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ABSTRACT 

The automobile workshop queue system has been optimized using various approaches, such as queuing 

theory, simulation, and probability. The utilization of response surface methodology (RSM) for 

optimizing automobile workshop queue systems is not yet established. The utilization of RSM with direct 

observation enables the detection of patterns of correlations between variables and responses, which 

are then represented through mathematical equations. The optimization process involves numerous 

factors that impact queue performance, which can be categorized into two parts. The number of servers, 

number of phases, number of workers, worker experience, and layout are classified in inner design. This 

study examines the relationship between two components of the outer design, specifically the arrival rate 

and the interarrival time. The responses analyzed are queue cost, service time, average customer waiting 

time, and number of customers. The findings indicate that queue costs are not reliable for establishing 

the optimum value due to the significant impact of the cost structure on the structure of the optimal 

location. This study discovered that the number of leaving customers is related to queue costs and is 

relevant in selecting the optimal point. This study also formulates mathematical equations for predicting 

the optimal point. This study emphasizes the necessity for further investigation to uncover alternative 

mathematical equations that can precisely predict the optimal conditions for various types of services. 
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1. Introduction1 

As technology advances, automobile services 
must also adapt to suit technological 

developments. An optimal workshop queue design 

should prioritize both efficiency and profitability. 
There are various steps involved in car 

maintenance, such as component inspections, 

modifications, replacements, and quality control. 

The mechanic will promptly address the 
automobiles that arrive at the facility. The 

mechanic inspects the components to determine 

the components that require repair or replacement. 
Subsequently, the mechanic fills up the spare parts 

request form and forwards it to the authorized 

spare parts department. The mechanic affixes the 
replacement component into the automobile. The 

mechanic conducts a comprehensive inspection of 
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the automobile to ascertain its best operational 

condition [1]. 

The implementation of a queue system is a widely 
used practice across numerous services. Upon 

entering the service facility, the customer initiates 

the commencement of the queue. A queuing 
system is a procedure or method used to organize 

and manage a queue of people or entities waiting 

for service or access to a particular facility, 
service, or process [2]. However, there are some 

queue characteristics analyzed, such as the 

average waiting time for customers in the queuing 

system, the average queue length, the average 
number of customers being served in a certain 

period, the probability that the customer does not 

want to wait, the probability that there are no 
customers in the system, and the probability that a 
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certain number of customers are in the system. The 

aim is to get an overview of the queuing system 
[3].  

There are several main characteristics that need to 

be considered to build an automobiile workshop 

queue system, which include: 
1. The process of customer arrival: Customers 

may arrive either singly or in groups. 

Customers exhibit a lack of tolerance and will 
abandon the queue system when the waiting 

duration exceeds their threshold. 

2. Service time: The service time can be 

categorized as either constant or fluctuating. 
The service time refers to the mean duration of 

service for each customer, excluding the 

overall time spent by the customer in the queue 
system. 

3. Number of servers: Servers can be single or 

multiple. 
4. System capacity (waiting room): Restrictions 

can occur in the waiting room where the 

number of customers in the system is limited. 

An unrestricted queue system is characterized 
by the absence of a waiting room. 

5. The whole population refers to the number of 

customers who enter the queuing system. 
6. Queue orders: According to the firm policy, 

customers are served either individually or in 

batches. 
7. Priority allocation: Customers, particularly 

existing members or those in a rush, are 

assigned various levels of importance. 

8. Service discipline can be in the form of first 
come first served or last come, first served. 

These factors impact several queue characteristics. 

For example, using too few servers at a high 
arrival rate will increase the number of queues in 

the system. Improper configurations will decrease 

queue efficiency, thereby affecting customer 

satisfaction. Implementing priorities directly 
affects customer satisfaction. Engaging in 

customer prioritization might result in a decline in 

overall customer satisfaction, as it may necessitate 
compromising the needs of other customers. 

Excessive service time will result in an increase in 

both the number of customers waiting in line and 
the number of customers who abandon the queue 

system [4]. 

The occurrence of queues at automobile repair 

shops has a detrimental impact on customer 
satisfaction. Excessive queue length will result in 

customer dissatisfaction. In addition, queuing 

incurs costs, such as customer waiting costs and 
capacity costs. The customer waiting costs are 

associated with the costs incurred to accommodate 

the queue, which may include providing space, 
queuing facilities, etc. Capacity costs are related to 

the provision of a queuing system and include 

personnel, equipment, resource costs, and other 
things. As the number of waits grows, so do the 

queuing costs [5].  

Given this context, it is crucial to enhance the 

efficiency of the automobile workshop queue 
system to enhance customer satisfaction and 

minimize costs. 
 

2. literature Review 

2.1 Queue optimization 
Queue theory is typically used to conduct the 
queue analysis. The prediction of queue 

performances is based on the arrival rate and 

service rate. These performances encompass the 
utilization rate, the probability of having no 

customers, the probability of having a specific 

number of customers, the average number of 

customers in the system [6], system utility, and 
average customer waiting time [1].  

Optimizing queueing system performance 

necessitates the use of both servers and workers. 
Many assumptions simplify calculations [7]. 

There are several factors to consider, such as 

queue discipline, arrival rate, and service rate [6], 
[8], [9]. The optimization of queuing system 

performance includes the number of customers, 

and the average customer waiting time, and queue 

cost [10], [11]. 
The queue system performance optimization is 

achieved through the utilization of modeling and 

simulation techniques. To optimizing queues, 
researchers employ various simulation methods. 

Queuing systems are simulated using discrete-

event simulation (DES). DES is not a perfect 

simulation of a queue system, but it comes close. 
The objectives are to rationalize the queueing 

process and establish the best configuration [12]. 

The simulation is conducted by integrating the 
arrival rate and service time to optimize the 

number of servers [13]. Strategically aiming to 

enhance the efficiency of the queue management 
system, reducing the average customer waiting 

time is a crucial endeavor. Different layouts are 

simulated to determine the optimal configuration. 

The selected configuration enhances both the 
utilization rate and the average customer waiting 

time [14]. Modeling the queue system uses 

continuous simulation. The result reveals that 
continuity-related mistakes decrease with system 

scalability [15]. The arrival rate that exceeds the 

service time results in long lineups of cars. The 
queuing model is simulated by varying the 

duration of service time. The service time duration 

is adjusted in line with the arrival of cars [16]. 

