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ABSTRACT 
The subjects of reliability acceptance sampling plans and failure-censored life tests have usually been 
investigated from the viewpoint of statistical properties; indeed, few researchers have shed light on the 
economic aspects of these issues. In this research, a constrained mathematical model is developed to 
optimally design a reliability sampling plan under failure censoring life testing. Minimizing the expected 
total cost (ETC) involved in the sampling and life testing is considered as the objective function of the 
model. Ensuring the producer’s and the consumer’s risks is taken into consideration as the constraint of the 
model. To minimize the ETC, the model optimally determines three decision variables including the total 
number of the items put to the life test, the number of the failed items to terminate the test, and a criterion to 
make decisions about the acceptance or rejection of the lot. Examples are provided and analyses are 
conducted to gain some insight regarding the model performance.   
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Notation 
 Expected total cost of the experiment ܥܶܧ
ETT Expected time to terminate the test 
 ଵ Operation cost of the test per time unitܥ
 ଶ The cost of each item placed on the testܥ
 ଷ The cost of each failed item during the testܥ
n Total number of the items put to the test (decision variable of the model) 
r Number of the failed items during the test (decision variable of the model) 
k Criterion to evaluate the quality of the lot (decision variable of the model) 
 Producer’s risk ߙ
 Consumer’s risk ߚ
  Failure rate of the exponential distribution ߣ
 

1. Introduction1 
Acceptance sampling plans are classified under 
the traditional field of statistical quality control 
[1]. In a reliability acceptance sampling plan 
(RASP), the main parameter of quality is lifetime. 
The acquisition of data on lifetime, which is 
required in RASPs, usually involves conducting 
certain types of life testing. Different types of life 
testing schemes have been proposed including but 
not limited to failure censoring, time censoring, 
progressive censoring and hybrid censoring [2]. 
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From another point of view, life testing schemes 
can be classified into right and left censoring.  
Failure censoring schemes, which are also known 
as right censoring schemes type II, have been 
broadly employed by quality/reliability engineers 
and statisticians to evaluate lifetime. In the case 
of a failure censoring life test (FCLT), the test is 
terminated after a predetermined number of 
failures are observed. In particular, n items are 
randomly selected and put to the test 
simultaneously. The failure time of each item is 
recorded, and the test is terminated after ݎ)ݎ ≤ ݊) 
failures. Hence, there are two factors to impact 
the cost of the FCLT including the total number 
of the tested items (n) and the number of the 
failed items required to terminate the test (r).  In 
an RASP, according to the results of the FCLT, 
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an appropriate statistical operation is done, the 
obtained numerical data are compared to a 
predetermined criterion, and it is finally decided 
whether to accept the lot or reject it. Hence, in an 
RASP with lifetime tests, there exit three factors 
affecting the total cost of the procedure including 
the criterion applied to make decisions on the lot, 
the value of n, and the value of r.  
The main costs incurred in the proposed RASP 
under FCLT are as follows: 
a) Operation costs: It has a direct relationship 
with the length of the test, i.e., as the test duration 
increases, the cost increases too. The salary of the 
operators, the depreciation cost of the equipment 
and so on can be considered as the operation 
costs [3].  
b) Sample cost: If ݊  items are selected to be 
included in the test and the cost of each item is 
  .ଶ݊ܥ ଶ, then the total sample cost isܥ
c) The cost of failed items: If the cost of each 
failed item is ܥଷ and the test is terminated after r 
failures are observed, then the total cost of the 
failed items is ܥଷݎ.  
As discussed in the next sections, an increase in 
the number of the items put to the test decreases 
the expected time to terminate the test and, 
consequently, the operation costs. On the other 
hand, an increase of n makes the sample cost rise 
because it directly relates to the number of the 
tested items. The number of failed items and the 
criterion for the acceptance or rejection of the lot 
are mostly determined by the producer’s and 
consumer’s risks, the acceptable quality level 
(AQL) and the limiting quality level (LQL) of the 
plan.  Accordingly, a trade-off is necessary 
between the operation costs and the sample costs.  
In this paper, to optimally design an RASP under 
FCLT, a mathematical model is developed. The 
objective function of the model optimally 
determines the number of the items put to the test 
(n), the required number of failed items (r), and 
the criterion to evaluate the lot (k) in order to 
minimize the expected total cost (ETC) of the 
test. The producer’s and consumer’s risks are 
taken into consideration as the constraints of the 
model.  
The rest of the paper is presented in several 
sections. In Section 2, a literature review is 
provided regarding the subject of the paper. In 
Section 3, the problem is stated, and the model is 
presented. Section 4 is dedicated to some 
numerical studies and analyses. Section 5 
provides comparative analyses. Finally, the 
conclusion of the study and recommendations for 
future research end up the paper in Section 6.   
 

