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ABSTRACT 

To develop a system for specific purpose, it needs to estimate its parameters (parameterization). It can 

be used in different fields like engineering, medicine, industry etc. In this work, authors used adaptive 

algorithm to model a system that is applicable in industry for control. The model is non-linear and 

works on kernel-based estimation with Least-mean square (LMS) algorithm. The kernels are verified 

with Polynomial and Gaussian. As the system is nonlinear, polynomial kernel-based algorithm fails to 

prove its efficacy, though it is of low complexity approach. Gaussian kernel-based application for 

nonlinear system control performs better as compared to polynomial kernel. Further, the complexity is 

reduced and used with Gaussian kernel in LMS algorithm for better performance. The result proves its 

performance in form of MSE, MAE, RMSE for identification and control that is very useful in 

industrial application. With the use of reduced Gaussian kernel application, the MSE, MAE and RMSE 

are found to be -54.622 dB, 0.0362,0.235 respectively, in 0.01062 sec that shows the time consumption 

is very less compared to other approaches. 

 
KEYWORDS: Kernel adaptive filtering; Nonlinear system Identification; Least-mean square; Kernel 
least-mean square; Single input Single-output (SISO) System; Polynomial kernel; Gaussian kernel. 

 

1. Introduction1 

In the field of engineering, one of the major 
challenges is the identification of unknown 

complex systems [1]. To solve the system 

identification problem, various statistical and 
start-of-art methods have been introduced. The 

adaptive filter has become a popular method to 

solve various applications of statical system 

identification problems [2, 3, 4, 5]. In recent 
years, one of the most well-liked study areas in 

adaptive signal processing has been kernel 

adaptive filtering, which was developed at the 
interface of machine learning and statistical 

signal processing. To improve the performance of 

the model, continuous and automatic adjustments 
are made to the coefficients related to the 
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adaptive filter. An adaptive filter reduces errors 

by putting the initial data into a format with more 

dimensions, or even an infinite number of 
dimensions. A lot of development has been done 

on kernel methods to reduce the computational 

complexity of the model. Reproducing kernel 
Hilbert spaces (RKHS), different types of kernel 

adaptive filters (KAF), are the improved versions 

of the basic kernel methods used in solving 
nonlinear applications, including system 

identification and control. The design of adaptive 

filters consists of three main specifications: first, 

the algorithm; second, the filter structure; and 
third, application. Given the benefits of kernel 

adaptive filters in signal processing, adaptive 

filter algorithms are used successfully in a variety 
of fields including communications, radar, sonar, 

seismology, and biomedical engineering. 

Estimation error is obtained from the process by 

differentiating between a desired response and an 
input vector. A popular method named the least 

mean square (LMS) algorithm was introduced by 

Widrow and Hoff to identify nonlinear systems, 
which generates a mean square error [6, 7]. The 

aim is to design a kernel least mean square model 

which learns as an adaptive filter to identify and 

RESEARCH PAPER 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ie
pr

.iu
st

.a
c.

ir
 o

n 
20

24
-1

2-
31

 ]
 

                             1 / 16

http://dx.doi.org/10.22068/ijiepr.27.4.321
mailto:mihirmohanty@soa.ac.in
http://ijiepr.iust.ac.ir/article-1-1572-fa.html


2 Nonlinear System Parameterization and Control using Reduced Adaptive Kernel Algorithm 
 

International Journal of Industrial Engineering & Production Research, December 2022, Vol. 33, No. 4 

control nonlinear systems. Estimation errors are 

controlled by a set of filter coefficients that can 
be changed based on an input vector and the 

response that is desirable. 

Identification and control problems have been 

one of the major topics of research for several 
years. Zhou et al. introduce the M-estimation 

function by modifying the existing LMS 

algorithm, which is named as the least mean M-
estimate (LMM) algorithm and hyperbolic secant 

LMS (HSLMS) algorithm, further modified and 

used in different fields [8, 9, 10, 11]. The 

convergence speed can be increased by 
implementing the Set of Membership Filtering 

(SMF) Strategy [12]. The fractional least mean 

square (LMS) method is suggested in [13] to 
estimate the parameters of the Hammerstein 

system with external noise (HN-ARMAX). In 

order to generate linear-in-parameter models, 
HN-ARMAX systems are parameterized. The 

fractional LMS algorithm is then used to adjust 

unknown parameter vectors. By adapting the 

unknown parameter vector using a novel 
fractional least mean square (FLMS) algorithm 

for a BJ system, the parameters are estimated 

[14]. For realistic modelling of the Volterra 
system, Kohli et al. used a RLS technique with a 

numeric variable forgetting factor [15]. A 

decomposition method is proposed by 
implementing an Autoregressive Moving 

Average (ARMA) nonlinear model for noise 

reduction and identification of Hammerstein 

systems with a FIR system to solve the nonlinear 
system identification problem [16]. In [17], a 

novel data filtering technique based on maximum 

likelihood is proposed for parameter estimating 
of a bilinear system. Volterra [18], Walsh 

functions [19], Laguerre transform [20], 

Hammerstein [21], polynomial autoregressive 

(PAR) [22], Recursive least squares (RLS), 

WLMS algorithm [23] and Wilcoxon algorithm 
[24,25] are the most commonly used models for 

system identification. The input to the linear 

adaptive filter is a nonlinear mapping to a 

reproducing kernel-equipped Hilbert space. Even 
when the dimensionality of the converted input in 

Hilbert space (H) is unlimited, as it is in the case 

of a Gaussian kernel, the order of the linear 
adaptive filter can be constrained provided an 

appropriate input sparsification technique is 

employed, according to the framework described 

previously. By using the above concept as 
reference, new kernel algorithms like the kernel 

least-mean-square (KLMS) algorithm [26], the 

affine projection (KAPA) algorithm [27,28], and 
mixed kernels [29] have been developed. Various 

application-oriented work which includes 

Parameter estimation and Identification in 
different areas are presented in [30, 31, 32, 33, 

34]. 

