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ABSTRACT 

Today, data mining and machine learning are recognized as tools for extracting knowledge from large datasets with diverse 

characteristics. With the increasing volume and complexity of information in various fields, decision-making has become more 

challenging for managers and decision-making units. Data Envelopment Analysis (DEA) is a tool that aids managers in 

measuring the efficiency of the units under their supervision. Another challenge for managers involves selecting and ranking 

options based on specific criteria. Choosing an appropriate multi-criteria decision-making (MCDM) technique is crucial in 

such cases. With the spread of COVID-19 and the significant financial, economic, and human losses it caused, data mining has 

once again played a role in improving outcomes, predicting trends, and reducing these losses by identifying patterns in the 

data. This paper aims to assess and predict the efficiency of countries in preventing and treating COVID-19 by combining DEA 

and MCDM models with machine learning models. By evaluating decision-making units and utilizing available data, decision-

makers are better equipped to make effective decisions in this area. Computational results are presented in detail and discussed 

in depth. 

KEYWORDS: Data mining; Machine learning; Data envelopment analysis; Multi-criteria decision-making; COVID-19. 

 

1. Introduction 

Since the end of 2019, the COVID-19 crisis 

(abbreviated for coronavirus disease of 2019) 

with the scientific name severe acute respiratory 

syndrome coronavirus 2 (SARS‑CoV‑2) originated 

in China and quickly spread around the world [1]. 

The main symptoms of this disease are headache, 

dizziness, lack of appetite, lethargy, and cough 

[2]. Since the beginning of the disease outbreak, 

COVID-19 brought a high death rate and, in a 

period, it was considered the most important 

challenge for the health systems of countries. In 

addition, this crisis dealt a serious blow to the 

global economy, and all countries were looking 

for ways to manage this pandemic and its diverse 

effects on various aspects, including health, 

economy, politics, culture, sports, etc. [3]. In the 

latest published statistics on this pandemic in 

2024, over 704 million confirmed cases were 

reported, with more than 7 million deaths 

recorded [4]. This catastrophic statistic justifies 

the use of the word crisis for COVID-19. Based 

on this, the first dimension of the current research 

problem originates and develops from the 

COVID-19 crisis. Paying attention to the key 

measurements taken by the countries to manage 

the pandemic and evaluating the effectiveness of 

those measurements through the definition of 

appropriate inputs-outputs is one of the main 

issues of this research. 

On the other hand, from a methodological point 

of view, one of the biggest challenges managers 

faces is making decisions in various situations. 

Researchers have developed various methods and 

techniques to help with decision-making and 

evaluating decision-making units. Today, assessing 

the efficiency of organizations and companies  

is crucial for senior managers in their strategic 

planning [5]. Organizations must monitor and 

evaluate their activities, particularly in complex 

and dynamic environments, to ensure effective 

functioning. Important methods in this area 

include multi-criteria decision-making (MCDM) 

models and data envelopment analysis (DEA)  

[6, 10]. Therefore, another dimension of the current 

research problem is from the methodological 

aspect, that is, how to use DEA-MCDM models 

and techniques to reflect the efficiency of 

countries as decision-making units (DMUs). 
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DEA is a linear programming method that 

measures the relative efficiency of units within a 

system. MCDM is divided into two types: multi-

objective decision-making (MODM) and multi-

attribute decision-making (MADM). The goal  

is to select the best option or assign weights  

to decision factors. Although DEA was first 

introduced as an efficiency evaluation method, it 

is now used alongside MCDM techniques due to 

its wide range of applications, particularly in 

decision-making. Examples include evaluating 

the efficiency of stocks in the capital market, 

mutual funds, military bases, city planning, and 

assessing various automakers, among many 

others [10-13]. 

From another perspective, as the volume of 

information grows, the need for algorithms capable 

of extracting useful knowledge from data increases. 

The process of knowledge discovery involves 

finding valuable information and predicting 

future events based on that information. The term 

"data mining" became popular in the 1990s, and 

it is an interdisciplinary field that combines 

databases, statistics, and machine learning to 

extract valuable insights from large datasets. Many 

industries, such as retail, banking, manufacturing, 

telecommunications, and insurance, use data 

mining algorithms to uncover different patterns 

and relationships [14]. 

Machine learning, when combined with other 

models and algorithms, can help interpret and 

predict the information obtained from those 

models. This combination can address the 

limitations of DEA models and MCDM techniques. 

Machine learning is a subset of artificial intelligence 

that allows systems to learn and improve without 

being explicitly programmed, enabling them to 

interpret previously unseen data [15]. 

During the global COVID-19 pandemic, machine 

learning has been used to analyze data from 

various sources, helping researchers and decision-

makers extract hidden knowledge. Some 

applications of machine learning in this area 

include [16]: 

• Application 1. Analyzing radiographic images 

to identify COVID-19 infections. 

• Application 2. Clustering symptoms of infected 

individuals. 

• Application 3. Evaluating the effectiveness of 

treatments. 

• Application 4. Predicting the spread of the 

virus and outcomes like recovery or mortality. 

• Application 5. Predicting the efficiency of 

units in treating patients. 

In summary, the way of using machine learning 

algorithms in this paper places its application in 

categories 3 and 5 mentioned above. In general, 

this paper pursues the development of an 

integrated methodology of machine learning 

algorithms and DEA-MCDM methods for the 

assessment of the management of the COVID-19 

crisis as the main purpose. Now with the 

clarification of the research problem, we can point 

out the contributions and novelties of this paper, 

which include the following: 

• Using the MADM technique and the  

DEA model to form a multi-objective  

planning model to measure the efficiency of  

countries and states involved in COVID-19 

(Implementation through MODM technique). 

• Generation of supervised learning model and 

regression prediction of efficiency values. 

• Implementation of the methodology through 

the registered data of COVID-19 for 46 states 

of the USA and 43 European countries. 

The main reason for using machine learning in 

this paper is to address the rapid growth of 

COVID-19 data. These data allow for measuring 

the efficiency of countries at any given point in 

time during the pandemic, but their rapid growth 

and increase make it challenging to continuously 

use DEA models. At this point, machine learning 

can be a very useful tool. 

The remainder of the article is organized as 

follows: 

Section 2 reviews the research literature in a 

comprehensive and combined way from the 

viewpoints of the case study and methodology. 

Section 3 describes the details of the research 

process, steps, data details and theories. The 

results and discussion are presented in depth  

in Section 4 and finally, Section 5 reflects the 

conclusions and managerial insights. 

2. Literature Review 

In order to highlight the gaps of articles in the 

literature related to the present paper, the search 

for studies was conducted in the period of  

2020 to 2024. In this step, we tried to find  

articles in English form and the highest level of 

publications. In the following, the studies found 

and their details are presented. 

The outbreak of the COVID-19 pandemic has 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ie
pr

.iu
st

.a
c.

ir
 o

n 
20

25
-0

3-
17

 ]
 

                             2 / 17

http://ijiepr.iust.ac.ir/article-1-2095-en.html


 A Hybrid Methodology of Data Science and Decision-Making Techniques: Lessons from COVID-19 

Pandemic Management 

101 

 

International Journal of Industrial Engineering & Production Research, March 2025, Vol. 36, No. 1 

brought unprecedented challenges to various 

sectors worldwide. Decision makers are faced 

with complex decisions that require a systematic 

approach to effectively address the evolving 

situation. MADM techniques offer a structured 

framework to evaluate and select the best 

alternatives among a set of options based on 

multiple criteria. 

Several studies have emphasized the utility of 

MADM techniques in healthcare systems 

throughout the COVID-19 pandemic. For 

example, Celeste et al. [17] have utilized the 

Analytic Hierarchy Process (AHP) for the  

optimal allocation and distribution of COVID-19 

vaccines. This approach ensures optimal resource 

management and enhances decision-making 

efficiency in crises. The use of MADM techniques 

has also been explored in assessing and mitigating 

risks associated with COVID-19 containment 

measures. Decision makers can utilize techniques 

like Technique for Order of Preference by 

Similarity to Ideal Solution (TOPSIS) or ELECTRE 

to rank potential strategies based on criteria such 

as effectiveness, feasibility, and economic impact. 