2. Literature Review 
There exists a huge body of literature which 
discusses life testing and RASPs from statistical 
points of view.  For example, in references [4], 
[5], [6] and [7] , maximum likelihood estimators 
are provided for some parameters associated with 
life testing. In some other studies, RASPs are 
designed to minimize the expected number of 
failed items. For example, in reference [8], 
considering the lifetime performance index, a 
mathematical model is provided to minimize the 
number of the items failed in a failure censoring 
life test. Reference [9] provides another 
mathematical model to design an RASP under 
failure censoring while minimizing the number of 
failed items is considered as the objective 
function. In some studies such as [10] and [11], 
RASPs and life tests have been designed such 
that the producer’s and consumer’s risks are 
considered as constraints. In Reference [12], 
RASPs under failure censoring are investigated 
from the perspective of conditional value-at-risk. 
To this end, a risk-embedded model is developed, 
and lifetime is assumed to follow Weibull 
distribution. Minimizing the average sample 
number or the average failure number is another 
prevalent criterion investigated by some 
researchers. For example, reference [2] provides 
three mathematical models to minimize the 
average failure number under failure censoring. 
The producer’s and consumer’s risks are taken 
into consideration too. In reference [13], based on 
the process capability index, a mathematical 
model is developed to minimize the average 
sample number. Considering quick switching 
sampling systems, two mathematical models are 
developed in reference [14]. The models 
minimize the average sample number, and the 
risks facing the producer and the consumer are 
included as the constraints of the model.  
To minimize the average number of failures 
under a quick switching reliability sampling plan, 
a mathematical model is proposed in [15]. The 
authors derive equations to compute the OC 
curve of the sampling plans. It is assumed that the 
lifetime of items is based on exponential 
distribution, so a lifetime performance index is 
employed. An accelerated life test has been 
designed under type-II censoring so as to extend 
the exponential distribution [16].  Designing 
multiple accelerated life tests is also discussed in 
[17] for log-normal distributed lifetime. In this 
regard, a real case of light-emitting device (LED) 
is presented to show the application of the plans. 
In another study [18], considering inspection 
errors, several economic single-sampling plans 
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are proposed under different probability 
distributions. Using the Bayesian approach, three 
mathematical models are developed, and 
inspection errors are taken into account.  
RASPs and life testing schemes have widely been 
designed to optimize such criteria as average 
sample number and average failure number or to 
meet the producer’s and consumer’s risks, but 
few researchers have shed light on the costs of 
conducting RASPs or life testing. In reference 
[19], using the expected warranty cost, a cost 
function approach is developed for products with 
Weibull distribution. The proposed RASP is 
studied under type-I generalized hybrid censoring 
scheme. Reference [3] introduces a model to 
minimize the total cost of an RASP under 
progressive type-I interval censoring. The model 
determines the sample size, inspection interval 
and number of inspections so that the expected 
total cost can be minimized. Reference [20] 
proposes a design for type-II interval censoring 
life test and seeks to minimize the asymptotic 
maximum likelihood estimation and the total 
costs of the experiments. The components of the 
cost include the set-up cost, inspection process 
cost and the cost of failed item during the 
experiment. Finding the best inspection interval is 
the only decision variable of the model. 
Reference [21] investigates the inspection plans 
for interval censored data as well as a constraint 
regarding the budget of the experiment.  
In reference [22], a bi-level programming  model 
is developed to optimize the costs of time 
censoring life testing while the lifetime follows 
Burr type XII. Reference [7] discussed the 
optimal design of an accelerated life test. The 
data of the lifetime are obtained using type-II 
censoring scheme, and Weibull distribution is 
applied for those data. An optimal acceptance 
sampling model is also proposed based on linear 
and Arrhenius stress life relations. Using the 
Bayesian approach, a modified chain sampling 
plan is proposed by [23]. The data on lifetime are 
dealt with through Weibull distribution, and 
equations are derived to obtain the OC curve.  
In the present study, a mathematical model is 
developed to optimally design an RASP under 
FCLT. The objective function of the model 
optimally determines the number of the items put 
to the test (n), the required number of the failed 
items (r), and the criterion to evaluate the lot (k) 
in order to minimize the expected total cost 
(ETC) of the test. The model also addresses the 
producer’s and consumer’s risks by considering 
them as constraints. Thus, the main novelty of the 
presented model is optimizing the expected total 