For the majority of kernel-based techniques, the 

Gaussian kernel function is frequently used. The 
performance of KAF algorithms is ultimately 

influenced by the sharpness of the Gaussian 

function fitting the objective function, which is 
directly determined by the kernel bandwidth.  

One component of the Gaussian kernel, Taylor 

extended to polynomial form has an intentionally 
mapped kernel function. To approximate 

Gaussian kernel function, the finite-order Taylor 

expansion series components are intercepted and 

multiplied by another factor. For each term of the 
reduced Gaussian kernel polynomial, there is a 

clear feature mapping function that lets the right 

iterative weight operations be done [35]. Table.1 
shows the comparisons of different system 

identification techniques.  

 

Tab. 1. Comparison of different System Identification techniques 
Year Title, Authors Work done 

Ref [12], 

2014 

Identification of Hammerstein nonlinear 

ARMAX systems using nonlinear adaptive 

algorithms. 

Naveed Ishtiaq Chaudhary · 
Muhammad Asif Zahoor Raja 

The design schemes consist of parameterization of 

HN-ARMAX systems to obtain linear-in-parameter 

models and to use fractional LMS algorithm for 

adapting unknown parameter vectors. 

Ref [16], 

2018 

Filtering-Based Maximum Likelihood 

Gradient Iterative Estimation Algorithm for 

Bilinear Systems with Autoregressive 

Moving Average Noise. 

Meihang Li1 · Ximei Liu1 · Feng Ding. 

The maximum likelihood principle with the data 

filtering technique for parameter estimation of 

bilinear systems with autoregressive moving 

average noise is proposed. 

The proposed method can be extended to other 

linear and nonlinear systems with different 

structure, which achieve good accuracy. 

Ref [19], 

2008 

Nonlinear system identification using 

Wiener type Laguerre—Wavelet network 

model. 
 P. Aadaleesan, Nitin Miglan, Rajesh 

The use of Laguerre basis filters coupled with a 

wavelet network in Wiener type model structure. 

Laguerre filter models have the ability to 
approximate linear systems (even with time delay) 
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Sharma, Prabirkumar Saha. with a model order lower than the traditional ARX 

(e.g., FIR, AR) modelling.  

Ref [21], 

2018 

Adaptive Model Predictive Control for 

Wiener Nonlinear Systems 
Ibrahim Aliskan 

 

A model predictive control system with online 

identification support has been developed with the 
combination of MPC algorithm with online 

identification which constitutes an adaptive model 

predictive control algorithm. 

The prominent feature of online system 

identification may be referred to as accommodating 

easily to severe changes in system parameters. 

Ref [22], 

2012  

Analysis of outliers in system 

identification using WLMS algorithm.  

Sidhartha Dash, Mihir Narayan Mohanty, 

This paper aim towards the Wilcoxon approach, 

Least Mean Square Algorithm been applied for 

System Identification problem with 

Gaussian noise. 

Ref [23], 
2012 

Variable Sign-Sign Wilcoxon Algorithm: A 
Novel Approach for System Identification. 

Sidhartha Dash, Mihir Narayan Mohanty 

The application of Wilcoxon norm in linear system 
identification is analysed. 

Ref [31], 

2022 

Nonlinear Dynamic System Identification 

Using Chebyshev Functional Link Artificial 

Neural Networks. 

Jagdish C. Patra, Alex C. Kot. 

A single-layer functional link ANN (FLANN) in 

which the need of hidden layer is eliminated by 

expanding the input pattern by Chebyshev 

polynomials. 

 

Ref [32], 

2022 

Kernel learning for robust dynamic mode 

decomposition: linear and nonlinear 

disambiguation optimization 

Peter J. Baddoo, Benjamin Herrmann, 

Beverley J. McKeon and Steven L. 
Brunton,  

 

The dynamic mode decomposition (DMD) has 

emerged as a cornerstone for modelling high 

dimensional systems from data. The quality of the 

linear DMD model is known to be fragile with 

respect to strong nonlinearity, which contaminates 
the model estimate. Kernel method efficiently 

handles high-dimensional data and is flexible 

enough to incorporate partial knowledge of system 

physics.  

Ref [33], 

2022 

Fuzzy Elman Wavelet Network: 

Applications to function approximation, 

system identification, and power system 

control. 

Zahra Sheikhlar a , Mahdi Hedayati a, 

Abdolreza Dehghani Tafti a , Hassan 

Feshki Farahani 

The model was the combination of Elman Neural 

Networks (ENNs), wavelet functions, and fuzzy 

membership functions (MFs). 

 The integration suggests the use of interval type-2 

fuzzy MFs and wavelet functions with self-

recurrent and ENN’s cross-coupled feedback loops 

to handle system uncertainties while accurately 
representing the intrinsic cross-coupled 

interferences of real dynamic nonlinear systems. 

Ref [40], 

2012 

Optimization Algorithm-Based Artificial 

Neural Network Control of Nonlinear 

Systems. 

Vishal Srivastava and Smriti Srivastava 

A teacher learning-based algorithm (TLBO) has 

been used with ANN which optimizes the controller 

parameters and adapts the nonlinearities present in 

the plants. 

 

Shortcomings 
Many works have been performed for this system 

identification and control as shown in table- 1. 
However, the simplicity is poor in their approach. 