By employing these techniques, policymakers 

can identify the most suitable risk mitigation 

strategies tailored to specific regional contexts. In 

this research area, Hezar et al. [18] focused on the 

comparative analysis of TOPSIS, VIKOR, and 

COPRAS methods for regional safety assessment 

of COVID-19. In the context of economic 

recovery post-COVID-19, MADM techniques 

play a crucial role in prioritizing policy 

interventions and investments. By considering 

various dimensions such as economic growth, 

employment, and social welfare, decision-makers 

can formulate evidence-based recovery strategies 

that align with long-term sustainable development 

goals. For example, we can refer to the research 

of Le et al. [19] in this field. They used the  

EDAS technique based on fuzzy uncertainty to 

determine the production strategies of Vietnam's 

industry in the post-COVID-19 era. The global 

impact of the COVID-19 pandemic has 

underscored the need for efficient decision-

making processes to address multifaceted 

challenges. MODM techniques provide a 

structured approach to evaluating alternatives 

based on multiple conflicting objectives. MODM 

techniques have been employed in optimally 

allocating scarce resources within healthcare 

systems amidst the COVID-19 outbreak. Studies 

have utilized methods such as Multi-Objective 

Linear Programming (MOLP) to balance 

conflicting objectives like minimizing mortality 

rates, maximizing patient throughput, and 

maintaining healthcare worker safety. By 

considering multiple objectives simultaneously, 

decision-makers can devise strategies that 

optimize resource allocation and enhance overall 

system efficiency. For example, Eriskin et al. [20] 

presented a robust multi-objective model for 

healthcare resource management and location 

planning during pandemics. The disruption 

caused by the pandemic has underscored the 

critical importance of efficient supply chain 

management in ensuring the timely delivery of 

essential goods and services. Researchers have 

applied Multi-Objective Optimization (MOO) 

techniques to optimize supply chain networks, 

considering objectives such as cost reduction, 

lead time minimization, and resilience to 

disruptions. By leveraging MODM approaches, 

organizations can build agile and robust supply 

chains capable of adapting to dynamic demand 

patterns and mitigating supply shortages. For 

example, Mondal and Roy [21] developed a 

multi-objective stable closed-loop open-loop 

supply chain model under mixed uncertainty 

during the COVID-19 pandemic situation. 

On the other hand, DEA models were widely  

used by researchers to measure the efficiency of  

DMUs (including health systems or countries). 

For example, Ordu et al. [22] used different DEA 

models to evaluate and rank the performance of 

16 countries in handling the COVID-19 pandemic. 

Since several countries were deemed efficient, 

they used a more advanced DEA model to  

rank these efficient countries. Taherinezhad and 

Alinezhad [23] used a two-stage output-oriented 

DEA model with variable returns to scale (VRS) 

to measure the efficiency of nations. They also 

used ensemble learning algorithms to predict 

class efficiencies. Following the previous research, 

Taherinezhad and Alinezhad [24] implemented 

the Multi-Layer Perceptron (MLP) model for 

accurate prediction and regression of efficiencies. 

The basis of the predicted efficiency values in 

their study was the values obtained from the DEA 

model with different variables from the previous 

research. 

The COVID-19 pandemic has underscored the 

critical need for innovative approaches to enhance 

disease surveillance, diagnosis, treatment, and 
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public health interventions. Machine learning 

algorithms have emerged as powerful tools  

for analyzing vast amounts of data, extracting 

insights, and supporting decision-making 

processes in the context of infectious disease 

outbreaks. Machine learning algorithms have 

been instrumental in developing robust disease 

surveillance systems and early warning mechanisms 

for tracking the spread of COVID-19 and 

predicting potential outbreaks. Recent studies 

have demonstrated the effectiveness of machine 

learning models in analyzing epidemiological 

data, social media trends, and healthcare records 

to detect patterns, identify risk factors, and 

forecast disease transmission dynamics. By 

leveraging machine learning techniques such as 

deep learning [24], ensemble methods [23], and 

anomaly detection, researchers have been able  

to enhance the accuracy and timeliness of  

disease surveillance efforts, enabling proactive 

interventions to contain the spread of the virus. 

For example, Bathwal et al. [25] developed a 

hybrid model that combined machine learning 

and epidemiological techniques to predict  

daily mortality during the COVID-19 pandemic. 

Hashim et al. [26] generated models using  

neural networks and linear regression to predict  

COVID-19 infection rates, showing that actual 

infection numbers were much higher than reported 

in some countries. Also, Khanday et al. [27] 

developed a machine learning model to diagnose 

COVID-19 using clinical text reports. They found 

that logistic regression and naive Bayes algorithms 

provided the most accurate results. It is important 

to mention that the mentioned studies are only a 

few examples of extensive machine learning 

studies in COVID-19. In order to find the above 

studies, we tried to consider the most relevant 

ones with the present paper. 

By reviewing the studies found [17-27], we  

find that MCDM, DEA, and machine learning 

techniques have been used separately in most  

of the studies. Only studies [23] and [24] have 

employed the combined approach of DEA  

and machine learning for the evaluation of the  

Covid-19 pandemic. The point here is that the 

separate use of the mentioned mathematical 

methods, although it is a gap in previous studies, 

but it is not considered their weakness. In  

the following study, an integrated methodology 

including decision-making techniques (DEA-

MCDM) and data science is used to cover this 

gap. Therefore, this paper is one of the few papers 

that simultaneously involve decision-making 

tools and machine learning in the computational 

outputs of the COVID-19 pandemic. This 

integration of tools offers numerous advantages  

in analysis and management insights related to 

COVID-19 and can be utilized by researchers, 

scientists, and policymakers. 

3. Methodology 

In this paper, based on architecture is given  

in Fig.1, we first use a group decision-making 

method called the group best-worst method 

(GBWM) [28] and the CCR DEA model [29]  

to create a multi-objective programming model  

for calculating the efficiency of each unit. The  

case study uses data from 46 U.S. states and 43 

European countries. The dataset includes three 

inputs: population, total cases, and active cases, 

and two outputs: total recovered and total deaths. 

After calculating the relative efficiency of U.S. 

states and European countries using the CCR  

and GBWM-DEA models, we will predict the  

relative efficiency of these units using regression  

models. The flexibility of machine learning in 

combination with other models and algorithms 

has created this advantage to interpret and  

predict the information obtained from other 

models. 

Therefore, considering the disadvantages and 

limitations of DEA models and MADM 

techniques, machine learning in combination with 

these two methods can solve this problem to  

a large extent. The above explanation is fully 

reflected in Fig. 1. Overall, Fig. 1 reflects the 

main stages of this study. The starting phase 

involves data extraction, while the final phase 

consists of evaluating the proposed model and 

drawing conclusions. Fig. 1 serves as a roadmap, 

and having it is essential for ensuring the high 

quality of the current research. Additionally, Fig. 1 

illustrates the relationship between the DEA-

MCDM models and machine learning algorithms. 

As shown, the output data from the DEA model 

(efficiencies) serves as part of the input data  

for the machine learning algorithms. It is worth 

noting that the type and number of models and 

algorithms are clearly specified in Fig. 1. 

3.1. Selecting data and features 

To achieve the best results, it's important to 

choose a dataset that can provide the most 

accurate output for data mining models.  
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Fig.1. Architecture of the proposed methodology 

Also, having features that do not have a 

meaningful connection or correlation with each 

other and the response variable can increase  

the error in the model. Therefore, selecting 

features that have a good correlation and are 

relevant to our goal is crucial [24]. In this study, 

we used information from 46 U.S. states and  

43 European countries to implement DEA models 

and machine learning. The data, collected from  

the Worldometers website [4], includes five  

input and output variables used to measure the 

efficiency of units and apply regression models. 

It is worth mentioning that the collected data 

pertains to the COVID-19 statistics recorded up 

until the end of June 2022. The efficiency  

score obtained from the GBWM-DEA-CCR 

method will be added as a new feature to  

the dataset. Descriptive statistics of the dataset  

of the United States and European countries  

are shown separately in Table 1 and Table 2. 

These datasets are described through statistical 

indicators including count, mean, standard 

deviation (std), minimum (min), quartiles and 

maximum (max). 