Complex queuing systems are typically modeled 
via simulation while considering a variety of 
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elements to improve queue performance [17]. The 

queue system simulation encompasses a wide 

range of aims, which include the prediction of 

consumer numbers through the utilization of fluid 
deterministic models [18], prediction of 

interarrival [19], reducing the number of 

customers on the line using monte carlo 
simulation [20], reducing number of leaving 

customers using multi-priority simulation [21], 

reducing service time using numerical analysis 
[22], prediction of queue characteristics using 

metamodels made up of linear models, random 

forests, and neural networks [23]. The entirety of 

the research incorporates two key factors, 
specifically the service rate and the arrival rate. 

Managing the queuing system poses a significant 

challenge due to the extensive range and quantity 
of cars, as well as the wide variety of maintenance 

duties. These obstacles are also caused by the 

intricacy of the system's connections between 
various aspects. Modifications to a particular 

component inside the system will inevitably exert 

influence on the system's overall functionality. 

Simulation examines intricate interconnections 
among many components. Simulation does not 

provide an optimal response but provides a 

comprehensive representation of the current 
condition of the system  [24]. 

A comprehensive financial study is conducted to 

determine the breakeven threshold for each 

queuing system, ensuring that the most recent 
queuing system exhibits superior performance 

[25]. Additionally, a multi-priority technique is 

utilized to improve queuing efficiency and reduce 
queue costs [26]. Queues result in substantial 

costs, as they encompass both customer queuing 

costs and capacity costs. The customer queuing 
cost encompasses costs related to allocating space 

for customers who are waiting, the cost of lost 

productivity, and the opportunity cost. The cost of 

lost productivity incurred by customers waiting in 
line as they do not engage in productive activity. 

The concept of opportunity cost pertains to the 

foregone potential earnings resulting from the 
departure of customers from a queue [27]. The 

optimization of queuing systems involves the 

minimization of costs associated with queues. A 
sequence of simulation experiments is employed 

to optimize the number of servers, with the 

objective of reducing queue costs [28].  

The optimization process also incorporates a lean 
strategy, which involves many techniques such as 

value stream mapping [29], layout design 

development [30], critical path approach [31], 
design selection [32], and queue procedure 

analysis [33].  

Researchers also employ various operations 

research methodologies to optimize queue 

performance. Markovian queuing models are 

employed for the purpose of evaluating the 

performance of queuing systems through the 
examination of the interarrival time [34]. Using 

the birth and death procedure, the number of 

customers is decreased by considering the arrival 
rate and service rate factors [35]. The reduction in 

waiting time is achieved through the consideration 

of the arrival rate factor using a non-convex 
nonlinear algorithm  [36]. Additionally, the queue 

system utilizes a non-linear mathematical 

modeling approach to reduce the number of 

customers. The determining factor is the number 
of servers. Expanding the server capacity results in 

a reduction in customer volume and waiting 

duration [37]. The queue system optimization also 
considers layout. An optimal arrangement reduces 

the customer waiting times and improves the 

efficiency of movement between sections [38]. 
The analysis of queue performance also 

incorporates several unconventional techniques, 

including the utilization of fuzzy environments 

[39], Critical path method [31], and real-time 
system [40]. Additionally, a linear programming 

approach is employed. The objective is to reduce 

service and waiting times. Constraint functions 
include batch size, and transfer volume [41]. The 

integration of linear programming with simulation 

techniques is employed to minimize both the 

average customer waiting time and the number of 
customers [42]. Dynamic programming 

techniques [43], learning agent-based design [44], 

fractional programming [45], and linear infinite 
model [46] are employed for the purpose of 

optimizing the number of servers in relation to 

each arrival rate. Heuristic procedures are 
employed to reduce queue costs, minimize 

completion time, and lower the average waiting 

time for customers [47]. The queue optimization 

review describes the criteria used to examine 
queuing systems, including servers, workers, 

arrival rate, interarrival time, and layout. The 

performance analysis of the queuing system 
encompasses the evaluation of queue length and 

waiting time. 
 

2.2 Automobile queue optimization 

using response surface 
The Response Surface Methodology (RSM) has 
numerous benefits, including high precision, 

predictive capabilities, the ability to identify the 

optimal point, and the ability to detect interactions 

between factors and the relationship between 
independent variables and the response. The usage 

of RSM is widespread in both manufacturing and 

services industries. The factors employed can 
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encompass both qualitative and quantitative 

aspects. Additionally, RSM optimizes the queue 
system performance. The factors used are service 

time, number of servers, and queue discipline. 

Responses that are commonly used are queue 

length, production rate, queue cost, and waiting 
time [48]. 

Researchers often combine RSM with several 

other methods to determine the optimum point. 
Researchers combine RSM with numerical 

analysis to analyze Markov chain models of class-

based queuing systems (CBQ). First- and second-

order models are used for analysis [49]. RSM is 
used to optimize customer waiting time and queue 

length. Experiments are carried out using a 

simulation approach [50]. The optimum poisson 
rate value that minimizes the number of served 

passengers and remaining passengers is found 

using RSM. The Poisson value is used to estimate 
the characteristics of the queue system [51]. The 

queue system is approached with several models. 

RSM is used to select a queue model that has 

superior performance. The responses analyzed 
include queue length, customer waiting time, 

departure rate, and productivity [52]. Optimum 

conditions are determined based on the values of 
factors that influence response, such as the number 

of servers and workers. RSM is used to determine 

the number of servers and workers, which 
optimizes sales, queue length, and queue cost. 

RSM was analyzed using a central composite 

design (CCD). CCD is an optimization technique 

that involves observing the optimum area. Several 
observed points include factorial points, axial 

points, and central points [53]. 

RSM is commonly integrated with experimental 
design. The purpose of experimental design is to 

determine various factors that impact the 

responses. The factors that contribute to responses 

in RSM are used to identify the optimal queue 
performance point. The evaluation of queue 

performance is based on the average customer 

waiting time and service time [54]. There are 29 
RSM and DoE application industry case studies 

discovered, spanning the healthcare, retail, 

logistics, educational, marketing, after-sales, and 
catering industries. RSM and DoE applications 

have not yet been used in queue systems, 

particularly in automobile workshops [55].  
 

2.3 Research gaps 
Based on the literature review, there are several 

gaps, specifically: 
1. The utilization of RSM to enhance the 

efficiency of automobile workshop queue 

system has not been put into practice as of now. 
Recent study has solely discovered precise 

experimental design models and variables that 

affect the performance of automobiles queue. 
[56]. 

2. Several prior research utilized CCD to 

ascertain the optimum point. An inherent 

limitation of CCD is the absence of discrete 
values for the axial points. Queuing system 

experiments revolve around discrete elements. 