Also, the various kernel application is not found 

for identification and control task. Even they 
have proposed either for identification and 

estimation or control with the single approach. To 

develop a robust algorithm to solve both the tasks 
of estimation and control, authors have adopted 

the kernel based popular as well as simple 

adaptive algorithm and explained in this work as 

the novelty. In this case no additional 
optimization algorithm is used. 

 

Significant of research: 
For academia and industry system identification 

and control is an important area of research. To 
design a model for particular purpose the 

parameters are to be estimated that leads the 

system identification problem. Simultaneously 
the stability of the system needs to be maintained, 

while the model is useful for any control 

application. The major objective is to develop an 
algorithm that can control the system and 

identify. The system may be of linear or 

nonlinear or nonlinear dynamic. For nonlinear 

dynamic system a single algorithm is not yet 
developed, which is the approach of this work. 

The kernel application to the adaptive algorithm 
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works excellent for stabilization and parameter 

identification of the nonlinear system.  
Major Contribution of this work are: 

1. The parameters of two nonlinear plants are 

estimated by applying two Mercer’s kernels. 

After parameterization, the model can be 
used in a control application. 

2. Initially, a Gaussian kernel and a polynomial 

kernel are used to identify the nonlinear 
models. 

3. Furthermore, a reduced method is applied to 

the Gaussian kernel, to make the model 

robust. 
These remaining sections are organised as 

follows: In Section 2, following a brief review, 

the problem formulation section is discussed. In 
section 3, the methodology of the work is 

presented. In section 4, the results and discussion 

parts are discussed. Finally, the work is 
concluded in section 5. 
 

2. Problem Formulation 
A set of mathematical models can represent any 
nonlinear model. A general linear time-invariant 

system (LTI) is an example of nonlinear model 

representation and is formulated as 

 

𝑂(𝑔) 𝐺(𝑞, ∅)𝑀(𝑔) + 𝑣(𝑘)                                   (1) 

 

Where the transfer function is represented by G, 
input to the LTI system is M(g) and output to the 

system is O(g) with an additive disturbance or 

noise, represented by 𝑣(k). The main aim of 

identification is to match the model to the data. 
The data set is a collection of nonlinear systems, 

and is represented as: 

 

𝑃𝑡 = {𝑀(1), 𝑂(1), … . . , 𝑈(𝑁), 𝑂(𝑁)}                (2) 

 

Where 𝑃(𝑡), represents the training set, with N 

being its size. The identification approach is to 
identify how well the model is able to predict 

thereby minimizing the error 

 

𝜖(𝑔, 𝜃) = 𝑜(𝑘) − 𝑜(𝑔, 𝜃)                                    (3) 

 

The size of error represents in scalar norm as  

 

𝑙(𝜖(𝑔, 𝜃))                                                                (4) 

   

The overall performance is given as  

 

𝑂𝑁(𝜃) ∑ 𝑙(𝜖(𝑔, 𝜃))                                         (5)𝑁
𝑡=1   

 

A natural parameter estimation minimizes the 

prediction fit. It is defined by 

 

∅̂𝑁 = arg 𝑚𝑖𝑛𝜃𝜀𝐷  𝑂𝑁(𝜃)                                   (6) 

 

The process is called as prediction error method 

(PEM) and it is widely used for nonlinear system 

error predictions. 
 

2.1. Input (state) output representation of 

systems 
Nonlinear systems are represented in the form of 

differential equations: 

 
𝑑𝑤(𝑔)

𝑑𝑡
≜ 𝑤(𝑔) = 𝜑(𝑤(𝑔), 𝑀(𝑔))  𝑡 ∈ 𝑅+𝑂(𝑔)

= 𝜇[𝑤(𝑔)]                                                               (7)  
    

Where, 𝑤(𝑔) ≜
[𝑤1(𝑔), 𝑤2(𝑔), … … . 𝑤𝑁(𝑔)]𝑇 , 𝑀(𝑔) ≜
[𝑀1(𝑔), 𝑀2(𝑔), … … . 𝑀𝑃(𝑔)]𝑇            and 𝑂(𝑔) ≜
[𝑂1(𝑔), 𝑂2(𝑔), … … . 𝑂𝑚(𝑔)]𝑇represents a p input 

m output order of the given system is  n with 

𝑀𝑖(𝑔)  as inputs , 𝑤𝑖(𝑔)  as state variables and 

𝑂𝑖(𝑔)as the output. Representation of static maps 

(nonlinear) is given as 𝜑: ℝ𝑛 × ℝ𝑝 → ℝ𝑛  and 

𝜇: ℝ𝑛 → ℝ𝑚 . The vector 𝑤(𝑔) at time t is state 

of system and state at time 𝑡0 < 𝑡 and the input M 

over time interval is [𝑡0, 𝑡]. The output O(g) is 

defined as system's state at time t. The system's 

input-state-output is expressed by Eq. (7). In 
comparison with Eq. (7), representation of a 

discrete-time system as a differential equation is  

 

𝑀(𝑔 + 1) = 𝜑[𝑤(𝑔), 𝑀(𝑔)] 
𝑂(𝑔) = 𝜇[𝑤(𝑔)]                                                   (8) 

 

Where M (.), w (.), and O(.) are discrete time 
sequences. Assuming that the system in Eq. (8) is 

linear and time-invariant, the system's behavior 

can be expressed as 
 

𝑤(𝑔 + 1) = 𝐴𝑤(𝑔) + 𝐵𝑈(𝑔)   
𝑂(𝑔) = 𝐶𝑤(𝑔)                                                        (9) 

 
Where A, B and C are (𝑛 × 𝑛), (𝑛 × 𝑃), (𝑚 × 𝑛) 

matrices respectively. According to the theory of 

LTI systems, where the terms Controllability, 
stability, and observability of such a system are 

defined as A, B, and C. 
 