Tab.1. Description of the U.S. dataset 

 Population Total Cases Active Cases Total Recovered Total Deaths 

count 46 46 46 46 46 

mean 6687223 2001851 33607.91 1946611 11274516 

std 7658678 2309824 49690.09 2249802 23962.92 

min 578759 147657 1207 145285 11198053 

25% 1827712 562412 4886.25 554605.3 11271500 

50% 4342705 1270805 20424 1239839 11281816 

75% 8305363 2168815 35374 2112277 11290956 

max 39512223 11646262 252020 11296147 11295367 
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Tab.2. Description of the European countries’ dataset 

 Population Total Cases Active Cases Total Recovered Total Deaths 

count 43 43 43 43 43 

mean 17358612 5605234 93767.19 5465598 37571932 

std 29009575 9446110 236197.3 9213247 76361.97 

min 33704 15866 81 15720 37224694 

25% 2079669 498283 1982 441372 37577747 

50% 5834950 1684717 9809 1670101 37601582 

75% 11202531 5425559 39509.5 5282908 37612449 

max 1.46E+08 38899905 1121488 37617800 37617738 

 

3.2. Basic DEA model 

The CCR model is one of the most widely 

recognized DEA models. It was first introduced 

by Charnes, Cooper, and Rhodes in 1978 [29]. In 

this model, each DMU is assigned a virtual input 

and output using weights vi and ur. These weights 

are then calculated using linear programming to 

maximize the ratio of virtual output to virtual 

input. 

The optimal weights typically vary from one 

DMU to another. Therefore, in DEA, the weights 

are derived from the data and are not fixed in 

advance. The best set of weights is calculated for 

each DMU, which may differ from the weights 

used for other DMUs. The input-oriented 

fractional CCR linear programming model is 

written as Eq. (1) [29]: 

max  zp = u1y1p + u2y2p + ⋯ + uryrp    

s. t.: 

v1x1o + v2x2p + ⋯ + vmxmp = 1    

(u1y1j + ⋯ + uryrj) − (v1x1j + ⋯ + vixij) ≤ 0  

v1 , v2 , … , vi ≥ 0 , u1 , u2 , … , ur ≥ 0   

j = 1,2, … , p, … , n                      (1) 

Generally, DMUs aim to increase efficiency by 

reducing inputs and increasing outputs. However, 

in practice, reducing inputs and increasing 

outputs does not always improve performance 

because some inputs and outputs may be 

undesirable. If yrp
g

 and yrp
b  represent desirable 

and undesirable outputs respectively, the first step 

is to transform the variables based on Eq. (2) [23]: 

−yrp
b +  kr =  yrp

g′

 , (r ∈ b)               (2) 

Then, we have Eq. (3) as follows: 

kr = max
1≤j≤n

{yrj} + 1, r = 1,2,3, … , s         (3) 

In this study, the Total Deaths parameter is treated 

as an undesirable output. Therefore, before applying 

the CCR model, a variable transformation will  

be performed according to Eq. (2) and other 

variables remain unchanged. 

 

3.3. Best-worst method (BWM) 

This method was presented by Rezaei [30]  

in 2015. The purpose of this method is to assign 

weights to various criteria based on the decision-

maker's preferences. The decision-maker or 

expert identifies the best and worst criteria, and 

then a pairwise comparison is made between 

these two criteria (best and worst) and the other 

criteria. After this, using the min-max method, a 

problem is set up to determine the weights of the 

criteria. The steps of BWM are as follows [30]: 

• Step 1: Identify the set of criteria for  

decision-making. Consider the set of criteria 

{c1, c2, c3, … , cn} needed for decision-making. 

• Step 2: Determine the best (most desirable, 

most important) and worst (least desirable, 

least important) criteria. In this step, the 

decision-maker only identifies the best and 

worst criteria without making any comparisons. 

• Step 3: Rate the preference of the best 

criterion over the other criteria using numbers 

between 1 and 9 in a set called AB, as written 

Eq. (4): 

AB = {aB1, aB2, … . , aBn}                 (4) 

aBj  represents the preference level of the best 

criterion over the j-th criterion. It is clear that the 

value of aBB is equal to one. 

• Step 4: The preference level of the other 

criteria relative to the worst criterion is 

represented using numbers between 1 and 9 in 

a set called Aw, written as Eq. (5): 

Aw = {a1w, a2w, … . , anw}                (5) 

aJW  represents the preference level of the j-th 

criterion relative to the worst criterion. It is clear 

that the value of aWW is equal to one. 

• Step 5: find the optimal weight values  

Aw = ( w1
∗ , w2

∗ , … . , wn
∗ ) To determine the 

optimal weight for each criterion, pairs 
WB

Wj
⁄ =  aBj  and 

Wj

Ww
⁄ =  ajw are formed, 
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and to satisfy these conditions for all j, a 

solution must be found that minimizes the 

maximum absolute difference between the 

expressions |
WB

Wj
− aBj| and |

Wj

Ww
− ajw| . 

Considering the non-negativity of the sum of 

the weights, the problem will take the 

following form. 

• Step 6: Finally we have Eq. (6), which written 

as follows: 

min maxj {|
WB

Wj
− aBj| − |

Wj

Ww
− ajw|}     

s. t.: 
∑ wj j = 1    

wj ≥ 0, ∀j                            (6) 

The above problem can also be written as Eq. (7): 

min ξ  

s. t.: 

|
WB

Wj
− aBj| ≤ ξ 

|
Wj

Ww
− ajw| ≤  ξ   

∑ wj j = 1    

wj  ≥ 0 , ∀j                           (7) 

If the number of decision-makers or experts (k) is 

more than one, then the BWM will be of the group 

type. The linear form of the Group BWM also be 

written as Eq. (8): 

min ξ1 + ξ2 + ⋯ + ξk  
s. t.: 
{|WB − aBjWj|}k

≤ ξk  

{|Wj − ajwWw|}
k

≤ ξk  

∑ wj j = 1, wj  ≥ 0 , ∀j                  (8) 

3.4. GBWM-DEA model 

In the DEA-CCR model, the constraint 

∑ wi yij = 1m+s
i=m+1   is different from the 

constraint ∑ wi = 1 in the BWM model. We 

consider the DEA model (Eq. (9)) as follows: 

max ∑ wi
m+s
i=m+1 yip +  θp ∑ wixip

m
i=1    

s. t.: 
∑ wi

m+s
i=1 = 1       

∑ wiyij
m+s
i=m+1 − θj ∑ wixij

m
i=1 ≤ 0     

j = 1, … , n , wi ≥ 0                     (9) 

Here, θj represents the efficiency score obtained 

from Eq. (1). In the model, the constraint 
∑ wixip

m
i=1  has been replaced with the constraint 

∑ wi
m+s
i=1 = 1. The constraint ∑ wi

m
i=1 = 1 is 

identical to the normalized weights constraint in 

GBWM. In 2019, Alinezhad and khalili [31] 

demonstrated that the optimal solutions of Eq. (1) 

and Eq. (9) are the same. In other words, the 

weights generated by Eq. (1) and Eq. (9) are 

identical. Considering the identical constraint 

∑ wi
m+s
i=1 = 1  in both DEA and GBWM models, 

Eq. (9) is considered for integration with GBWM. 

The multi-objective decision-making model 

GBWM-DEA under consideration is written as 

Eq. (10): 

max f1 =  ∑ wi
m+s
i=m+1 yip + θp ∑ wixip

m
i=1     

max f2 =  −ξ1 − ξ2 − ⋯ − ξk    
s. t:  
∑ wiyij

m+s
i=1 − θj ∑ wixij

m
i=1 ≤ 0,      j = 1, … , n     

∑ wi
m+s
i=1 = 1          

{|WB − aBiWi|}k≤ ξk , i = 1, … , m + s, k = 1, … , k 

{|Wi − aiwWw|}k ≤ ξk ,i = 1, … , m + s, k = 1, … , k 

wi  ≥ 0, i = 1, … , m + s                 (10) 

The constraint ∑ wi
m+s
i=1 = 1 is shared between 

the two objective functions. The first constraint 

belongs to the first objective function, while the 

third and fourth constraints belong to the second 

objective function. Considering Eq. (10), the 

multi-objective decision-making model GBWM-

DEA is written as Eq. (11): 

min α 

s. t: 
f1

∗ − (∑ wi
m+s
i=m+1 yip +  θp ∑ wixip

m
i=1  ) ≤ α    

f2
∗ − ( −ξ1 − ξ2 − ⋯ − ξk) ≤ α      

∑ wiyij
m+s
i=1 − θj ∑ wixij

m
i=1 ≤ 0,       j = 1, … , n    

∑ wi
m+s
i=1 = 1       

{|WB − aBiWi|}k≤ ξk , i = 1, … , m + s, k = 1, … , k 

{|Wi − aiwWw|}k≤ ξk ,i = 1, … , m + s, k = 1, … , k 

wi ≥ 0,                             i = 1, … , m + s, α  free (11) 

Here, f1
∗ and f2

∗ are the optimal values of the  

first and second objective functions, respectively, 

which have been calculated separately. By 

solving the Eq. (11), the optimal values wi
∗ are 

obtained, and by substituting them into the 

following Eq. (12), the efficiency scores of the 

units are determined. Here, the inputs and outputs 

are represented by index i, where the number of 

inputs is i= 1, 2, …, m and the number of outputs 

is i= m+1, …, m+s [32]. 