3. Previous studies employed a simulation 
methodology to conduct experiments. The 

method of direct observation has not been 

extensively implemented thus far. 

4. No linear equations capable of predicting 
optimal queue performance have been 

discovered. 

5. The significance of using arrival rate and 
interarrival time in RSM analysis has not been 

thoroughly examined. For instance, the time 

between the arrival of customers may vary 
even when the rate of arrival remains constant. 

Reduced interarrivals will result in extended 

waits and impact the efficiency of the queuing 

system. 
This study encompasses several primary 

objectives. The first objective of this study is to 

optimize automobile workshop queue 
performance using RSM. Optimization is carried 

out using the box-behnken design, which uses 

discrete factors. Experiments are conducted by 
integrating numerous factors and implementing 

them in an actual queuing system. The second 

purpose is to establish the correlation between 

independent variables and responses and derive an 
equation that can predict the optimal point. The 

third objective aims to assess the impact of arrival 

rate and interarrival time on predicting the optimal 
queue performance. This investigation is being 

conducted at an SUV repair facility with a daily 

capacity of 50 vehicles. Routine maintenance 

services are the subject of this study. The 
workshop is available seven days a week and eight 

hours each day. The data collection period 

spanned a duration of three years to ensure 
sufficient and reliable results. The queuing 

discipline employed is based on the principle of 

first-come, first-served and does not incorporate 
any form of prioritization. 
 

3. Experimental Procedure 

3.1. Factors 
Previous study has identified factors that impact 

the automobile workshop queue system [56]:  
1. Number of servers. An analysis is required to 

determine the optimal value of the number of 

servers, as it directly impacts queue 

performance. 
2. Number of phases. A worker carries out all 
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stages of routine maintenance services in one 

phase. When multiple phases are used, the 

activity is divided into several stages. If the 

task is divided into three phases, each phase 
will include the following activities: The first 

phase consists of examining the brake pads and 

tires, the oil leak, the ball joint, the tie rod, the 
wheel bearing, and the shock absorber leak. 

The second phase consists of examining 

radiator water, windshield washer fluid, 
windshield wiper rubber, brake fluid, exterior 

and interior lighting, engine and body 

electricity, air conditioning units, and the 

battery's performance. The third phase consists 
of engine tuning. 

3. Number of workers per phase. The number of 

workers affects queue performance. If the 
number of workers increases, the number of 

customers served also increases, reducing the 

number of leaving customers. 
4. Arrival rate and interarrival time. The arrival 

rate depends on the number of customers who 

visit daily. Interarrival time is the duration of 

the arrival between customers. These two 
factors will be analyzed for their accuracy in 

determining the optimum point. 

5. Layout Type. There are two types of layouts as 
shown by figure 1.  
 

 
(a) 

 
(b) 

Fig. 1. Layout type 
 

Figure 1a demonstrates that Type A is 
extensively utilized. Upon customers parking 

their cars in front of the customer service area, 

service agents record all repairs and generate 
job cards. The customer proceeds to the 

workshop area, and subsequently continues to 

the waiting room. The Type B design, as shown 

in Figure 1b, enables customers to remain 
inside the vehicle. Positioning the service 

agents adjacent to the customer eliminates the 

need for the customer to exit the vehicle. The 
term "layout" refers to a category factor. While 

the assignment of values to categorical factors 

may lack a clear logic, it is typical to assign the 
values of -1 and 1 to type A and type B, 

respectively, in order to enhance interpretation 

[57].  

6. Worker experience (𝑧2). Worker experience is 

a categorical factor. Employees with one year 
of work experience are considered to have low 

experience. High-experienced workers are 

those who have more than three years of 
relevant experience. 

7. Server area. An adequate server area will 

support the workers' performance, thereby 
increasing queue performance.  

 

3.2. Responses 
There are several responses analyzed: 
1. Queue cost. The queue cost is divided into two 

categories: capacity costs and customer waiting 

costs. Capacity costs consist of electricity costs 
per day, worker costs per day, equipment 

depreciation per day, and equipment 

maintenance costs per day. Customer waiting 

costs include the cost associated with waiting 
space, which pertains to the extent of the 

driveway allocated for automobiles awaiting 

service and the financial impact incurred by the 
loss of a customer or the opportunity cost 

resulting from a customer's refusal to wait. 

Queue cost is calculated in Indonesian Rupiahs 
(IDR). 

2. Service time. Service time refers to the amount 

of time required to repair one car. The 

consideration of service time is a crucial 
response in the development of service designs 

[58]. 

3. The average customer waiting time is the 
average time required by customers to wait for 

service and get service. 

4. The number of customers. Both the number of 
customers waiting for service and the number 

of customers being served contribute to the 

number of customers in the queue system. 

Observations of the number of customers are 
carried out every hour, and the results are 

averaged. 
 

3.3. Steepest descent 
Performing the steepest descent determines the 

location of the optimal point. The factors utilized 

have a significant impact on responses and are 
determined through the process of factor 

screening. The estimation commences with the 

present state. The equation model employed is a 
first-order equation model with two replications, 

enabling an increase in the degree of freedom. If 

the impact of the arrival rate on the response is 
negligible, a comprehensive steepest descent 

analysis will be conducted for all arrival rates 

collectively. If the response is impacted by the 
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arrival rate, the analysis is conducted separately 

for each arrival rate. Curvature is a sign of 
proximity to the optimum point. Equations 1 and 

2 estimate the interaction that causes curvature. 
 

Sum of Squaresinteraction =
1

n2k
(Contrastinteraction)2            (1) 

F =
Sum of squareinteraction

σ2            (2) 

 

If the F value is below the predetermined 

threshold, it is permissible to disregard the impact 
of the interaction or conclude that there is no 

potential for curvature. The assessment of 

curvature is also conducted using F test as shown 
by equation 3: 
 

F =

nfnc(yf̅̅ ̅−yc̅̅̅̅ )
2

nf+nc

σ2                           (3) 

 

Where: 

nf = Number of observations around the center 

point 

nc = Number of observations at the center point 

yf̅ = Average response around the center point 

yc̅= Average response at the center point 

If the F value is lesser than the cut off value, the 

curvature effect is absent, and the observation is 
continued. 
 

3.4. Response surface methodology 
Second-order RSM is carried out to determine the 

optimum point. The chosen experimental design is 

Box-Behnken, as it is suitable for discrete factors. 

If the arrival rate does not affect the response, a 
second-order analysis will be performed for all 

arrival rates. When the arrival rate exerts an 

influence on the response, it is necessary to do a 
repeated analysis for each individual arrival rate.  