2.2. Identification and control 
The problem of unknown system identification is 

when the functions A, B, and C in Eq. (9) are 

unknown from Eq. (8). From the Fig.1. (a), is 
given as the block diagram representation of 

system identification. Discrete time plant is 

presented as M(g) and O(g) respectively, where 
the input M(g) is a function of time that is 
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uniformly constrained. It is assumed that the 

nonlinear system is stable, with a known 

parameterization. If a system's model can be 

expressed by an operator P, then the model's 
input and output spaces will be U and O, 

respectively. The objective is to categorize the 

class p(u(k)) to which P belongs. U(k) is provided 

to the nonlinear model P, the obtained output 

from the model is P(u(k)).  

 

 
Fig. 1. (a) Block diagram representation of system Identification process. 

 

Now the same input is provided to the proposed 

model 𝑃̂(𝐾),the obtained output is 𝑃̂(𝑈(𝐾)).The 

identification problem is to determine 

 

‖𝑂 − 𝑂̂‖ = ‖𝑃(𝑀(𝑔)) − 𝑃(𝑀(𝑔))̂ ‖ < 𝜖,    (10)  

 

Where 𝜖 is a desirable small number greater than 
0 and is the norm on the output space based on 

the Eq. (10),  𝑃̂𝑀(𝑔) = 𝑂 ̂ and 𝑃𝑀(𝑔) = 𝑂 

represent the output of the define model and the 
plant respectively. The difference between the 

output of the plant and the estimated model 

created by 𝑃̂𝑀(𝑔) is the error, 𝑒(𝑔) = 𝑂 − 𝑂̂. 

 
Fig. 1. (b) Block diagram representation of model reference adaptive control. 

 

Control theory is the study and resolution of 

complex, nonlinear systems in which one or more 

variables are maintained within predetermined 
parameters. From Eq. (8), if the functions 

𝜑 𝑎𝑛𝑑 𝜇 are known, the control challenge is to 

develop a controller that provides the appropriate 

control input M(g) based on all the available 
information at that moment, g. There are a lot of 

reconciling the controllers of linear systems are 

reported. Even if the functions A, B and C are 

known and the functions 𝜑 𝑎𝑛𝑑 𝜇  are specified 

from Eq. (9), in case of nonlinear system. That 

motivates   the paper to establish a controller for 

unknown nonlinear system. Certain model 
reference adaptive control (MRAC) system. From 

Fig.1. (b), Block diagram depiction of model 

reference adaptive control may be observed, that 

presents a nonlinear plant P with the input-output 
{𝑀(𝑔), 𝑂𝑃(𝑔)}. The input-output pair of a stable 

reference model Z defines it. {𝑟(𝑔), 𝑂𝑍(𝑔)} are 

bounded functions indicated by 𝑟: 𝑁 → ℝ . The 

plant’s output is indicated by output 𝑂𝑍(𝑘). The 

control input M(g) is defined for every k, 𝑘 ≥ 𝑘0 

so that, 
 

𝑙𝑖𝑚
𝑘→∞

|𝑂𝑍(𝑔) − 𝑂𝑃(𝑔)|  

≤ 𝜀                                                                           (11) 

ε ≥ 0. 
 
The main goal of the control is to figure out the 

structure of the controller and change in its 

parameters to make the difference between actual 
and estimated outputs, as small as possible. In 
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this paper, nonlinear difference equations are 

used to represent two discrete-time models. 
Model-1: 

𝑂𝑔(𝑔 + 1) = ∑ 𝛼𝑖

𝑛−1

𝑖=0

𝑂𝑔(𝑔 − 𝑖) 

+[𝑀(𝑔), 𝑀(𝑔 − 1), … , 𝑀(𝑔 − 𝑚 + 1)]         (12) 

 
Model-2: 

𝑂𝑔(𝑔 + 1)

= 𝑓[𝑂𝑔(𝑔), 𝑂𝑔(𝑔 − 1), … , 𝑂𝑔(𝑔 − 𝑛 + 1)]

+ ∑ 𝛽𝑖

𝑚−1

𝑖=0

𝑀(𝑔

− 𝑖)                                                                           (13) 
 

were, [𝑀(𝑔), 𝑂𝑔 (𝑔)] denotes the input out pair 

of the SISO plant at time g and m ≤ n.

 

 
Fig. 2. (a) Block diagram representation of SISO plant model-1. 

 

From Fig. 2. (a) and (b), the block diagram 
representations of SISO plant model-1 and Model 

-2 are depicted respectively. Here, the plant’s 

output at time g+1, which on past values 

𝑂𝑔(𝑔 − 𝑖)(𝑖 = 0,1, … . , 𝑛 − 1)  as well, past m 

values of the input M(g-j) (j=0, 1… m-1). In 

model-1, the dependency on past values 𝑂𝑔(𝑔 −

𝑖)  acts as linear in the model. Similarly, the 

dependency on the past values of the input M(g-j) 

acts as linear in the model. The model -2 is 
perfectly suited for control. 

 

 
Fig. 2. (b) Block diagram representation of SISO plant model-2. 

 

where  𝑘: 𝑀 × 𝑀 ⟶ 𝑅  . Example of a vastly 
used Mercer’s kernel is Gaussian kernel. 
 

3. Methodology  
The primary objective of identification is to 

decrease the difference between the real and 

predicted models by updating the weights of the 

proposed network. Instead of simply expressing 
the identification problem in terms of weight (w), 

the authors are showing their interest in using 

kernel-based approaches. In this section, two 

Mercer’s kernel’s functions are presented with 
formulation. Using a kernel function, the input 

may be mapped into a space of high dimensions. 

