systems. The concept of DOB and its application in decision making problems were introduced, and then a methodology for modeling a statistical quality control problem by DOB approach was discussed. For this iterative approach, the belief for a system being out-of-control was updated by taking new observations on a given quality characteristic. This can be performed by using Bayesian rule and prior beliefs. If the beliefs are more than a specific threshold, then the system will be classified as an out-of-control condition. Finally, a numerical example and simulation study were provided for evaluating the performance of the proposed method. 
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1. Introduction 
The value of Bayes’ theorem, as a basis for statistical inference, has swung between acceptance and rejection since its publication in 1763, so that Bayes’ mode of reasoning, which was finally buried on so many occasions, has recently risen again with astonishing vigor [1].

This research focuses on sequential methods based on stochastic dynamic programming techniques for process quality control. For the statistics literature, SDP was studied mostly from Markov's decision process perspective. Traditional SPC methods provide a group of statistical tests for a general hypothesis, in which the mean value for the quality characteristic of a process, or a process mean, for short, is consistent with its target level. A variety of graphical tools have been developed for monitoring a process mean by Shewhart charts [2], CUSUM charts [3], and EWMA charts [4].

The process mean is desired to be maintained at its target level consistently; however, random process errors, or random “shocks”, can shift the process mean to an unknown level. A control chart is required to detect this shift as soon as possible. At the same time, it should not signal too many false alarms when the process mean is on the target. These criteria are usually defined in terms of the Average Run Length of the control chart for the in-control operation and out-of-control operation of the process, i.e., in-control ARL and out-of-control ARL, respectively [5].

For the quality control of a manufacturing process, one essential task is to detect any possible abnormal change in the process mean and remove it. However, a control chart alone does not explicitly provide a process adjustment scheme even when the process mean is deemed to be off-target. Consider a manufacturing process, in which detecting off-target state is very important and a control charting method is not sufficient. We present a stochastic dynamic programming approach for theses types of processes. This approach, named Decision on Belief (DOB), was firstly presented by Eshragh and Modarres [6]. They applied sequential analysis and stochastic dynamic programming to find the best underlying probability distribution for the observed data, also Eshragh and Niaki applied the DOB concept as a decision-making tool in Response Surface methodology [7 & 8]. Fallahnezhad and Niaki [9] applied the concept in the problem for determining the best binomial distribution. Also they applied this approach to acceptance sampling plans and production systems [10, 11].
Sequential analysis has been used in control charts by some authors [12, 13]. Wu et al proposed a scenario for continuously improving the 
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 control charts during charts usages. It uses the information collected from the out-of-control cases in a manufacturing process to update charting parameters [12].

Bayesian inference is one of the best tools in Sequential Analysis. Some researchers have applied Bayesian analysis in Quality control [14, 15]. Chun and Rinks [14] assumed that the proportion defective is a random variable that follows a Beta distribution and regarding Bayesian inference, they derived Bayes producer's and consumer's risks. Fallahnezhad and Niaki [16] proposed a new monitoring design for uni-variate statistical quality control charts based on an updating method. Marcellus [17] proposed a Bayesian statistical process control and compared it with CUSUM charts. He showed the advantage for turning from Shewhart chart or CUSUM chart into Bayesian monitoring in situations where the required information about the process structure is obtained.

The rest of the paper is organized as follows: DOB modeling for SPC is presented in Section 2. Section 3 provides the belief and approach of its improvement. A Stochastic Dynamic Programming Approach is discussed in section 4. The numerical demonstration on the proposed methodology application is provided in section 5. Section 6 introduces a simulation experiment and Section 7 provides a conclusion.
2. DOB modeling for SPC problems

In a uni-variate quality control environment, the collected observations for a quality characteristic of a product contain so much information about production process that if we limit ourselves to apply a control charting method, we will not be using most of them. In fact, the main aim of a control charting method is to detect undesired variation quickly occurred in the process. However, applying both sequential analysis concept and Bayesian rule, at any iteration in which some observations on the quality characteristic are available, based upon the observations at hand we may calculate the belief for the process being out-of-control. Regarding these beliefs and a stopping rule, we may find and specify a decision interval on these beliefs and when the updated belief in any iteration is not within this interval, an out-of-control signal is observed. The control interval is determined based on the value for type-one error.
In these problems, first, all probable solution spaces will be divided into several candidates (the solution is one of the candidates), then a belief will be assigned to each candidate considering our experiences and finally, the beliefs are updated and the optimal decision is selected based on the current situation. In a SPC problem, a similar decision-making process exits. First, the decision space can be divided into two candidates; an in-control or out-of-control production process. Second, the problem solution is one of the candidates for either an in-control or out-of-control process. Finally, a belief is assigned to each candidate so that the belief shows the probability for the process being in or out-of-control condition. Based upon the belief updated for any iteration, we may decide if the process is in out-of-control condition. 
3. Learning: the beliefs and approach for its improvement
For simplicity, only one single observation on the quality characteristic of interest in any iteration for data gathering process was assumed. At iteration k for data gathering process, 
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 was defined as the observation vector where 
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resemble observations for previous iterations 1, 2, …, k. The decision-making process after any iteration is in a stochastic space such that we can never say surely that the production process is in out-of-control state. After taking a new observation,
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, the probability of being in an out-of-control state is defined as
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. At this iteration, we want to improve the belief of being in out-of-control state based on observation vector 
[image: image6.wmf]1