Arrival rate and interarrival time are the two 

variables that are used in RSM. To predict the 
values of independent factors under ideal 

conditions, both factors are classified as outer 

design. The most optimal point value is 

determined by simultaneously considering the 
values of the four responses. The equation for 

determining the optimal value is shown by 

equation 4. 
 
Where: 

T = Target value 

y = Response value 

U = Upper value 

𝐝𝐢= Desirability value for each response 

 

𝐝𝒊 = {

1;  if y < T 

(
U−y

U−T
)

r
;  if T ≤ y ≤ U

0;  if y > U

                            (4) 

If the value of the response is lower than the target, the 

desirability value is assigned as one. If the value of the 

response exceeds the upper threshold, the desirability 

value is set to zero. In equation 5, the desirability value 

for each response is substituted to produce the total 

desirability value. As the D value approaches one, the 
overall response values are optimized. 
 

𝐷 = (∏ 𝑑𝑖
4
𝑖=1 )

1

4                                             (5) 

 
Where: 

D = Total desirability 

𝐝𝐢= Desirability value for each response 

 

4. Results 

4.1. Optimization with arrival rate as 

outer design 

4.1.1 Steepest descent 
Based on findings in previous research, queue cost 

and service time are significantly affected by the 

number of servers, the number of phases, and the 

number of workers per phase. Responses are also 

significantly influenced by the arrival rate. The 

appropriate number of servers, phases, and 

workers must be determined for each arrival rate. 

The arrival rate ranges from 21 to 50 cars per day, 

thereby necessitating the application of the 

steepest descent analysis within this interval. 

Previous research findings indicate that the server 

area does not significantly influence responses. 

Consequently, the default setting for server space 

allocation remains at nine square meters. The 

absence of an impact of worker experience on 

response necessitates the utilization of workers 

with little experience for conducting steepest 

descent analysis. Layout type B is selected due to 

its detrimental impact on the average customer 

waiting time, service time, and queue cost [56]. 

The experimental design consists of three factors, 

two replications, and four center points. These 

center points determine the presence of an 

optimum site. The workshop normally uses two 

servers, two phases, and two workers for each 

step. Consequently, the number of servers, phases, 

and workers ranges from one to three. The first-

order analysis is performed when the arrival rate is 

21 cars per day. A first-order approach is used to 

analyse the experimental results. Table 1 shows 

the findings of the first-order analysis. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig.2. Contour plot of responses 
 

Tab.1. First order analysis 
Term Queue Cost Average Customer 

Waiting Time 

Service Time Number of 

Customers 

Coef. F Coef. F Coef. F Coef. F 

Constant 5349333   74.73   55.23   7.38 15.44 

Linear   14.89   321.460   498.05   19.94 

Servers -1512833 27.34 -0.55 0.880 -0.88 3.48 -1.60 49.11 

Phases 106250 0.13 -18.08 963.290  -18.25 1490.58 -0.63 7.67 

Workers 1200000 17.20 -0.26 0.190 -0.13 0.08 -0.40 3.04 

Square   6.12   118.210    143.27   1.94 
R Square   77.2%   98.6%   99.09%   80.46% 

 

Table 1 reveals that the number of servers, phases, 

and workers have a linear and quadratic effect on 

queue cost. This result is indicative of the 

existence of curvature, with the starting 

observation point being near the minimum queue 

cost position. This finding is supported by figure 

2a. Figure 2a shows that the queue cost value is 

close to the minimum location. The average 

customer waiting time is impacted quadratically 

by the number of phases. This also indicates the 

proximity to the minimum location as shown by 

figure 2b. The number of phases has a quadratic 

effect on service time. The observation point is 

also near the minimum service time as shown by 

figure 2c. The number of customers is influenced 

linearly by the number of servers, the number of 

phases, and the number of workers. Observations 

at the origin are near the minimum point, as shown 

in Figure 2d. According to first-order analysis, 

only the number of phases influences the service 

time. However, based on the previous study [56], 

Both the number of workers and the number of 

phases have a negative effect on service time and 

the average waiting time for customers. Thus, the 

steepest descent approach involves the utilization 

of factors and begins with a large initial value. The 

findings derived from the steepest descent analysis 

are illustrated in Figure 3. 
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Fig. 3. Steepest descent analysis for service time and average customer waiting time. 
 

The steepest descent analysis for service time and 

average customer waiting time, as depicted in 

Figure 3, can identify not only the optimal service 

time but also the minimum values for average 

customer waiting time and number of customers. 

The minimum value for both responses occurs 

when there are three phases and two workers. The 

increase in both factors leads to an increase in the 

response value. At three phases and two workers, 

the number of customers reaches its minimum 

before exhibiting fluctuating patterns. This 

phenomenon occurs due to the escalating service 

durations, resulting in the departure of certain 

customers from the queue.

 

 

Fig. 4. Steepest descent analysis for queue cost 
 

The subsequent step is to determine the optimal 

queue cost, as shown in Figure 4. First-order 

analysis demonstrates that the number of servers 

has a negative impact on the queue cost. The 

steepest descent begins from the large value to the 

small value. The decrease in the number of servers 

and phases is not possible because it would result 

in an increase in service time. The steepest descent 

method is executed with three phases and two 

workers. The minimum value for queue cost is 

attained when there are three servers. Increasing 

the number of servers results in a reduction in 

queue cost to a minimum threshold, after which 

the cost begins to escalate because capacity costs 

are greater than customer waiting costs. As the 

number of servers increases, the number of 

customers decreases proportionally. The number 

of servers does not have any effect on the service 

time or the average customer waiting time. The 

next response surface procedure is conducted on a 

set of three servers, involving three steps and 

employing two workers. 
 

4.1.2 Optimization 
The utilization of the second-order model is 

employed for the purpose of optimization. The 

chosen design is the box-behnken design, as 

indicated in Table 2, due to the discrete 

characteristics of every factor involved. Each 

group is replicated four times.  

 

 

 

 

Tab.2. Box–behnken design for three factors 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ie
pr

.iu
st

.a
c.

ir
 o

n 
20

24
-0

7-
22

 ]
 

                             8 / 20

http://ijiepr.iust.ac.ir/article-1-1943-en.html


9 Automobile Workshop Queue System Optimization Using Response Surface 
 

International Journal of Industrial Engineering & Production Research, March 2024, Vol. 35, No. 1 

 Treatment 

 1 2 3 

Group 1 x x  

Group 2 x  x 

Group 3  x x 
 

There are three center points. The total number of 

experiments is 15. The findings of the box-

behnken experiments are presented in table 3, 

specifically focusing on the scenario when the 

arrival rate is 21 cars per day. According to Table 

3, it can be observed that all factors exhibit a 

quadratic impact on the responses. The observed 

point is the minimum point. Subsequently, the 

process of optimization is conducted by 

employing equations 4 and 5. The optimization 

outcomes are depicted in Figure 5. 