The adaptive filtering technique KLMS is an 
online non-linear filtering approach, that may be 

considered of as a feature space application of 

(LMS) algorithm. The input data 𝑀(𝑔) ∈ 𝑀  is 

considered as input at time instant k, and 𝑑𝑛 ∈ 𝑅 
is represented as the desired response. The 

principle of the algorithm starts with mapping the 

input data 𝑀(𝑔) into a high dimensional feature 

  
    

       

   

   

  +   ( )

  + ( )

  + ( )

   
     

     

       

     

     

   

   

    

  

      

       

   

   

  +   ( )

  + ( )

  + ( )

   
     

     

       

     

     

   

   

    

  

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ie
pr

.iu
st

.a
c.

ir
 o

n 
20

24
-1

2-
31

 ]
 

                             6 / 16

http://ijiepr.iust.ac.ir/article-1-1572-fa.html


7 Nonlinear System Parameterization and Control using Reduced Adaptive Kernel Algorithm 
 

International Journal of Industrial Engineering & Production Research, December 2022, Vol. 33, No. 4 

space by using a Mercer’s theorem [17,37]. 

Further, least mean square is used to formulate𝑑𝑛 

. A continuous, symmetric, and positive-definite 

function is what people call Mercer's kernel, 
 

3.1. Polynomial kernel  
Scholkopf and Smola in (2001) argue that the 
input-output map f (.) is defined by a kernel 

function, is a reproducing kernel Hilbert 

space(RKHS) 𝑘 = 𝑀𝑘 , 𝑀𝑗 . As the goal is stated 

as 𝑓,  the estimate of f can be obtained by 

calculating equation  

 

arg min𝑓∈𝑃 ∑ (𝑒𝑔 − 𝑀𝑔(𝑀𝑘))
2

𝑇

𝑡=1

+ 𝛼2‖𝑓‖𝑃,
2                                (14) 

 

Where 𝑒𝑔  is the error of the network and 

hyperparameter is represented as  𝛼 . The 
regularization term is given by the squared 

RKHS norm f. The balance between these two 

contributions can be changed by changing the 

hyperparameter, 𝛼 .𝑓can be represented as  
 

𝑓(𝑀𝑘) = ∑ 𝛽𝑡

𝑇

𝑡=1

 𝑘(𝑀𝑘 , 𝑀𝑗),                              (15) 

 

where 𝛽 = [𝛽1, 𝛽1 … . 𝛽𝑇]2   is equal to (k +
𝛼2𝐼𝑇)−1𝑂  , 𝑂 = [𝑂1 , 𝑂2 … . . 𝑂𝑇]2 denotes the 

output vector (output measurements), and Kernel 

matrix is known as K, as (k, j) is (𝑀𝑘 , 𝑀𝑗) . 

A kernel function permits an extension in terms 

of basic functions ϒ𝑞 given as  
 

𝑘(𝑀𝑘 , 𝑀𝑗)

= ∑ 𝜏𝑞 , ϒ𝑞  (𝑀𝑘), ϒ𝑞(𝑀𝑗)                                 (16)

𝑞

 

 

where 𝜏𝑞 is represented as positive scalar and a 

suitable kernel  𝐶𝑞  representation is  
 

𝑓(𝑀𝑘)

= ∑ 𝐶𝑞ϒ𝑞
𝑞

(𝑀𝑘),                                               (17) 

 

Additionally, 𝑖𝑓 ϒ𝑞 is linearly independent, then 

it is given as 

‖𝑓‖𝑃
2

= ∑
𝐶𝑞

2

𝜏𝑞
𝑞

                                                              (18 ) 

 

From the following Eq. (16), it is evident that 𝜏𝑞 

coefficients are connected to each ϒ𝑞  in 

calculating the current regularization term 

presented in Eq. (24). Small values of 𝜏𝑞 , in 

particular, result in a serious disadvantage of ϒ𝑞.l 

Hence, the polynomial kernel is presented as  

 

 𝑘𝑔(𝑀𝑘 , 𝑀𝑗) = (1 + 𝑀𝑘
𝑇𝑀𝑗)

𝑔
                           (19) 

 

Where g is an adjustable hyperparameter. The 
motivation of taking Polynomial kernel is taken 

from [36]. 
 

3.2. Procedure of gaussian kernel least 

mean square (k-LMS) algorithm 

The Gaussian function as kernel parameter is 

represented as, 

 

𝑔(𝑢, 𝑢′) = 𝑒
(−

‖𝑢,𝑢′‖
2

2𝜎2 )
                                          (20) 

 

where 𝜎 > 0  is represented as kernel width. If 

g(u,u') shows that an input space M may be 

transformed into a F feature as mapping 𝜑  
 

𝑔(𝑢, 𝑢′)𝜑(𝑀)𝑇𝜑(𝑀′)                                         (21) 
 

Therefore, φ  the kernel-induced mapping 

translates the input M(g) in to F as 𝜑M(g), with 

the filter weights ϒ  being updatable through 

gradient decent over cost function. This cost 
function represents the mean squared difference 

between the desired d and the expected response 

𝑂̂(𝑔). As a result, a new pair of samples is treated 

as { 𝜑𝑀(𝑔), 𝑑𝑛}, ϒ𝑛.The LMS technique may be 
used to estimate the weight vector in. F. 

 

ϒ0 = 0. 