k

O

-
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. If we define 
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as the prior belief of an out-of-control state, in order to update the posterior belief
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, since we may assume that the observations are taken independently in any iteration, then we will have
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With this feature, using Bayesian rule the updated belief is: 
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As candidates are independent, we can write equation (1) as 
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             (2)
Assuming the quality characteristic of interest follows a normal distribution with mean 
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 and variance
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, we use equation (2) to calculate both beliefs for occurring positive or negative shifts in the process mean
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. 
· Positive shifts in the process mean
The values of
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, showing the probability of occurring a positive shift in the process mean, will be calculated applying equation (2) recursively.
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is defined by the following equation,
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, the probability that the observations in iteration k is out-of-control, 
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, is calculated using equation (3).
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where 
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 is the cumulative probability distribution function for the normal distribution with mean 
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 and variance
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. Above probabilities are not exact probabilities and they are a kind of belief function to ascertain good properties for 
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 is determined by the following equation,
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· Negative shifts in the process mean
The values of
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, showing the probability of negative shift in the process mean, will also be calculated using equation (2) recursively. In this case, 
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, is calculated using equation (5).
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Thus 
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 is determined by the following equation,
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4. A Stochastic Dynamic Programming Approach

We present a decision making approach in terms of Stochastic Dynamic Programming approach. Presented approach is like an optimal stopping problem.
Suppose n stages for decision making is remained and two decisions are available.

1. A positive shift is occurred in the process mean
2. No positive shift is occurred in the process mean 

Decision making framework is as follows:
1.  Gather a new observation.
2.  Calculate the posterior Beliefs in terms of prior Beliefs.

3.  Order the current Beliefs as an ascending form and choose the maximum.
4.  Determine the value of the least acceptable belief (
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is the least acceptable belief for detecting the positive shift and 
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 is the least acceptable belief for detecting the negative shift)
5.  If the maximum Belief in step 3 was more than the least acceptable belief,
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, select the belief candidate with maximum value as a solution else go to step 1.
In terms of above algorithm, the belief  with maximum value is chosen and if this belief was more than a control threshold like 
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, the candidate of that Belief will be selected as optimal candidate else the sampling process is continued. The objective of this model is to determine the optimal values of
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. The result of this process is the optimal strategy with n decision making stages that maximize the probability of correct selection.

Suppose new observation 
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is gathered. (k is the number of gathered observations so far). 
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is defined as the probability of correct selection when  n decision making stages are remained and we follow
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 strategy explained above also 
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CS is defined as the event of correct selection. S1 is defined as selecting the out-of-control condition (positive shift) as an optimal solution and S2 is defined as selecting the in-control condition as an optimal decision and NS is defined as not selecting any candidate in this stage.

Hence, using the total probability law, it is concluded that:
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denotes the probability of correct selection when candidate S1 is selected as the optimal candidate and this probability equals to its belief,
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, and with the same discussion, it is  concluded that 
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1. 
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is the probability of selecting out of control candidate ( positive shift) as the solution thus following the decision making strategy, we should have 
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With the same reasoning, it is concluded that,
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2. 
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 denotes the probability of correct selection when none of candidates  has been selected and it means that the maximum value of  the beliefs is less than 
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and the process of decision making continues to latter stage. As a result, in terms of Dynamic Programming Approach, the probability of this event equals to maximum of  probability of correct selection in latter stage(n-1), 
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, but since taking observations has cost, then the value of this probability in current time is less than actual value of it and by using the discounting  factor 
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3. Since the entire solution space is partitioned, it is concluded that 
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By the above preliminaries, the function 
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 is determined as follows:
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In terms of above equation, 
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Calculation method for
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Now equation (9) is rewritten as follows:
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There are three conditions:
1. 
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 we don’t select any candidate in this condition and sampling process continues.
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In this condition, both 
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In this condition, one of the probabilities in equation (10) has positive coefficient and one has negative coefficient, to maximize 
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First the value of 
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Since 
[image: image94.wmf](

)

k

x

j

 is a cumulative distribution function thus it follows a uniform Distribution function in interval [0, 1], thus the above equality is concluded.

With the same reasoning, it is concluded that:
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Now equation (8) can be written as follows:
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And equation (10) can be written as follows:
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Since 
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 thus it is sufficient to maximize the real value function 
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, therefore; we should find the function value in points where the first order deviation equals zero,
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The optimal threshold 
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 should be in the interval [0.5, 1] thus it is concluded that the optimal value of 
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The above method is presented for detecting the positive shifts for the process mean and can be adapted for detecting the negative shifts with the same reasoning.
The general decision making algorithm is summarized as follows:

1. Set k=0 and the initial beliefs
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2. Gather an observation and set
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3. If
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, then no shift is occurred in the process mean and decision making stops.