 

Tab. 3. Second order analysis with box-behnken design 
Terms Queue cost Average customer 

waiting time 

Service Time Number of customers 

Coef. F Coef. F Coef. F Coef. F 

Linear   174.13   131.13   147.01   22.97 

Servers -269083 5.92 0.281 0.12 10.470 1.87 -123.438 47.33 

Phases 1912500 298.97 0.073 0.01 0.3289 0.18 -0.09375 0.27 

Workers 1631250 217.50 -15.779 393.25 -160.496 438.97 -0.82813 21.30 

Square   18.15   67.63   78.67   3.71 

Interaction   21.40   0.71 155.418 1.27 0.86979 2.76 

R Square   99.23%   99.17%   99.27%   94.64% 
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(e) 

Fig. 5. Optimization 
 

Figure 5a depicts that at the optimal or minimum 

point, the values for the number of servers, number 

of phases, and number of workers are three, three, 

and two, respectively. The minimum values for 

queue cost, service time, average customer waiting 

time, and number of customers are determined to 

be IDR 8,458,723, 76 minutes, 97 minutes, and 5 

cars, respectively. According to Figure 5b, when 

the number of workers is adjusted to one, the 

queue costs are minimized, whilst setting it to two 

maximizes the desirability function. Figures 5c, 

5d, and 5e show that the minimum values for 

service rate, average customer waiting time, and 

number of customers are in the correct location 

and maximize the desirability function. The 

composite desirability value of 0.80 indicates that 

the estimate closely approximates the optimal 

position. The optimizations are conducted 

uniformly for an arrival rate ranging from 22 to 50 

automobiles per day, and the results are displayed 

in Table 4. QC, ST, ACWT, and N refer to queue 

cost (in million), service time (in minutes), 

average customer waiting time (in minutes), and 

number of customers, respectively. 
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Tab.4. Optimization for arrival rate between 22 and 50 cars 
No Arrival Factor Optimum Condition Ratio 

Servers Phases Workers QC ST ACWT N Desirability  

1 21 2.65 2.79 2.39 8.46 76 97 5 0.80 1.26 

2 22 2.00 2.83 2.29 8.74 77 98 5 0.79 1.76 

3 23 3.00 3.00 2.00 9.98 75 96 6 0.79 1.01 

4* 24 5.00 4.00 2.00 10.49 78 100 9 0.78 1.08 

5 25 3.79 2.85 2.29 9.39 74 97 5 0.79 1.02 

6 26 4.00 2.67 2.41 9.94 75 99 5 0.76 1.02 

7 27 4.34 2.75 2.29 10.63 76 100 6 0.73 0.98 

8 28 4.48 3.47 2.45 15.03 76 101 5 0.71 0.99 

9 29 6.00 2.75 2.33 11.81 73 98 5 0.76 0.74 

10* 30 3.31 2.97 1.97 5.93 46 70 6 1.00 0.87 

11 31 4.61 2.79 2.39 12.07 75 101 6 0.74 1.05 

12 32 4.93 2.79 2.37 12.24 76 101 6 0.74 1.03 

13 33 5.01 2.85 2.31 12.31 74 100 6 0.74 1.02 

14* 34 8.00 2.59 2.01 14.16 104 130 6 0.89 0.92 

15 35 6.62 2.75 2.33 13.15 75 103 6 0.71 0.83 

16 36 6.23 2.77 2.33 13.04 74 102 6 0.71 0.89 

17* 37 7.23 3.23 1.53 11.13 90 117 7 0.82 0.96 

18* 38 3.92 2.91 1.53 4.39 38 68 6 1.00 0.77 

19 39 6.18 3.00 2.15 15.00 76 106 6 1.00 1.00 

20 40 6.83 2.75 2.39 14.99 76 106 7 0.73 0.93 

21* 41 4.00 2.65 2.02 5.35 37 69 6 1.00 0.79 

22 42 7.15 2.79 2.35 15.80 77 108 7 0.69 0.94 

23 43 7.50 2.87 2.35 16.52 77 108 7 0.59 0.92 

24 44 7.88 2.75 2.37 16.82 77 109 7 0.59 0.90 

25 45 7.69 2.79 2.33 17.07 77 109 7 0.65 0.94 

26* 46 - - - - - - - - - 

27 47 9.00 2.85 2.33 18.40 78 111 8 0.50 0.85 

28* 48 6.88 2.85 2.25 12.80 55 89 8 0.76 0.80 

29* 49 5.85 2.73 2.31 13.13 56 91 8 0.81 0.98 

30 50 8.39 2.87 2.31 18.57 76 112 7 0.61 0.94 

 

Table 4 reveals that at three phases, two workers, 

and a certain number of servers, the queue cost 

reaches its lowest point. The number of servers 

increases proportionally with the arrival rate. 

There are aberrations; however, using three phases 

and two employees per phase does not yield the 

same optimal service time. For instance, the ninth 

experiment is conducted under the condition of an 

arrival rate of 29 cars per day. The optimal service 

time per car is 73 minutes. There are a total of six 

servers. The tenth experiment is conducted when 

the daily arrival rate was 30 cars. The optimal 

server time per car is 46 minutes, and three servers 

are required. If the arrival rate increases, the 

number of servers should also increase. At an 

arrival rate of 30, however, the number of servers 

decreases. This occurs because service time 

decreases, allowing each server to serve more cars, 

and the number of servers decreases.  

The thirteenth experiment is conducted when the 

daily arrival rate is 33 cars. The optimum service 

time per car is 74 minutes. The required number of 

servers is five. The fourteenth experiment is 

conducted with an arrival rate of 34 cars per day. 

The service time is 104 minutes per car. A total of 

eight servers is expected. The fourteenth 

experiment requires a greater number of servers 

compared to the thirteenth experiment. This 

occurs as the service time increases, reducing the 

number of cars served while increasing the 

number of servers to anticipate the arrival rate. 