𝑒𝑛 = 𝑑𝑛 − ϒ𝑛−1
𝑇 𝜑𝑀𝑛 

ϒ𝑛 = ϒ𝑛−1 + 𝜂𝑒𝑛𝜑𝑀𝑛 

 

where, 𝜂 is presented as learning rate for gradient 

update. Then, 
 

ϒ𝑛 = ∑ 𝜂𝑒𝑖𝜑(𝑀𝑖)                                             (22)

𝑛

𝑖=1

 

 

And 
 

𝑂̂(𝑔) + 1 = ϒ𝑛
𝑇𝜑(𝑀𝑛+1)

= ∑ 𝜂𝑒𝑖𝑘(𝑀𝑖, 𝑀𝑛+1)

𝑛

𝑖=1

                                    (23) 

KLMS has been established as a self -regularized 

algorithm. 
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Fig. 3. Block diagram representation of kernel identification process. 

 

The block diagram representation of kernel 
identification process is depicted in Fig. 3 where 

M(g) is the input vector, 𝑔1(. ),….𝑔∞(. ) are the 

kernel vectors, ϒ is the proposed kernel, O(k) is 
the output of the model, e(n) is the error of the 

network. In the above dissection, the operation of 

the kernel identification process is explained. 

Further, more investigation has been done on 
gaussian KLMs to make it more robust. 

Let us consider input and output pair as 𝑀𝑔(𝑔) 

and 𝑂𝑔(𝑔),where 𝑔 = 1,2, … … … 𝑁 and 𝑀𝑔(𝑔) is 

considered to be 𝑔  dimensional of the input 

space. The goal is to learn a nonlinear input-
output mapping as a continuous function. 

 

𝑂𝑔 = 𝑓(𝑀𝑔),      𝑀𝑔𝜖𝑀 ⊆ 𝑅𝑁   , 𝑂𝑔𝜖𝑅             (24)  

 

The objective of a kernel adaptive filter is to 
approximate the mapping f (.) based on the input 

data. 
 

3.3. Use of reduced gaussian kernel 

Let ϒ = {((𝑀𝑔 , 𝑂𝑔)), 𝑔 = 1,2, … … 𝑚} ∈
(𝑅𝑛 × γ)𝑚 that is taken a data set containing m 

samples, where  𝑀𝑔 ∈ 𝑅𝑛 , 𝑂𝑔 ∈ γ =

{−1, +1}, 𝑔 = 1 … … 𝑚.  Further step is to 

establish relation Rn to a kernel feature H. H = 

(Hilbert space). 
 

𝑅^𝑛 ⇢ 𝐻 

 

∅: 𝑀𝑔 = (∅(𝑀𝑔)) 

 

The mapping ∅  chosen aims to turn nonlinear 
relations into linear ones. It can be represented as   

 

ϒ = {(𝑀𝑔)), 𝑔 = 1,2, … … 𝑚}

∈ (H × γ)𝑚                                                            (25) 

 

Due to the fact that the dimensionality of H is far 

bigger than that of Rn and is even finite, direct 

analysis in H using fundamental techniques will 

be extremely difficult and expensive. Instead of 
using fundamental techniques, a kernel-trick 

method is used which calculates the inner 

product, H is computed in 𝑅𝑛   with the kernel 
function as presented in [37, 38. 39]. The 

formulation is given as  

 

𝑘(. ): < (∅(𝑀𝑔)), (∅(𝑀𝑗))   

≥ 𝑘𝑔(𝑀𝑘 , 𝑀𝑗)                                                       (26) 

 
where 𝑀𝑘 , 𝑀𝑗are the two vectors in 𝑅𝑛 . Without 

mapping ∅  the inner can compute sometime 

directly consequence of the input characteristics. 

In the case were  𝑀𝑘 , 𝑀𝑗 ∈ 𝑅𝑛 , for σ > 0, 

Gaussian kernel method is explained in [37]and 

presented as  
 

𝑘(𝑀𝑘 , 𝑀𝑗) = 𝑒
−

‖𝑀𝑘,𝑀𝑗‖
2

2𝜎2   
                                    (27) 

 

Further to increase the performance and decrease 

the computational complexity of the kernel 

functions, more investigation has been done. 
According to [35], the computational complexity 

is reduced for Gaussian kernel function and it is 

used as 
 

𝑂𝑔(𝑔) = 𝛿(𝑔 − 1)𝑇∅(𝑀𝑔) 

= ∑ 𝛿𝑃
𝑇(𝑔

𝑃

𝑃=0

− 1)∅𝑃(𝑀𝑔)                                                         (28) 
 

4. Result and Discussion 
The simulation outcomes of nonlinear plant 

identification using the previously described 

SISO models. Two benchmark nonlinear system 
examples are presented in this section to verify 

the supremacy of the proposed model. Each case 

has been chosen to highlight a certain issue. To 
identify the given plant, all samples are used a 

series-parallel model, and Kernel least mean 

 
    

H 1(. )

H2(. )

H (. )
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square was used to update the weights. In this 

case, the input is found to appear linearly in the 

differential equation characterizing the plant. The 

SISO plant model was adapted from [40]. All the 
simulation results have been achieved using 

MATLAB 2021 (a) platform. The parameters 

evolution the performance is done through MSE 
and RMSE. The parameters are calculated as : 

 

𝑀𝑆𝐸 =
1

𝑁
∑|𝑇𝑖 − 𝑃𝑖|2

𝑁

𝑖=1

                                      (29) 

 

MSE calculation in dB 

 

10 ∗ 𝑙𝑜𝑔10(𝑚𝑒𝑎𝑛(𝑀𝑆𝐸))                                  (30) 

 

𝑀𝑆𝐸 = √∑(𝑇𝑖 − 𝑝𝑖)2   

𝑁

𝑖=1

                                    (31) 

 

Example-1 
The nonlinear plant's output is given by the 

difference equation [40]. 