4. Update the values for the beliefs 
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by equation (2).
5. If 
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, it is concluded that a positive shift is occurred in the process mean and decision making stops, also if  
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7. If 
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 it is concluded that a negative shift is occurred the process mean and decision making stops and if  
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[image: image115.wmf](

)

(

)

(

)

(

)

,11

kk

MaxBOBOVn

a

--

-<-

, then data is not sufficient for detecting the negative shift and go to stage 2.

9. If
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, then determine the value for 
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(least acceptable belief for detecting the positive shift) by the following equation:
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10. If
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then determine the value for 
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 (least acceptable belief for detecting the negative shift) by the following equation:
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11. If
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The approximate value of
[image: image126.wmf](

)

1

Vn

a

-

based on the discount factor
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in the stochastic dynamic programming approach is
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5.    Numerical example
A numerical example is provided to detect the positive and negative shift of mean for the process.  The assumption for a quality characteristic in a process follows the standard normal distribution and a shift
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for the process mean. It was assumed that sampling had a cost. Only 15 observations could be sampled (n=15), also the values of 
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were selected as the parameter values. 
The initial value for the out-of-control or in-control beliefs is equal to 0.5.
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To show the process of decision making on Beliefs, random numbers of normal distribution with parameters 
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1.
 First observation:

Step 1: Number 
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Step 2: Posterior belief calculation.
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Step 3:  Order the belief.
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Step 4: Since
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, it is in the condition 1 of decision making method. Hence, 
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Step 5: Since
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1.  Second observation:

 Step 1: 
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 Step 2: Posterior beliefs calculation. 
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Step 3: Order the beliefs.  
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Step 4:
 Since
[image: image145.wmf]14

22

(,)(0)0.620(,)

BgrOVBsmO

a

++

>=>

and
[image: image146.wmf]14

22

(,)(0)0.620(,)

BgrOVBsmO

a

--

>=>

, thus we are in the condition 3 of decision making process, hence first, the values of 
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Step 5:
 Since
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, then it is concluded that no negative shift is occurred in the process mean but additional observations are needed for decision making about the positive shifts.
2. Take the third observation:

 Step 1: 
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 Step 2: Posterior beliefs calculation. 
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Step 3: the beliefs are ordered.
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Step 4:
 Since
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, thus we are in the condition 3 of decision making process, hence first, the value of 
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Step 5:
 Since
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, thus it is concluded that a positive shift is occurred in the process mean.
6.    Simulation Experiment

For the simulation methodology, the standard normal observations were generated. Then, the proposed procedure was implemented for the simulated gathered data in different iterations. 
Table 1 shows the estimated probabilities for detecting a positive shift for the proposed methodology. Five different parameter sets with 10,000 independent replications of the process were selected. 
Table (1): The Probabilities of detecting a positive shift in simulation experiments

Table (1) shows that the overall values of probabilities are favorably large. Further, as the magnitudes of the mean shifts increase, the probabilities become larger. Also, when the value of 
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increases, the probability of first type error, denoting the probability of detecting a positive shift while no shift is occurred in the process mean, decreases and the probability of second type error decreases in most of the cases .  Also as the number of decision making stage (n) decreases, the probability of first type error decreases but the probability of second type error increases simultaneously therefore the optimal value of n should be selected based on the tradeoff between second type error and first type error. Also as 
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 decreases, the probability of first type error increases but the probability of second type error decreases in small value of shifts and increases in large values of shifts therefore the optimal value of 
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 should be selected based on out of control value of mean that should be detected. 
Table (2): The ARL values in simulation experiments

Table (2) shows that the overall values of 
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 are favorably small. Further, as the magnitudes of the mean shifts increase, the 
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 values become smaller. Also, when the value of 
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increases, both values of 
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increases. Also as the number of decision making stage (n) decreases, both values of 
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 and 
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decreases. Also as 
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 decreases, both values of 
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decreases. Therefore it is concluded that optimal parameter should be selected based on the required application and performance.
6. Conclusions 
In this paper, the concept of decision on belief (DOB) approach is employed to analyze and classify the states of uni-variate quality control systems. In this iterative approach, we tried to update the beliefs of a system being out-of-control by taking new observations on the given quality characteristic. Decision making is based on comparing the values of beliefs with a control threshold. The value for control threshold is determined by solving a stochastic dynamic programming problem. The optimal values of control thresholds are determined in order to maximize the probability of selecting correct design. A numerical example is presented to illustrate how the proposed procedure can be applied to design a process control method. Also, in simulation experiment, the performance of proposed method for detecting the positive shifts of the process mean is evaluated and it denotes that the proposed method performance for detecting the shifts of the process mean is satisfactory. Also, small values of ARL in the proposed method indicate an advantage for proposed method.
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