θj
GBWM−DEA CCR =  

∑ wi 
∗m+s

i=m+1 yip

∑ wi 
∗xij

m
i=1

           (12) 

In summary, it can be stated that Eq. (9) represents 

a basic DEA model, namely CCR, which is 

transformed into the GBWM-CCR model through 

the relationships defined in the GBWM method, 

as shown in Eq. (10) and (11). Eq. (12) also 

measures the efficiency of DMUs based on the 
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developed GBWM-CCR model. 

3.5. Machine learning 

The traditional method of turning data into 

knowledge relies on manual analysis and 

interpretation. These manual analyses of datasets 

are slow, costly, and often subjective. As the 

volume of data grows rapidly, this type of analysis 

has become impractical in many fields. When  

the amount of data and the reasoning needed  

go beyond human capacity, we turn to computer 

technology. Extracting knowledge from large 

databases involves many steps, including data 

handling, retrieval, preprocessing, and mathematical 

and statistical analysis.  

Machine learning aims to help systems learn  

and improve automatically. Generally, machine 

learning methods are divided into two types: 

supervised and unsupervised learning. Supervised 

learning uses labeled data for training, while 

unsupervised learning works with unlabeled data. 

Regression models are a type of supervised 

learning method [33]. 

3.5.1. Data integration 

The use of various sources for gathering 

information has led analysts to use multiple 

databases in their studies, as not all the necessary 

features are available in a single database. 

Additionally, the raw data obtained may need 

some calculations and processing before it can be 

used in machine learning algorithms, and the 

results of these calculations can be added as 

features to the database. In this research, after 

calculating the relative efficiency of two datasets 

separately, the efficiency scores were added as 

features to both datasets. These two datasets were 

then merged for implementing machine learning 

models [33]. 

3.5.2. Data normalization 

In many cases, numerical features in a dataset  

can have different scales. When this happens, 

numbers with larger scales can have a greater 

influence on the results of a machine learning 

model. To address this issue, data normalization 

is applied to scale the values of each feature  

within a fixed range between 0 and 1. Since the 

relative efficiency score already falls within the 

range of 0 to 1, there is no need to normalize the 

efficiency- score feature. The min-max scaling 

normalization equation is defined as Eq. (13)  

[23-24]: 
(x−mindata)

(maxdata−mindata)
                      (13) 

3.5.3. Selection of algorithms 

The aim of this paper in using machine learning 

models is to predict the efficiency obtained from 

the GBWM-DEA model. To do this, regression 

models, which are a type of supervised learning 

method, have been used. The four models used  

in this paper are described below. Among these,  

the first two are linear regression models, while 

decision tree regression and gradient boosting 

regression are non-linear [34]. 

• Regression: 

Predicting the value of a continuous variable 

based on the values of other variables, using a 

model with either a linear or non-linear relationship, 

is known as regression. Regression is widely 

studied in statistics and neural networks. Essentially, 

a vector xx is given as input, which is mapped to 

an output variable y. The goal is to calculate  

y or F(x) based on an estimated function. The 

objective is to determine the exact value of y for 

a given vector xx. This task, like classification, is 

a type of supervised prediction. Linear regression 

assumes that the relationship between variables  

is linear, while non-linear regression allows  

for non-linear relationships. Additionally, linear 

regression is less complex than non-linear 

regression. In linear regression, it is also assumed 

that errors are normally distributed, while non-

linear regression does not require this assumption. 

Moreover, in linear regression, the effect of each 

variable on the dependent variable is considered 

in conjunction with other independent variables, 

whereas in non-linear regression, the effect of 

each independent variable is assessed independently. 

• Linear regression: 

In linear regression, it is assumed that the 

relationship between input and output is linear. 

This assumption limits the modeling method,  

but it is fast and efficient. The multiple linear 

regression model is written as Eq. (14) [34]: 

Y =  β0 + β1 x1 +  β2 x2 + ⋯ + βn xn     (14) 

• Ridge regression: 

Ridge regression applies a penalty to the 

regression coefficients, making them more 

constrained [34]. The ridge regression problem is 

formulated as follows: 

β ̂ = argmin
β

 ∑  N
i=1 (yi −  β0 − ∑ xij βj 

p
j=1 )2    

s. t: ∑  βj 
2p

j=1 ≤ c2                    (15) 

When a linear regression model includes many 

correlated variables, their coefficients may be 

estimated with high variance and may continue to 
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grow without bound. A large positive coefficient 

on one variable might be offset by a large negative 

coefficient on a correlated variable. This issue can 

be addressed by applying a size constraint (c) on 

the coefficients [35]. 

• Gradient boosting regression: 

This method, introduced by Jerome Friedman  

in 2001 [36], is a type of non-linear regression  

that aims to predict the values of a dependent  

variable by sequentially building decision trees.  

Gradient Boosting Regression assigns penalties  

to incorrect predictions through a cost function. 

Additionally, it uses a learning rate (a numerical 

value between zero and one) to balance the 

contribution of decision trees in predicting the 

values of the dependent variable. The steps of the 

Gradient Boosting Regression algorithm are as 

follows: 

input: Data {(xi, yi)}i=1
n , and a differentiable 

loss Function L(yi, F(x)) 

Step 1: initialize model with a constant value: 

F0(x) = argmin
γ

∑ L( yi, γ)n
i=1    

Step 2: For m= 1 to M: 
(𝐀) Compute rim =

− [
∂L(yi, F(xi))

𝜕, F(xi)
⁄ ]

,F(x )=Fm−1(x)
 for i = 1, … , n 

(B) Fit a regression tree to the rim values and 

create terminal 

regions, Rjm, for j = 1, … , Jm 

(𝐂) for j = 1 … , jm compute γjm =

argmin 
γ

∑ L(yi, Fm−1
 
xi∈Rjm

(xi) + γ)          

(𝐃) update Fm(x) = Fm−1(x) +

ν ∑ γjmI(x ∈
Jm
j=1 Rjm)                  

end For 

end Algorithm 

• Decision tree regression: 

Decision Tree Regression is a type of decision 

tree where the leaves represent numerical values, 

meaning each leaf provides a prediction for the 

dependent variable. A decision tree is made up of 

a root, branches, nodes, and leaves. In regression 

trees, the goal is to find the best threshold that 

minimizes the sum of squared residuals and use it 

as the root of the tree [34]. 

3.5.4. Model accuracy and error evaluation 

To evaluate how well the regression models 

predict, two metrics are used include the R² score 

and the Mean Squared Error (MSE) [34]: 

MSE(y, ŷ) =
1

nsamples
∑ (yi

N
i=1 − ŷ) 2       (16) 

In Eq. (16): 

ŷ: is the estimated target value. 

y: is the observed target value. 

R2(y − ŷ) =
∑ (yi−ŷl)N

i=1

∑ (yi−y′)N
i=1

                 (17) 

In Eq. (17): 

yi: is the observed target value for the i-th sample. 

ŷl: is the estimated target value for the i-th 

sample. 

y′: is the mean of the estimated target values. 

4. Results and Discussion 

In 2020, with the increasing number of people 

infected with the COVID-19 disease, the death 

toll of infected people increased dramatically in 

all countries. In particular, developed countries 

suffered more from the effects of this disease.  