 

𝑂𝑔(𝑔 + 1) = 0.3𝑂𝑔(𝑔) + 0.6𝑂𝑔(𝑔 − 1)

+ 𝑓[𝑀(𝑔)]                               (32) 
 

The unknown function is   

 

𝑓(𝑀) = 0.6 sin(𝜋𝑀) + 0.3 sin(3𝜋𝑀) 

+0.1 sin(5𝜋𝑀)                                                     (33) 

 

A series parallel model governed in form of 
difference equation was used 

 

𝑂𝑔(𝑔 + 1)

= 0.3𝑂𝑔(𝑔) + 0.6𝑂𝑔(𝑔 − 1)

+ 𝑄[𝑀(𝑔)]                                                            (34) 

 

Q[M(g)] represents the proposed model. The 

identification operation was continued using an 
input consisting of a combination of two 

sinusoidal signals denoted as 

 

𝑀(𝑔) = sin (
2𝜋𝑘

250
) + sin (

2𝜋𝑘

25
) , for k

= 500                                        (35)

 

Fig. 4. (a) Output of the actual nonlinear system. 
 

The Fig. 4. (a) represents the actual output of 

nonlinear model given in example-1. The number 
of samples taken is 500. The output of the model 

is 𝑂𝑔(𝑔 + 1)  and input M(g). Initially, the 

process was done using Gaussian and polynomial 

kernel functions. From the Fig. 4. (b), the actual 

vs estimated plot by polynomial kernel is 
detected. The tracking output can be seen 

between the actual and reference models. A 

feedback controller is used to keep the nonlinear 

‘plant in check’ during this process; however, the 

controller is not satisfactory. Further, the weights 
of the controller are updated using suitable 

learning algorithms like the LMS method to 

eliminate the harmonics and to provide good 
performance. The weight initially was taken 

randomly. The program executes until the 

parameter of the proposed model is estimated, 
once the parameter of the model is known, then 

the model can be controlled. 
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Fig. 4. (b) Actual vs Predicted plot showing output of the plant and Identification model for 

example-1. The solid line shows the output plot of polynomial Kernel function and the 

square line shows the actual output of the nonlinear system. 
 

The performance of the Gaussian and polynomial 
kernel function is analyzed during the process. 

The complexity of the model increases during the 

process. Further from the analysis, in order to 

make the model more robust and with less 
computational complexity, a reduced method is 

applied to the Gaussian Kernel functions. 

 

 

Fig. 4. (c) Actual vs Predicted plot comparing the output of the plant and Identification 

models example-1. The star line shows the performance of the actual system. The solid line 

shows the output plot of Reduced Gaussian Kernel function and the circle line shows the 

performance of polynomial Kernel function. 
 

In Fig. 4. (c), the actual model output versus the 

predicted model’s output can be seen. From the 
figure, the Reduced Gaussian kernel’s output 

tracks closely as compared to polynomial 

kernel.

 

 

Fig. 4. (d) The learning curve shows the representation of MSE vs Number of samples 

example-1. 
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The learning curve between the MSE and the 

number of samples of the proposed model is 

presented in Fig. 4. (d). From the curve, it is seen 

that the performance of the Reduce Gaussian 
Kernel is better than Polynomial kernel. 
 

Example-2 
The second order difference equation describes 
the plant to be   identified [40] 

 

𝑂𝑔(𝑔 + 1) = 𝑓[𝑂𝑔(𝑔), 𝑂𝑔(𝑔 − 21)]

+ 𝑀(𝑔)                                     (36) 

 
Were  

            

𝑓[𝑂𝐾(𝐾), 𝑂𝐾(𝐾 − 1)]

=
𝑂𝑔(𝑔)𝑂𝑔(𝑔 − 1)[𝑂𝑔(𝑔) + 2.5]

1 + 𝑂𝑔
2 + 𝑂𝑔

2(𝑔 − 1)
                     (37) 

 

This is equivalent to model-2. Using input-output 

data and an equation, a series parallel identifier is 
utilized to determine the plant's identity. 

 

𝑂𝑔(𝑔 + 1) = 𝑄[𝑂𝑔(𝑔), 𝑂𝑔(𝑔 − 1)]

+  𝑀(𝑔)                                   (38) 

 

Where, 𝑄[𝑂𝑔(𝑔), 𝑂𝑔(𝑔 − 1)] is the proposed 

plant. 

 
 In example 2, the presented plant has 200 

numbers of samples. Output to the plant is 

𝑂𝑔(𝑔 + 1) . In Fig. 5 (a), the output of the plant 

is depicted. The Fig. 5. (b) shows the Actual vs 

Predicted plot (polynomial kernel) output and 

Identification model. 

 

 

Fig. 5. (a) Output of the actual nonlinear system. 
 

 

Fig. 5. (b) Actual vs Predicted plot showing output of the plant and Identification model for 

Example 2. The solid line shows the output plot of polynomial Kernel function and the 

diamond line shows the actual output of the nonlinear system. 
 

The Fig. 5. (c) shows the output plot of the actual plant and proposed model. From the plot, the Reduced 
Gaussian Kernel function tracks closely to the output as compare to the polynomial kernel function. 
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Fig. 5. (c) Actual vs Predicted plot comparing the output of the plant and Identification 

models example-2. The circle line shows the performance of the actual system. The solid line 

shows the output plot of Reduced Gaussian Kernel function and the cross line shows the 

performance of polynomial Kernel function. 
 

 

Fig. 5. (d) The learning curve shows the representation of MSE vs Number of Samples 

example-2. 
 

The Fig. 5. (d) shows the performance curve between MSE and the number of samples of the proposed 
model. 
 