Experiments 18, 21, 28, and 29 demonstrate the 

same phenomenon. Consequently, the arrival rate 

has no significant effect on the optimum queue 

cost. The rightmost column represents the service 

utility, which is the ratio of the arrival rate to the 

number of cars successfully served. The service 

utility value approaches one under optimal 

conditions. This implies that the arrival rate and 

the service capacity must be equal at the optimal 

point. Table 4 presents findings that are in 

contradiction to prior studies that examined 

queuing systems through a probabilistic 

framework. The probability technique utilizes the 
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average arrival rate and service time to determine 

the optimal number of servers. The number of 

servers remains constant across all arrival rates. 

The results of this research are contradictory. The 

number of servers fluctuates by arrival rate and 

service time. Adjusting the number of phases and 

the number of workers can minimize the service 

time and average customer waiting time, although 

the value may differ. Therefore, there is a disparity 

in the number of servers, despite the arrival rate 

being nearly identical. 

Table 4 shows that the smallest queue cost is 

achieved when the service time is at its lowest. 

Experiment 20 is conducted under the condition of 

an arrival rate of 40 automobiles per day. The 

minimum service time for each automobile is 76 

minutes. The minimum queue cost is IDR 

14,987,257. Experiment 21 is conducted under the 

condition that the arrival rate is observed to be 41 

automobiles per day. The optimum service time is 

determined to be 37 minutes. The minimum cost 

of the queue is IDR 5,350,486. The queue cost in 

experiment 21 are expected to be similar to those 

observed in experiment 20. Queue costs are lower 

in experiment 21 because the optimum service 

time is very low, allowing more customers to be 

served while lowering queue cost. The optimum 

average customer waiting time is achieved at 3 

phases and 2 workers. The optimum number of 

customers is obtained when the service utility 

equals one, and its magnitude is proportional to the 

number of servers and the arrival rate. One 

noteworthy aspect pertains to Experiment 18. 

Experiment 18 is conducted when the daily arrival 

rate is 38 cars. The optimal service time is the 

minimum value compared to the other service 

times. Consequently, the optimal queue cost is 

observed to be the lowest compared to the other 

experiments.  

The third experiment is carried out when the 

arrival rate was 23 cars per day. The optimum 

values for queue cost, service time, average 

customer waiting time, and number of customers 

are IDR 9,983,276; 75 minutes per car; 96 minutes 

per car; and 6 cars. The fourth experiment is 

carried out when the arrival rate is 24 automobiles 

per day. The optimum values for queue cost, 

service time, average customer waiting time, and 

number of customers are IDR 10,485,954, 78 

minutes per automobile, 100 minutes per 

automobile, and 9 automobiles. The optimum 

value of the fourth experiment should be close to 

the optimum value of the third experiment. The 

third experiment has nearly the same optimum 

service time as the fourth experiment, but the 

fourth experiment has a higher queue cost and a 

larger number of customers. The reason for this is 

because the interarrival time between customers in 

the fourth experiment is shorter than in the third. 

This is illustrated in Figure 6. 
 

 

Fig. 6. Number of customers 
  

Figure 6 depicts the number of customers in each 

hour. Observations are carried out from 9 a.m. to 

4 p.m. Figure 6 shows that the arrival time 

between customers at an arrival rate of 24 cars per 

day is greater. Initially, there are 5 customers at 9 

a.m. and 14 customers at 10 a.m., therefore there 

are 9 customers arriving between 9 and 10 a.m. 

This leads to many customers in the queue and 

higher queuing costs. The arrival rate is ineffective 

at improving queue performance, hence the 

interarrival time must be addressed. 

Figure 7 depicts the relationship between queue 

cost and number of servers at arrival rates of 45 

(experiment 25) and 46 (experiment 26). 

Experiments with an arrival rate of 45 autos each 

day yield a profit of IDR 450,000 per customer. 

The experiments on an arrival rate of 46 cars per 

day are carried out by providing discounts to 

customers so that customers are only charged a 

service cost of IDR 250,000.  
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Fig. 7. Queue cost 
 

The queue cost of experiment 25 can be optimised. 

The queue costs in experiment 26 cannot be 

optimized, hence the optimum values for service 

time, average customer waiting time, and number 

of customers cannot be established concurrently. 

The optimum number of servers in experiment 26 

is less than 5 servers, which is not attainable since 

the number of customers who do not receive 

service and the number of customers who abandon 

the waiting system will increase. Differences in 

cost composition cause the optimal value of the 

overall response to fluctuate. Determining the 

optimal value based on queue cost is inaccurate. 

 

 
Fig. 8. Comparison between leaving customers and queue cost 

 

Figure 8 shows a graph of the number of leaving 

customers and the queue cost versus the number of 

customers. Customers who enter the queue system 

and subsequently depart are referred to as leaving 

customers. The queue cost is minimized when 

there are no customers departing. The number of 

leaving customers is a more precise indicator for 

calculating the optimal value. Based on this, 

experiments are carried out by leaving customers 

as a response. The experiment started with 

screening analysis, steepest descent, and 

optimization. The factors analysed are the number 

of servers, server area, number of phases, number 

of workers, interarrival rate, layout type, and 

worker experience. The responses analysed are 

number of leaving customers, service rate, average 

customer waiting time, and number of customers. 

4.2. Optimization with interarrival time 

as outer design 

4.2.1 Screening analysis 
The full design for screening analysis includes the 

application of the interarrival time as a factor. The 

design used is fractional factorial 2𝐼𝑉
7−2  and is 

presented in Figure 9. This design is a four-

resolution design with the defining relation I = 

ABCDF = ABDEG = CEFG. A single factor 
correlates with a four-factor interaction. Two 

factors of interaction correlate with three factors of 

interaction. Although there are correlations 

between interactions, the design remains 
orthogonal. The design comprised 32 experiments, 

each of which is reproduced twice, resulting in a 

total of 64 experiments. Replicating the 32 
experiments results in an increased degree of 

freedom, which enables the estimation of all 

coefficients. The screening factor results are 
displayed in Table 5. 
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Fig. 9. Fractional factorial 𝟐𝐈𝐕
𝟕−𝟐 

 

Tab. 5. Optimization for interarrival time between 9 to 20 minutes 
Term Leaving customer  Service time Average Customer 