It is clear that one of the goals of government 

decision-makers is to control the disease process 

and manage resources to fight the COVID-19 

disease. Therefore, it is very important to know 

the performance of the units under the order. 

According to this point, by using decision-making 

methods in combination with machine learning, it 

is possible to provide decision-makers with the 

efficiency status of units in the shortest possible 

time. As mentioned earlier, this study uses two 

datasets: one from the United States and one from 

European countries. General information about 

these datasets is provided in Tables 1 and 2. In the 

following, there is a step-by-step description of 

the implementation of the research stages and 

their calculation results. 

4.1. Traditional DEA 

In this subsection, the analysis of the information 

obtained from the DEA-CCR model coded in the 

GAMS program [37] is discussed. At first, based 

on the Eq. (1), we write the mathematical Eq. (18) 

to measure the efficiency of one of the 46 states 

studied in U.S. It should be mentioned that the 

undesirable variable (total deaths) is controlled by 

the Eq. (2) and (3). In this case we have: 

max zp = ∑  ur yrWyoming 
2
r=1                

s. t: 
∑ ur yrWyoming = 12

r=1           
∑  ur yrWyoming

2
r=1 − ∑  vixiWyoming ≤ 0,3

i=1   j = 1 

∑  ur yrColorado
2
r=1 − ∑  vixiColorado ≤ 0,3

i=1     j = 44  

∑  ur yrCalifornia 
2
r=1 − ∑  vixiCalifornia ≤ 03

i=1 , j = 45  
∑  ur yrArkansas 

2
r=1 − ∑  vixiArkansas ≤ 03

i=1 ,   j = 46  

u1, u2, v1,v2 , v3 ≥ 0                   (18) 
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Note that the Eq. (18) must be written for all the 

states and solved in the software. Therefore, 46 

mathematical programming models determine the 

efficiency values. The efficiency values obtained 

for the states in the traditional way by solving  

46 mathematical models in GAMS software are 

compiled in Table 5. 

Based on the trend mentioned for the United 

States data, Eq. (19) shows one of the 43 DEA 

models corresponding to the data of European 

countries: 

max   zp =  ∑  ur yrAlbania 
2
r=1   

s. t: 
∑  ur yrAlbania = 12

r=1   
∑  ur yrAlbania 

2
r=1 − ∑  vixiAlbania ≤ 0, j = 13

i=1    
∑ ur yrSwitzerland

2
r=1 − ∑ vixiSwitzerland ≤ 0, j =3

i=1  41 
∑  ur yrUK 

2
r=1 − ∑  vixiUK ≤ 03

i=1 ,               j = 42     
∑  ur yrUkraine

2
r=1 − ∑  vixiUkraine ≤ 03

i=1 , j = 43    

u1, u2, v1,v2 , v3 ≥ 0                   (19) 

The efficiency values measured for 43 European 

countries by GAMS software are also collected in 

Table 5. 

Fig. 2 shows the scatter plot of the measured 

efficiency values for the United States (a) and 

European countries (b). These results are based  

on the traditional CCR method. The results show  

that out of 46 American states, only one state  

(Indiana) is far from other states and have more 

inefficiency. 12 efficient states whose efficiency 

value is equal to one are: 1) Wyoming; 2) West 

Virginia; 3) Washington; 4) Vermont; 5) Utah;  

6) Rhode Island; 7) North Dakota; 8) North 

Carolina; 9) New York; 10) Minnesota; 11) 

Kentucky; 12) Florida. These efficient states can 

be used as a reference set for other inefficient 

DMUs. By examining the patterns in the  

inputs and outputs of the reference set, health 

policymakers can make decisions to influence  

the inputs and outputs of other inefficient units 

with the aim of increasing efficiency. Out of  

43 European countries, 3 countries, Estonia, 

Moldova and Poland, are far from other units  

and have more inefficiency. 13 efficient states 

whose efficiency value is equal to one are:  

1) Andorra; 2) Belarus; 3) Denmark; 4) Gibraltar; 

5) Liechtenstein; 6) Monaco; 7) Montenegro; 8) 

Netherlands; 9) North Macedonia; 10) Norway; 

11) Portugal; 12) San Marino; 13) Slovakia. As 

mentioned earlier, these efficient countries can be 

used as a reference set for other inefficient DMUs. 

4.2. BWM implementation 

In this stage, the worst and best indicators are 

identified based on inputs and outputs, according 

to the opinions of two experts. The total number 

of infected individuals was selected as the best 

indicator, and the total number of deaths was 

chosen as the worst indicator by the experts. The 

experts' assessments of the priority of the best 

indicator relative to other indicators, and the 

priority of other indicators relative to the worst 

indicator, are shown in Tables 3 and 4. The 

GBWM model is formed based on the opinion of 

the first and second expert in the form of Eq. (20): 

min ξ1 + ξ2 
|{ w4 − (w1 ∗ 4)}|1 ≤ ξ1 
|{ w4 − (w2 ∗ 3)}|1 ≤ ξ1 
|{ w4 − (w3 ∗ 5)}|1 ≤ ξ1 
|{ w4 − (w5 ∗ 8)}|1 ≤ ξ1 
|{ w1 − (w5 ∗ 5)}|1 ≤ ξ1 
|{ w2 − (w5 ∗ 2)}|1 ≤ ξ1 
|{ w3 − (w5 ∗ 3)}|1 ≤ ξ1 
|{ w4 − (w1 ∗ 5)}|2 ≤ ξ2 
|{ w4 − (w2 ∗ 4)}|2 ≤ ξ2 
|{ w4 − (w3 ∗ 6)}|2 ≤ ξ2 
|{ w4 − (w5 ∗ 9)}|2 ≤ ξ2 
|{ w1 − (w5 ∗ 6)}|2 ≤ ξ2 
|{ w2 − (w5 ∗ 3)}|2 ≤ ξ2 
|{ w3 − (w5 ∗ 4)}|2 ≤ ξ2  
∑ wi

5
i=1 = 1, wi ≥ 0                   (20) 

        
Fig.2. Scatter plot of the computational results of the CCR model for two data sets of American states (a) 

and European countries (B) (X-axis indicates DMUs and Y-axis indicates efficiency values) 
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Tab.3. 𝐀𝐁 and 𝐀𝐖 sets based on the opinion of the first expert 

Total Death 

(w5) 
Total Recovered 

(w4) 
Active Cases 

(w3) 
Total Case 

(w2) 
Population 

(w1) 
criteria 

8 1 5 3 4 Best (4) 
1 8 3 2 5 Worst (5) 

Tab.4. 𝐀𝐁 and 𝐀𝐖 sets based on the opinion of the second expert 

Total Death 

(w5) 
Total Recovered 

(w4) 
Active Cases 

(w3) 
Total Case 

(w2) 
Population 

(w1) 
criteria 

9 1 6 4 5 Best (4) 
1 9 4 3 6 Worst (5) 

 

4.3. Multi-objective optimization via 

GBWM-DEA 

In the next stage, we form the GBW-MDEA 

multi-objective model (based on Eq. (18) and  

Eq. (20)). Therefore, considering the first data set, 

we have the Eq. (21) for a DMU: 
max f1 =  ∑ wi

5
i=4 yiWyoming +

 θWyoming ∑ wixiWyoming
3
i=1                 

max f2 =  −ξ1 − ξ2 

s. t:  
∑ wiyiWyoming

5
i=4 − θWyoming ∑ wixiWyoming

3
i=1 ≤ 0 ,

j = 1     
∑ wiyiArkansas

5
i=4 − θArkansas ∑ wixiArkansas

3
i=1 ≤ 0,  

j = 46   
|{ w4 − (w1 ∗ 4)}|1 ≤ ξ1 
|{ w4 − (w2 ∗ 3)}|1 ≤ ξ1 
|{ w4 − (w3 ∗ 5)}|1 ≤ ξ1 
|{ w4 − (w5 ∗ 8)}|1 ≤ ξ1 
|{ w1 − (w5 ∗ 5)}|1 ≤ ξ1 
|{ w2 − (w5 ∗ 2)}|1 ≤ ξ1 
|{ w3 − (w5 ∗ 3)}|1 ≤ ξ1 
|{ w4 − (w1 ∗ 5)}|2 ≤ ξ2 
|{ w4 − (w2 ∗ 4)}|2 ≤ ξ2 
|{ w4 − (w3 ∗ 6)}|2 ≤ ξ2 
|{ w4 − (w5 ∗ 9)}|2 ≤ ξ2 
|{ w1 − (w5 ∗ 6)}|2 ≤ ξ2 
|{ w2 − (w5 ∗ 3)}|2 ≤ ξ2 
|{ w3 − (w5 ∗ 4)}|2 ≤ ξ2 