Tab. 2. Performance of the proposed model. 
Exp- 1 Kernel Methods MSE in (dB) RMSE MAE Timing in (sec) 

Polynomial -27.769 0.409 0.166 0.030951 

Reduced Gaussian -38.256 0.251 0.125 0.011030 

Exp- 2 Polynomial -40.9731 0.0564 0.2704 0.02456 

Reduced Gaussian -54.622 0.0362 0.235 0.01062 
 

From the Table 2, the performance of the models is 
analysed. The polynomial kernel function in 

example 1 archives -27.769 dB of MSE, 0.409 

RMSE and 0.166 MAE. Were the Reduced 
Gaussian kernel function archives -38.256 of MSE 

,0.251 RMSE and 0.125 MAE. Similarly, in 

example 2, the polynomial kernel function 

achieves -40.9731 of MSE ,0.0564 RMSE and 
0.2704 MAE.  Were the Reduced Gaussian kernel 

function archives -54.622 of MSE ,0.0362 RMSE 

and 0.235 MAE. Similarly, the timing of the 

models’ cab be compared as, the polynomial kernel 
for example 1 is 0.030951 sec, for Reduced 

Gaussian kernel function is 0.011030. In example 2 

the polynomial kernel function takes 0.02456 sec 
to complete the process and Reduced Gaussian 

kernel function takes 0.01062 sec to execute the 

process. From the above analysis the performance 

of the Reduced Gaussian kernel function is better 
in minimising the error with less computational 

time as compare to polynomial kernel. 
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Tab. 3. Performance models sample wise (MSE in dB) 

No of 

examples 

Kernel 

Methods 

50 Samples 100 Samples 150 Samples 200 Samples 500 Samples 

Example1 Polynomial -20.3876 -24.00 -25.12 -26.33 -27.769 

Gaussian -22.8722 -27.622 -30.7545 -33.743 -38.256 

Example2 Polynomial -30.5815 -33.33 -36.699 -40.9731 - 

Gaussian -39.0763 -46.09 -50.122 -54.622 - 
 

The table 3 presents the performance of the 

models, minimization of MSE with respective the 
number of samples. In example 1 polynomial 

kernel function archives -27.769 dB MSE of 500 

samples. The study is continued for every 50 

samples to verify the status of the MSE. At 50 
samples the MSE is -20.3876 dB, at 100 samples 

the MSE, at 150 samples MSE is -25.12 dB, at 

200 samples the MAE is -26.33. Similar at 500 
samples the MSE is -27.769. In example 2, the 

polynomial kernel function achieves -30.5815 dB 

at 50 samples, at 100 samples -33.33 dB, at 150 
samples -36.699, at 200 samples –40.9731. In 

example 1 the Reduced Gaussian kernel function 

archives -22.8722 at 50 samples, at 100 samples -

27.622, at 150 samples -30.7545 dB, at 200 
samples -40.973 dB. 

Similarly, in example 2 at 50 samples -39.0763 

dB, at 100 samples -46.09 dB, at 150 samples -
50.122 dB at 200 sample -54.622 dB. From the 

above discussion it is cleared that by applying 

reduced method to the Gaussian kernel function 
the overall performance of the model is increased 

and further it can be used for identification and 

control of models in industrial application. 
 

5. Conclusion 
Identifying complex nonlinear plants is a major 

issue in today's control systems. From the 

literature it is found that the simplicity is poor in 
the existing algorithms. The system needs to 

estimate the parameters accurately. 

Simultaneously, control can be performed with 
stability. Hence it is required to design new 

methodology. The model is considered as 

adaptive SISO model. Initially SISO model is 

chosen because of simplicity and industrial 
control application. To adjust the weights of the 

model kernel based LMS algorithm is chosen, so 

that the job of estimation and control can be 
performed. After verification of different kernels, 

Gaussian kernel is set as reduced kernel for less 

computational complexity. It is explained in 
section 3. A Reduced method is applied to a 

Gaussian kernel function in this work. To 

validate the superiority of the model, two 

nonlinear plants modelling SISO plants are used. 
Since the kernel parameter has no effect on 

complexity, it is best to establish the ideal value 

for the kernel parameter prior to applying the 

algorithm, according to the complexity analysis 
described previously. From the above analysis 

the model has good prediction and control 

accuracy. The computational complexity also 

reduced. Comparison is done between the two 
kernels methods. The performance of the models 

is verified in every 50 samples and presented in 

the table. In example1 the Reduced Gaussian 
kernel function achieve -38.256 dB, and in 

example 2, -54.622 dB with time 0.011030sec 

and 0.01062 sec respectively. From a deep 
analysis it is found that the performance of 

Gaussian kernel is increased by implementing 

Reduced method. In recent time certain works, 

[41,42,43], are considered the VHDL 
implementation of earlier methods. The proposed 

prospective algorithm may be implemented and is 

kept for future work. The findings of the work 
are: 

1. The adaptive filtering technique (K-LMS) is 

in this case, a non-linear filtering approach, 
that may be considered of as a feature space 

application of (LMS) algorithm. This can 

perfectly estimate the weight vector 

(parameters) of the nonlinear model.  
2. In a practical environment, the complexity of 

the proposed method depends mostly on the 

reduced Gaussian kernel. This makes it 
possible to obtained good amount of tracking 

performance. 

3. From the result analysis part, the supremacy 

of the model is verified and this model is 
useful for industrial control application.  

The proposed method is suitable for industrial 

application, automated system, smart city 
application, estimation of aerodynamics, stability 

and control of flight vehicle, biomedical signal 

identification etc.  
In future, complex and dynamic nonlinear system 

examples may be considered to verify proposed 

method. Also, the deep machine learning 

approach may be applied for practical 
application. Simultaneously, the implementation 

of these algorithms can be verified for different 

applications. 
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