Waiting Time 

Number 

Effect P  Effect P Effect P Effect P 

Servers -25.65 0  0.625 0.046 0.1 0.772 -0.971 0 

Area -0.02 0.884  0.131 0.667 -0.09 0.794 0.037 0.109 

Phases -1.65 0  -4,123 0 -4.57 0 -0.079 0.001 

Workers 0.15 0.349  -3,549 0 -3.62 0 0.007 0.748 

Interarrival Time -18.71 0  0.284 0.353 -4.49 0 -3,399 0 

Layout -0.1 0.518  0.045 0.882 -25.24 0 -0.002 0.922 

Experience 0.09 0.587  -0.149 0.625 -0.47 0.189 -0.019 0.409 

Servers*Interarrival 4.16 0  -0.611 0.05 -0.2 0.576 0.186 0 

R square 99.91%    90.63%   99.34%   99.85%   

 

Table 5 presents the results of the screening 

analysis. The number of servers, phases, and 
interarrival time have a negative effect on the 

number of leaving customers. Increasing the 

number of servers and the number of phases 

reduces the number of customers leaving the 
queue system. A decrease in the interval between 

the customer arrivals, or a decrease in the 

interarrival time, results in an increase in the 
number of customers departing. Smaller 

interarrivals cause customers to accumulate in 

lines, increasing the likelihood that customers may 

leave the queuing system. Server-interarrival time 
interaction has a positive effect on the number of 

leaving customers. This interaction demonstrates a 

curve in the number of leaving customers. Both 
the number of phases and the number of workers 

have a detrimental impact on service time. 

Increasing the number of phases and workers will 
reduce service time. 

The average customer waiting time is negatively 

affected by the number of phases, number of 

workers, interarrival time, and layout. Increasing 
the number of phases and workers shortens service 

time and will minimize customer waiting time. 

When there is a long interval between customers 
arriving or an extended interarrival time, the 

number of customers waiting in line will be 

reduced, and the likelihood of customers 
abandoning the queue will be decreased. The 

layout has a negative effect, so that type B layout 

shortens the duration of customers queuing. 

The number of servers, the number of phases, and 
the interarrival time have a negative effect on the 

number of customers. Server-interarrival 

interaction has a positive effect on the number of 
customers. Increasing the number of workers and 

phases reduces service time and average customer 

waiting time, resulting in a smaller number of 

customers queuing. An increase in servers reduces 
the number of customers in queue and gives 

customers more opportunities to obtain service. 

Worker experience and server area have no impact 
on the four responses, and this result is in line with 

the previous analysis. 
 

4.2.2 Steepest descent 
Experiments are carried out at each interarrival 

time or the interarrival time is set as the outer 

design. Optimizing interarrival time is impossible 
due to its unpredictability, but in this experiment, 

interarrival time is controlled through a booking 

service mechanism. The steepest descent 
experiment is carried out using a type B layout and 
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highly experienced workers. 

Steepest descent is carried out to predict the 
number of leaving customers. The number of 

phases and workers is specified as three phases 

and two workers. The steepest descent analysis is 

conducted for each vehicle at a nine-minute 
interarrival time, and the outcome is illustrated in 

Figure 10. 
 

 
Fig. 10. Steepest descent for losing customers 

 

Figure 10 shows that the relationship between the 
number of leaving customers and the number of 

servers is reciprocal. Based on the results of the 

screening analysis, the equation to predict the 
number of leaving customers is estimated as 

follows: 

 

𝐿 = 0.29𝑥1𝑥4 +
51.82

𝑥1
+

47.31

𝑥4
− 2.36𝑥4 −

1.57𝑥2 + 12.58              (6) 

 
Where: 

𝑥1= Number of servers 

𝑥2= Number of phases 

𝑥4= Interarrival time  
L= Number of leaving customers 

Number of servers and interarrival time are 

inversely proportional to the number of leaving 
customers. As the interarrival time and number of 

servers increase, the number of leaving customers 

decreases, implying that these two factors have a 
negative impact on the number of leaving 

customers. The interaction effect demonstrates the 

presence of a curve or optimum value for the 

number of leaving customers. Partial 
differentiation of equation 6 with respect to the 

number of servers yields equation 7. 

 

𝜕𝐿

𝜕𝑥1
= 0.29𝑥4 −

51.82

𝑥1
2              (7) 

 

The optimum number of leaving customers is 

determined by Equation 8 when 
𝜕𝐿

𝜕𝑥1
= 0.  

 

𝑥1 = √
51.82

0.29𝑥4
              (8) 

 

The optimum value of the number of leaving 

customers changes and depends on the value of the 

interarrival time. The value of the optimal number 
of servers will decrease as the interarrival time 

increases. This equation will be compared with the 

optimization results using the response surface. 
Based on the Figure 10, the number of leaving 

customers reaches the minimum value when the 

number of servers is 5. This value is used for 
response surface analysis. 

Figure 11 shows the findings of the steepest 

descent analysis for service time and average 

customer wait time. The correlation between the 
number of phases and workers is quadratic, 

leading to an optimal value. The optimal values 

are achieved by utilizing three servers and two 
workers.
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Fig. 11. Steepest descent for service time and average customer waiting time 

 

The steepest descent experiment yields equation 9 

for predicting service time: 

 

𝑆𝑇 = 0.43𝑥2
2 − 2.59𝑥2 + 0.355𝑥3

2 − 1.36𝑥3 +
7.72              (9) 

 

Where: 

𝑥2= Number of phases 

𝑥3= Number of workers 

ST= Service time 

The optimal service time value is unaffected by the 
interarrival time and solely determined by the 

number of workers and servers. Equations 10 and 

11 result from the partial differentiation of 
equation 9. 
𝜕𝑆𝑇

𝜕𝑥2
= 0.86𝑥2 − 2.59            (10) 

𝜕𝑆𝑇

𝜕𝑥3
= 0.71𝑥3 − 1.36           (11) 

 

Equations 10 and 11 demonstrate that at 3.01 
phases and 1.92 workers, the service time value is 

at its lowest. But the lowest amount varies based 

on the type of vehicle, the type of service, and 
other factors. 

Equation 12 that predicts the average customer 

waiting time is derived from the experiment with 

the steepest descent.: 
 

𝐴𝐶𝑊𝑇 = 0.42𝑥2
2 − 2.53𝑥2 + 0.38𝑥3

2 −
1.47𝑥3 − 0.02𝑥4 + 8.907         (12) 

 
Where: 

𝑥2= Number of phases 

𝑥3= Number of workers 

𝑥4= Interarrival time 

ACWT= Average customer waiting time 

The service time equation and the average 

customer waiting time equation are nearly 
identical. The number of phases, workers, and 

interarrival time all affect the optimal value of the 

average customer waiting time. Equations 13 and 
14 are produced if the equation is differentiated. 