∑ wi
5
i=1 = 1,         wi ≥ 0                (21) 

Now, after calculating the optimal values of f1 and 

f2, according to the min-max method [6], we form 

the Eq. (22) for the first unit: 

min α 

s. t: 

f1
∗ − (∑ wi

5
i=4 yiWyoming +

 θWyoming ∑ wixiWyoming
3
i=1 ) ≤ α      

f2
∗ − ( −ξ1 − ξ2 ) ≤ α    

∑ wiyiWyoming
5
i=4 − θWyoming ∑ wixiWyoming

3
i=1 ≤ 0,  

j = 1 

∑ wiyiArkansas
5
i=4 − θArkansas ∑ wixiArkansas

3
i=1 ≤ 0,  

j = 46 

∑ wi
m+s
i=1 = 1     

|{ w4 − (w1 ∗ 4)}|1 ≤ ξ1 
|{ w4 − (w2 ∗ 3)}|1 ≤ ξ1 
|{ w4 − (w3 ∗ 5)}|1 ≤ ξ1 
|{ w4 − (w5 ∗ 8)}|1 ≤ ξ1 
|{ w1 − (w5 ∗ 5)}|1 ≤ ξ1 
|{ w2 − (w5 ∗ 2)}|1 ≤ ξ1 
|{ w3 − (w5 ∗ 3)}|1 ≤ ξ1 
|{ w4 − (w1 ∗ 5)}|1 ≤ ξ2 
|{ w4 − (w2 ∗ 4)}|1 ≤ ξ2 
|{ w4 − (w3 ∗ 6)}|1 ≤ ξ2 
|{ w4 − (w5 ∗ 9)}|1 ≤ ξ2 
|{ w1 − (w5 ∗ 6)}|1 ≤ ξ2 
|{ w2 − (w5 ∗ 3)}|1 ≤ ξ2 
|{ w3 − (w5 ∗ 4)}|1 ≤ ξ2 
∑ wi

5
i=1 = 1, wi ≥ 0,   i = 1, … , m + s, α free    (22) 

Eq. (22) was implemented in GAMS software  

for both data sets of this paper. As mentioned  

earlier, this model was formed by the number of  

DMUs and the efficiency results were extracted  

(Table 5). Table 5 have collected the results of 

traditional DEA and GBWM-DEA for the data 

sets of American states and European countries, 

respectively. It should be mentioned that all the 

analyzes in subsection 4.1 regarding the reference 

set are also true for the GBWM-DEA results. 

Fig. 3 shows a comparison diagram of the calculation 

results obtained from CCR-DEA and GBWM-

DEA models. With deep precision, we find that 

the level of GBWM-DEA results is lower than 

that of CCR. This means that the model proposed 

in this paper is a more rigorous approach than the 

traditional DEA. For a catastrophic crisis like 

COVID-19, stricter approaches should definitely 

be used, because the economic and human losses 

of COVID-19 have been extensive. Therefore, the 

GBWM-DEA model can be a suitable model to 

reflect the performance of DMUs. 
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Tab.5. Measured efficiency values from CCR-DEA and GBWM-DEA models 

U.S. dataset European countries dataset 

  Efficiency score   Efficiency score 

Row DMU CCR-DEA GBWM-DEA Row DMU CCR-DEA GBWM-DEA 

1 Wyoming 1 0.985 1 Albania 0.99 0.979 

2 Wisconsin 0.991 0.989 2 Andorra 1 0.988 

3 West Virginia 1 1 3 Austria 0.997 0.979 

4 Washington 1 0.990 4 Belarus 1 1 

5 Virginia 0.997 0.980 5 Belgium 0.991 0.977 

6 Vermont 1 0.999 6 Bosnia and Herzegovina 0.95 0.923 

7 Utah 1 0.998 7 Bulgaria 0.972 0.967 

8 Texas 0.994 0.987 8 Channel Islands 0.991 0.965 

9 South Carolina 0.988 0.985 9 Croatia 0.991 0.988 

10 Rhode Island 1 1 10 Czechia 0.997 0.995 

11 Pennsylvania 0.994 0.986 11 Denmark 1 0.992 

12 Oregon 0.978 0.978 12 Estonia 0.865 0.672 

13 Oklahoma 0.994 0.992 13 Finland 0.98 0.942 

14 Ohio 0.988 0.982 14 France 0.975 0.920 

15 North Dakota 1 1 15 Germany 0.985 0.957 

16 North Carolina 1 0.996 16 Gibraltar 1 0.847 

17 New York 1 0.993 17 Greece 0.993 0.983 

18 New Mexico 0.964 0.962 18 Hungary 0.976 0.965 

19 New Jersey 0.965 0.962 19 Ireland 0.996 0.965 

20 New Hampshire 0.997 0.998 20 Italy 0.978 0.940 

21 Nevada 0.976 0.975 21 Latvia 0.983 0.955 

22 Nebraska 0.998 0.996 22 Liechtenstein 1 0.992 

23 Montana 0.999 0.976 23 Lithuania 0.992 0.982 

24 Missouri 0.976 0.989 24 Malta 0.993 0.983 

25 Mississippi 0.988 1 25 Moldova 0.851 0.670 

26 Minnesota 1 0.982 26 Monaco 1 0.986 

27 Michigan 0.988 0.995 27 Montenegro 1 0.999 

28 Massachusetts 0.997 0.981 28 Netherlands 1 0.993 

29 Maryland 0.981 0.990 29 North Macedonia 1 1 

30 Maine 0.989 0.992 30 Norway 1 0.994 

31 Louisiana 0.994 0.983 31 Poland 0.843 0.655 

32 Kentucky 1 0.980 32 Portugal 1 0.996 

33 Kansas 0.983 0.980 33 Romania 0.982 0.976 

34 Iowa 0.979 0.891 34 Russia .977 0.957 

35 Indiana 0.893 0.977 35 San Marino 1 0.987 

36 Illinois 0.982 0.989 36 Serbia 0.993 0.983 

37 Idaho 0.987 0.994 37 Slovakia 1 0.997 

38 Hawaii 0.994 0.985 38 Slovenia 0.983 0.943 

39 Georgia 0.99 0.993 39 Spain 0.99 0.976 

40 Florida 1 0.997 40 Sweden 0.987 0.966 

41 District of Columbia 0.995 1 41 Switzerland 0.988 0.962 

42 Delaware 0.992 0.977 42 UK 0.993 0.984 

43 Connecticut 0.977 0.976 43 Ukraine 0.984 0.985 

44 Colorado 0.978 0.977     

45 California 0.981 0.979     

46 Arkansas 0.994 0.993     

 

The computational basis of machine learning in 

the future stages is the results of GBWM-DEA. 

The GBWM-DEA multi-objective model integrates 

the strengths of both GBWM and DEA 

methodologies. This model is particularly 

effective for evaluating the efficiency of countries 

during the COVID-19 pandemic, as it enables the 

consideration of multiple objectives simultaneously. 
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By utilizing this multi-objective approach, the 

model allows for a more comprehensive assessment 

of efficiency, as it accommodates the complex, 

multifaceted nature of the pandemic’s impact. 

The inclusion of multiple objectives ensures that 

countries' performances are not evaluated based 

on a single criterion, but rather through a balanced 

consideration of various relevant factors. This 

method is particularly valuable in dynamic, real-

world situations like the COVID-19 crisis, where 

decisions need to account for both short-term 

outcomes and long-term sustainability. 

 
Fig.3. Comparative scatter plot of CCR-DEA and 

GBWM-DEA results for two data sets of American 

states (a) and European countries (B) (X-axis indicates 

DMUs and Y-axis indicates efficiency values) 

4.4. Evaluation of machine learning models 

In this stage, we first combine the two data sets  

of the paper and consider them as one integrated 

data set. Since supervised learning models have 

both a training and a test set, data aggregation  

can help increase the number of training samples.  