costs of RASPs under failure censoring tests 
while the requirements for handling the 
producer’s and consumer’s risks are taken into 
consideration as the constraints of the model. To 
the best of the authors’ knowledge, no study has 
provided an explicit mathematical model so that 
the expected total cost of RASPs can be 
optimized under the assumption of the risks 
facing consumers and producers.   
 

3. Problem Statement, Model 
Development and Operating 

Characteristic Curve 
Let’s assume T is a random variable denoting the 
lifetime of an item. In this study, it is assumed 
that T follows an exponential distribution with the 
following probability density function (p.d.f): 
 
(ߣ;ݐ)݂ = ఒ௧ି݁ߣ  (1) 
 
In this equation, ߣ is the unknown parameter of 
the distribution, which is inversely related to the 
mean of the lifetime, i.e., ߤ = ଵ

ఒ
. It is also 

assumed that a batch or lot of these items is 
available; it is desirable to evaluate the quality of 
product, i.e., their lifetime.  In particular, it is of 
significance to implement the following 
hypothesis test:  
 

൜ ߣ:ܪ = ߣ
ߣ:ଵܪ = ଵߣ > ߣ

 

 

(2) 

Let’s denote the probability of type I and type II 
errors in the hypothesis test with ߙ  and ߚ 
respectively. These two parameters are defined in 
the context of reliability acceptance sampling 
plans. From the standpoint of the producer, a 
batch at the quality level of ߣ = ߣ  should be 
accepted with at least the probability of 1 − ߙ . 
Furthermore, the consumer’s desire is that a batch 
with ߣ =  ଵ should be accepted with at most theߣ
probability of ߚ. In the terminology of acceptance 
sampling plans, the values of ߣ  and ߣଵ  are 
usually referred to as AQL and LQL or the lot 
tolerance present defective (LTPD) respectively. 
Also, ߙ  and ߚ  are usually referred as the 
producer’s and consumer’s risks respectively.  
In order to assess the quality of the batch of 
items, a failure censoring life test is conducted. 
For this purpose, at first, n items are randomly 
selected from the lot and readily put to the test. 
The test continues until ݎ)ݎ ≤ ݊)  failures are 
observed. According to the common notations in 
the order statistics, let ݐ() denote the failure time 
of the ith item during the test. The failure time of 
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each item is recorded to form the order statistic 
,(ଵ)ݐ ,(ଶ)ݐ … , ()ݐ . As suggested by some 
researchers [8, 15, 24], the recorded failure times 
are used to define the following statistic: 
 

ܹ = ݐ()



ୀଵ

+ (݊ −  ()ݐ(ݎ
(3) 

 
where  ݐ() is the failure time of the last item in 
the test, and W is the value of the statistic. It has 
been proved that  2ܹߣ  follows a chi-square 
distribution with 2ݎ degrees of freedom, which is 
denoted as follows [8]: 
 
ଶଶ߯~ܹߣ2  (4) 
 
It has also been proved that 

ௐ
 is the maximum 

likelihood estimator (MLE) of [8] ߣ. Hence, the 
following rule is applied to make a decision 
regarding the lot:  
If  

ௐ
≤ ݇, the lot is accepted; otherwise, the lot is 

rejected. In this rule, k is a critical value 
determined by the model. Given the values of ݊ 
and ݎ , the expected time to terminate the test 
(ETT) is computed as follows: 
 