 

𝜕𝐴𝐶𝑊𝑇

𝜕𝑥2
= 0.84𝑥2 − 2.53           (13) 

𝜕𝐴𝐶𝑊𝑇

𝜕𝑥3
= 0.76𝑥3 − 1.47           (14) 

 

The optimum value of average customer waiting 

time was achieved at 3.01 phases and 1.93 
workers. This optimum condition is the same as 

the optimum service time condition. However, the 

value of average customer waiting time is 
negatively influenced by interarrival time.  

The following is an approximated equation for 

predicting the number of consumers based on the 
experiment with the steepest descent. 

 

𝑁 =
2.24

𝑥1
+

0.55

𝑥2
+

75.4

𝑥4
+ 0.02𝑥1𝑥4 − 3.04      (15) 

 

Where: 

𝑥1= Number of servers 

𝑥2= Number of phases 

𝑥4= Interarrival time  

N= Number of customers 
Number of servers, number of phases and 

interarrival time are inversely proportional to 

number of customers. The interaction effect also 

indicates a curvature in the number of customers. 
However, optimization of the interarrial rate with 

a value of 9 minutes is carried out on 5 servers, 3 

phases, and 2 workers. 
 

4.2.3 Optimization 
The optimization of the 9-minute results yields an 

optimal configuration consisting of 5 servers, 4 

phases, and 1 worker. The optimal values for each 

response are as follows: 12.76 for the number of 

leaving customers, 34.37 minutes for service time, 

43.59 minutes for average customer waiting time, 

and 6.33 for the number of customers in the queue 

system. 

Additionally, optimization is conducted for 

various interarrival times using the same method, 

and the outcomes are displayed in table 6.
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Tab. 6. Optimization for interarrival time between 9 to 20 minutes 
No Inter-

arrival 
Factors (by response surface) Factors (by equations) Optimum Condition 

Servers Phases Workers Servers Phases Workers L ST ACWT N Desirability  

1 9 5.21 4.00 1.00 4.46 3.01 1.93 12.76 34.37 43.59 6.33 0.84 

2 10 5.39 3.52 1.63 4.23 3.01 1.93 18.82 26.83 37.81 6.96 0.94 

3 11 4.55 4.00 1.38 4.03 3.01 1.93 11.31 26.83 37.81 6.96 0.93 

4 12 4.31 3.49 1.87 3.86 3.01 1.93 9.87 26.22 35.03 4.80 0.89 

5 13 3.95 3.47 1.00 3.71 3.01 1.93 10.58 25.96 34.29 4.51 0.88 

6 14 4.37 3.19 1.91 3.57 3.01 1.93 9.23 25.31 33.01 4.11 0.92 

7 15 4.00 3.29 1.97 3.45 3.01 1.93 6.04 25.06 32.34 3.76 0.99 

8 16 3.92 3.11 1.87 3.34 3.01 1.93 5.99 24.57 31.97 3.56 0.99 

9 17 4.00 3.00 2.00 3.24 3.01 1.93 3.77 25.00 31.05 3.28 1.00 

10 18 4.00 2.93 2.05 3.15 3.01 1.93 1.47 24.12 31.81 3.12 0.99 

11 19 2.91 2.99 2.01 3.07 3.01 1.93 1.37 25.08 30.49 2.89 1.00 

12 20 2.12 3.19 1.87 2.99 3.01 1.93 0.00 24.72 29.96 2.67 1.00 

 

According to Table 6, an increase in the 
interarrival time value leads to a decrease in the 

number of leaving customers. 

A higher interarrival time leads to a lower number 
of customers in the queue, resulting in a lower 

probability for customers leaving the queue 

system. This is demonstrated by the lower average 
number of customers waiting in line. The number 

of phases and workers is constant at each 

interarrival rate. This is in accordance with 

equations 10, 11, 13, and 14, which assert that the 
optimal value of service time and the average 

customer waiting time are solely determined by 

the number of phases and workers.  
Table 6 demonstrates that equations 8, 10, 11, 13, 

14, and 15 yield estimations for the number of 

servers, phases, and workers that are closely 

consistent with the outcomes of optimization 
using the response surface. This equation is 

applicable to various other interarrival times. 

Nevertheless, this equation is exclusively utilized 
for predicting queue conditions for routine 

maintenance service sections. The mathematical 

equations that predict queuing conditions for 
different types of service must be recalculated. 

 

5. Conclusion 
The findings of the investigation indicate that 

several factors, such as the number of servers, 

phases, workers, arrival rate, and layout 
significantly influence the responses. The process 

of optimization is conducted for every arrival rate 

to determine the optimum number of responses 

associated with each arrival rate. The optimum 
conditions are attained when the service utility is 

one or when the service capacity is equal to the 

arrival rate, resulting in minimum values for the 
responses. The optimal value for all responses is 

mostly influenced by the number of phases and the 

number of workers. The service time is minimized 
by the number of phases and workers, which 

contributes to the reduction of queue cost.  

Nevertheless, there are several deviations. The 
queue cost, initially used as a response, cannot 

serve as a reference for identifying optimal 

conditions because distinct cost structures will 
yield various optimal values at the same arrival 

rate. The analysis results indicate that the optimal 

queue cost value is equivalent to the optimal 

number of leaving customers. This occurs because 
the optimal cost structure is achieved when the 

number of leaving consumers is minimized. The 

cost of providing servers is equivalent to the cost 
of queueing. These findings provide a significant 

contribution to the optimization of queuing 

systems. The arrival rate is not relevant for 

analysis as the inter-arrival rate amongst 
customers can vary despite having the same arrival 

rate. This study proposes that the interarrival time 

is a more relevant factor to consider along with 
analyzing and optimizing queue performance. 

This study presents a comprehensive analysis of 

the relationship between factors and responses. 
The number of servers and interarrival time are 

inversely proportional to the number of leaving 

customers and number of customers so this is in 

accordance with several previous studies which 
stated that the interarrival rate and arrival rate have 

an exponential distribution. The optimal values of 

service time and average customer waiting time 
are dependent upon the number of phases and 

workers. However, the value of average customer 

waiting time is directly proportional to interarrival 
time. An increase in the interarrival time will lead 

to a decrease in the average customer waiting time.  

This study establishes a foundation for researchers 

to further minimize service time and enhance 
service stability. In addition, it is important to 
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conduct additional study that examines 

mathematical equations for various kinds of 

services. 

This study offers managerial insights for 
automobile workshop managers to prioritize 

factors that influence service time, as service time 

directly affects queue performance. In addition, it 
is crucial to carefully monitor and effectively 

manage the interarrival time to minimize customer 

attrition. 
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