The more training samples, the less the challenge  

for more accurate prediction. After aggregating  

the data, the efficiency value measured by the 

GBWM-DEA model is considered as a target for 

machine learning models. On the other hand, the 

inputs and outputs of DEA can be used as features 

of machine learning models so that they can 

accurately predict efficiency values. 

Fig. 4 shows pair diagrams for each feature  

and target. In Fig. 4, the lines of the regression 

equations are drawn for each pair of features  

and targets, which clearly shows the linear 

relationship between them. In order to implement 

machine learning models, it is necessary to 

normalize the aggregated data set values. This 

makes all the features have the same scale and a 

more accurate prediction model is produced.  

It should be noted that data normalization does  

not affect the decision tree model, because  

the decision tree sets each node on a feature 

separately. Since the measured efficiency values 

are numbers between zero and one, the target  

will not need to normalize the data. Normalization 

was done according to the Eq. (13) mentioned 

earlier. Finally, in this stage, the four models 

(linear regression, ridge regression, decision  

tree regression, and gradient boosting) are 

implemented in sequence. The efficiency-score 

feature is considered as the response (dependent) 

variable, and the other features are considered as 

exploratory (independent) variables. The models 

are trained on 70% of the data, and then the 

trained models are tested on the remaining  

30% of the data. The R² score and MSE indicators 

will be used to evaluate the performance of  

the regression models. The details of evaluation 

criteria for all 4 implemented models are given in 

Table 6. Based on Table 6, Gradient Boosting 

Regression has the highest value in terms of the 

R² criterion and the lowest value in terms of the 

MSE criterion compared to other methods. All  

the calculation steps in the machine learning s 

tage have been done in the Python programming 

language [38]. For more details, Table 7 lists  

the predicted efficiency values by the 4 models 

implemented on the test data. In fact, Table 7 

presents the difference between the actual efficiency 

values of countries and the values predicted by 

each of the machine learning algorithms. These data 

pertain to the countries included in the test dataset. 

5. Conclusion 

In the CCR method, the weights of variables are 

estimated by solving the model, but in real-world 

situations, the preferences of decision-makers in 

assigning weights are important. The GBWM-

DEA method, which combines the Group Best-

Worst Method with DEA, takes these preferences 

into account, making it more practical than 

traditional DEA methods. 
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This model was applied to two datasets, one from 

46 U.S. states and another from 43 European 

countries. The results showed that the efficiency 

scores obtained using the GBWM-DEA method 

were mostly less than or equal to those obtained 

using the CCR method. Additionally, fewer units 

were considered efficient with the GBWM-DEA 

method. After calculating the efficiency scores, 

the two datasets were merged, and the efficiency 

score was used as the target variable for  

the regression models. Seventy percent of the  

data was used for training the models, and  

the remaining 30 percent was used for testing  

and evaluation. The results showed that the  

Gradient Boosting Regression model, a non-

linear approach, performed the best. In DEA 

models, when a new decision-making unit is 

added, the model needs to be re-run.  

 
Fig.4. Paired regression plots for features and target 

Tab.6. Evaluation results of regression models based on R2 and MSE indices 

MSE R2 Regression Model 

0.001893 0.736495 Gradient Boosting Regression 
0.003555 0.505178 Tree Regression 
0.004572 0.363511 Ridge Regression 
0.004572 0.363511 Linear Regression 
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Tab.7. Comparison of predicted values of test data by regression models and the GBWM-DEA model 

Row GBWM-DEA Gradient Boosting Regression 
Linear 

Regression 

Ridge 

Regression 

Tree 

Regression 

1 Wisconsin 0.989 0.985 0.988 0.988 0.985 

2 Pennsylvania 0.986 0.992 0.987 0.987 0.982 

3 Poland 0.655 0.863 0.664 0.664 0.92 

4 Finland 0.942 0.937 0.947 0.947 0.943 

5 Utah 0.998 0.99 0.991 0.991 0.993 

6 Albania 0.979 0.983 0.95 0.95 0.997 

7 Nebraska 0.996 0.999 0.991 0.991 1 

8 Ireland 0.989 0.95 0.958 0.958 0.923 

9 Denmark 0.992 0.956 0.972 0.972 0.923 

10 Lithuania 0.98 0.951 0.959 0.959 0.923 

11 Belgium 0.977 0.986 0.968 0.968 0.983 

12 Russia 0.957 0.987 0.755 0.755 0.976 

13 Ukraine 0.985 0.993 0.898 0.898 0.976 

14 Hawaii 0.994 0.991 0.99 0.99 0.99 

15 Georgia 0.985 0.984 0.988 0.988 0.982 

16 Sweden 0.966 0.968 0.949 0.949 0.979 

17 Indiana 0.891 0.931 0.936 0.936 0.977 

18 New Jersey 0.962 0.978 0.969 0.969 0.977 

19 Connecticut 0.977 0.979 0.987 0.987 0.98 

20 Serbia 0.983 0.965 0.955 0.955 0.923 

21 Montenegro 0.999 0.989 0.956 0.956 0.997 

22 Virginia 0.98 0.984 0.981 0.981 0.985 

23 Portugal 0.996 0.987 0.986 0.986 0.965 

24 Estonia 0.679 0.706 0.934 0.934 0.67 

25 Montana 0.999 1.003 0.992 0.992 1 

26 Macedonia 1 0.984 0.953 0.953 0.997 

27 Michigan 0.982 0.983 0.988 0.988 0.982 

 

As the number of units and variables increases, 

the calculations can become time-consuming and 

difficult. Predicting the efficiency of units using 

machine learning models helps avoid repeatedly 

running the model, significantly reducing the 

computational load and speeding up data analysis. 

We encourage researchers to the following ideas 

for future studies: 

• Combining other machine learning models 

such as classification models in combination 

with DEA models to predict effective and 

ineffective units. 

• Using data sets related to other decision-

making units such as hospitals in combination 

with the model presented in this research. 

• Combining other DEA models with BWM 

technique and using other MODM solving 

methods. 

• Using other regression models and comparing 

their results with the models used in this 

research. 

• Using the methodology proposed in this 

research under conditions of uncertainty such 

as fuzzy, etc. 

• The use of other forecasting methods, including 

online learning and time series methods. 

References 

[1]. Lamers MM, Haagmans BL. SARS- 

CoV-2 pathogenesis. Nature reviews 

microbiology. Vol. 20, NO. 5, (2022), pp. 

270-84. 

[2]. Ciotti M, Ciccozzi M, Terrinoni A, Jiang 

WC, Wang CB, Bernardini S. The  

COVID-19 pandemic. Critical reviews in 

clinical laboratory sciences. Vol. 57,  

NO. 6, (2020), pp. 365-88. 

[3]. Pollard CA, Morran MP, Nestor-Kalinoski 

AL. The COVID-19 pandemic: a global 

health crisis. Physiological genomics.  

Vol. 52, NO. 11, (2020), pp. 549-57. 

[4]. Worldometers. Reported Cases and  

Deaths by Country or Territory. (2024). 

https://www.worldometers.info/coronavirus/  

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ie
pr

.iu
st

.a
c.

ir
 o

n 
20

25
-0

3-
17

 ]
 

                            15 / 17

http://ijiepr.iust.ac.ir/article-1-2095-en.html


114 A Hybrid Methodology of Data Science and Decision-Making Techniques: Lessons from COVID-19 

Pandemic Management 

 

 

International Journal of Industrial Engineering & Production Research, March 2025, Vol. 36, No. 1 

[5]. Alinezhad A, Makui A, Mavi RK. An 

inverse DEA model for inputs/outputs 

estimation with respect to decision maker’s 

preferences: The case of Refah bank of 

IRAN. Mathematical Sciences. Vol. 1, NO. 

1-2, (2007), pp. 61-70. 

[6]. Alinezhad A, Sarrafha K, Amini A. 

Sensitivity analysis of SAW technique: 

The impact of changing the decision-

making matrix elements on the final 

ranking of alternatives. (2014), pp. 82-94. 

[7]. Sarrafha K, Kazemi A, Alinezhad A. A 

multi-objective evolutionary approach for 

integrated production-distribution planning 

problem in a supply chain network. Journal 

of Optimization in Industrial Engineering. 

Vol. 7, NO. 14, (2014), pp. 89-102. 

[8]. Alinezhad A, Khalili J. EDAS Method. 

New Methods and Applications in Multiple 

Attribute Decision Making (MADM). 

(2019), 149-155. 

[9]. Alinezhad A, Khalili J. MABAC method. 

New methods and applications in multiple 

attribute decision making (MADM). (2019), 

pp. 193-198. 

[10]. Alinezhad A, Heidaryan L, Taherinezhad 

A. Ranking the Measurement System of 

Auto Parts Companies via MSA–MADM 

Combinatorial Method under Fuzzy 

Conditions. Sharif Journal of Industrial 

Engineering & Management. Vol. 38,  

NO. 2, (2023), pp. 15-27. 

[11]. Alinezhad A, Taherinezhad A. Control 

Chart Recognition Patterns Using Fuzzy 

Rule-Based System. Iranian Journal of 

Optimization. Vol. 12, NO. 2, (2020), pp. 

149-160. 

[12]. Taherinezhad A, Alinezhad A, Gholami  

S. An Application of Data Envelopment 

Analysis and Game Theory for Appraisal 

of Balanced Scorecard Indexes in Media 

Industry. Journal of Industrial System 

Engineering and Management. Vol. 2,  

NO. 2, (2023) pp. 47-59. 

[13]. Taherinezhad A, Alinezhad A, Gholami S, 

Abdolvand M. A Network Data Envelopment 

Analysis Approach for Efficiency 

Measurement of Poultry Industry Production 

Chains. International Journal of Decision 

Intelligence. Vol. 1, NO. 2, (2023), pp.  

1-12. 

[14]. Gupta GK. Introduction to data mining 

with case studies. PHI Learning Pvt. Ltd.; 

(2014). 

[15]. Zhang Z, Xiao Y, Niu H. Dea and machine 

learning for performance prediction. 

Mathematics. Vol. 10, NO. 10, (2022), p. 

1776. 

[16]. Lalmuanawma S, Hussain J, Chhakchhuak 

L. Applications of machine learning  

and artificial intelligence for Covid-19  

(SARS-CoV-2) pandemic: A review. 

Chaos, Solitons & Fractals. Vol. 139, 

(2020), p. 110059. 

[17]. Culaste HF, Torres NJ, Lachica ZP, Lorono 

HG, Inguillo RF, Mata MA, Namoco RA. 

A decision support system for the optimal 

allocation and distribution of COVID-19 

vaccines using analytic hierarchy process 

(AHP) and integer programming (IP) 

model. Frontiers in Applied Mathematics 

and Statistics. Vol. 9, (2023), p. 1140434. 

[18]. Hezer S, Gelmez E, Özceylan E. Comparative 

analysis of TOPSIS, VIKOR and COPRAS 

methods for the COVID-19 Regional 

Safety Assessment. Journal of infection 

and public health. Vol. 14, NO. 6, (2021), 

pp. 775-786. 

[19]. Le MT, Nhieu NL. A novel multi-criteria 

assessment approach for post-COVID-19 

production strategies in Vietnam 

manufacturing industry: OPA–fuzzy EDAS 

model. Sustainability. Vol. 14, NO. 8, 

(2022), p. 4732. 

[20]. Eriskin L, Karatas M, Zheng YJ. A  

robust multi-objective model for healthcare 

resource management and location planning 

during pandemics. Annals of Operations 

Research. Vol. 335, NO. 3, (2024), pp. 

1471-1518. 

[21]. Mondal A, Roy SK. Multi-objective 

sustainable opened-and closed-loop supply 

chain under mixed uncertainty during 

COVID-19 pandemic situation. Computers 

& Industrial Engineering. Vol. 159, (2021), 

p. 107453. 

[22]. Ordu M, Kirli Akin H, Demir E. Healthcare 

systems and Covid19: Lessons to be learnt 

from efficient countries. The International 

Journal of Health Planning and Management. 

Vol. 36, NO. 5, (2021), pp. 1476-1485. 

[23]. Taherinezhad A, Alinezhad A. COVID-19 

crisis management: Global appraisal using 

two-stage DEA and ensemble learning 

algorithms. Scientia Iranica. Article in 

press. (2022). 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ie
pr

.iu
st

.a
c.

ir
 o

n 
20

25
-0

3-
17

 ]
 

                            16 / 17

http://ijiepr.iust.ac.ir/article-1-2095-en.html


 A Hybrid Methodology of Data Science and Decision-Making Techniques: Lessons from COVID-19 

Pandemic Management 

115 

 

International Journal of Industrial Engineering & Production Research, March 2025, Vol. 36, No. 1 

[24]. Taherinezhad A, Alinezhad A. Nations 

performance evaluation during SARS-CoV-2 

outbreak handling via data envelopment 

analysis and machine learning methods. 

International Journal of Systems Science: 

Operations & Logistics. Vol. 10, NO. 1, 

(2023), p. 2022243. 

[25]. Bathwal R, Chitta P, Tirumala K, 

Varadarajan V. Ensemble machine learning 

methods for modeling Covid-19 deaths. 

arXiv preprint arXiv:2010.04052. (2020). 

[26]. Hashim S, Farooq S, Syriopoulos E, 

Cremer KD, Vogt A, de Jong N, Aguado 

VL, Popescu M, Mohamed AK, Amin M. 

Machine Learning Model for Predicting 

Number of COVID-19 Cases in Countries 

with Low Number of Tests. medRxiv. 

(2021). 

[27]. Khanday AM, Rabani ST, Khan QR, Rouf 

N, Mohi Ud Din M. Machine learning 

based approaches for detecting COVID-19 

using clinical text data. International 

Journal of Information Technology. Vol. 

12, NO. 3, (2020), pp. 731-739. 

[28]. Safarzadeh S, Khansefid S, Rasti-Barzoki 

M. A group multi-criteria decision-making 

based on best-worst method. Computers & 

Industrial Engineering. Vol. 126, (2018), 

pp. 111-121. 

[29]. Charnes A, Cooper WW, Rhodes E. 

Measuring the efficiency of decision-

making units. European journal of 

operational research. Vol. 2, NO. 6, (1978), 

pp. 429-44. 

[30]. Rezaei J. Best-worst multi-criteria decision- 

making method. Omega. Vol. 53, (2015), 

pp. 49-57. 

[31]. Alinezhad A, Khalili J. DEMATEL method. 

New methods and applications in multiple 

attribute decision making (MADM). (2019), 

pp. 103-108. 

[32]. Omrani H, Amini M, Alizadeh A. An 

integrated group best-worst method–Data 

envelopment analysis approach for evaluating 

road safety: A case of Iran. Measurement. 

Vol. 152, (2020), p. 107330. 

[33]. El Naqa I, Murphy MJ. What is machine 

learning?. Springer International Publishing; 

(2015). 

[34]. Scikit-Learn. Machine Learning in Python. 

(2024). https://scikit-learn.org/stable/index. html 

[35]. Hastie T. The elements of statistical 

learning: data mining, inference, and 

prediction. Springer International Publishing. 

(2009). 

[36]. Friedman JH. Greedy function approximation: 

a gradient boosting machine. Annals of 

statistics. (2001), pp. 1189-1232. 

[37]. GAMS Development Corporation. General 

Algebraic Modeling System (GAMS) Release 

36.1.0, Fairfax, VA, USA, 2021. Available for 

download at https://www.gams.com/download/ 

[38]. Python 3 programming language in 

Anaconda Navigator, Jupyter notebook 

(version 6.0.3). (2020). 

 

 

Follow this article at the following site:  

Mahdi Dadehbeigy, Ali Taherinezhad, Alireza Alinezhad "A Hybrid Methodology 

of Data Science and Decision-Making Techniques: Lessons from COVID-19 

Pandemic Management" IJIEPR 2025; 36 (1): 99-115  

URL: http://ijiepr.iust.ac.ir/article-1-2095-en.html 
 

 

 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ie
pr

.iu
st

.a
c.

ir
 o

n 
20

25
-0

3-
17

 ]
 

Powered by TCPDF (www.tcpdf.org)

                            17 / 17

https://scikit-learn.org/stable/index
http://ijiepr.iust.ac.ir/article-1-2095-en.html
http://ijiepr.iust.ac.ir/article-1-2095-en.html
http://www.tcpdf.org