(݊,ݎ)ܶܶܧ =
1
ߣ


1
݊ − ݆

ିଵ

ୀ

 
(5) 

 
Also, given the values of ݊,  and ݇, the ETC of ݎ
the test can be computed as follows: 
 

,݊)ܥܶܧ ,ݎ ݇) =
ଵܥ
ߣ


1
݊ − ݆

ିଵ

ୀ

+ ଶܥ݊ +  ଷܥݎ
(6) 

 
According to Equation 5, ETT and, consequently, 
the first term of Equation 6 depends on ߣ, while 
the actual value of ߣ  is unknown. Different 
objective functions can be thus considered for the 
model. This study uses a similar approach 
proposed in [25] to evaluate the objective 
functions for three different values of ߣ including  
the values of ߣ at AQL, i.e.,  ߣ, the value of ߣ at 
LQL, i.e., ߣଵ , and the value of  ߣ at   0.5(ߣ +
 ଵ). As stated before, from the viewpoint of theߣ
producer, a lot with ߣ = ߣ  should be accepted 
with at least the probability of 1− ߙ . This 
statement yields the following constraint for the 
model: 
 

ߙ ≥ ܲ(
ݎ
ܹ

≥ ߣ	|݇ = (ߣ = ܲ(
ܹ
ݎ

≤
1
݇

ߣ| = (ߣ = 

ܲ(ܹ ≤
ݎ
݇

ߣ| = (ߣ = ܹߣ2)ܲ

≤
ݎߣ2
݇

ߣ| = (ߣ = ܲ(߯ଶଶ

≤
ݎߣ2
݇

) 
 

(7) 

On the other hand, from the viewpoint of the 
consumer, a lot at the quality level of ߣ =  ଵߣ
should be accepted with at most the probability of 
 This leads to another constraint for the model .ߚ
presented as follows: 
 

ߚ ≥ ܲ(
ݎ
ܹ

≤ ߣ	|݇ = (ଵߣ = ܲ(
ܹ
ݎ

≥
1
݇

ߣ| = (ଵߣ = 

ܲ(ܹ ≥
ݎ
݇

ߣ| = (ଵߣ = ܹߣ2)ܲ

≥
ݎߣ2
݇

ߣ| = (ଵߣ = ܲ(߯ଶଶ

≥
ݎଵߣ2
݇

) 

(8) 

 
Finally, the following mathematical model is 
presented to minimize ETC: 
 
,݊)ܥܶܧ	݁ݖ݅݉݅݊݅ܯ ,ݎ ݇)

=
ଵܥ
ߣ


1
݊ − ݆

ିଵ

ୀ

+ ଶܥ݊

+  ଷܥݎ

࢚	࢚ࢉࢋ࢈࢛ࡿ ∶ 			ܲ(߯ଶଶ ≤
ݎߣ2
݇

) ≤  ߙ

ܲ(߯ଶଶ ≥
ݎଵߣ2
݇

) ≤  ߚ
݊ ≥ ,ݎ ݇ > 0 
 

(9) 

The model optimally determines the values of 
݊, ݎ  and ݇  in order to minimize ETC. The 
constraints of the model guarantee the producer’s 
and consumer’s risks. As stated before, in the 
objective function, the true value of ߣ  is 
unknown. Thus, for the analyses in the next 
section, three cases are studied including  ߣ , ߣଵ 
and  0.5(ߣ +  .(ଵߣ
As in the following, this study proceeds to derive 
an equation to compute the operating 
characteristic (OC) curve of the proposed RASP. 
An OC curve shows the acceptance probability of 
a lot for different quality levels. Given that the 
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quality of a lot is  ߣ, the following equation can 
be derived to obtain the OC curve of the plan: 
 

(ߣ)ߨ = ܲ ቀ
ݎ
ܹ

≤ ݇ቁ = ܲ ൬
ܹ
ݎ
≥

1
݇
൰

= ܲ ቀܹ ≥
ݎ
݇
ቁ = 

ܲ ൬2ܹߣ ≥
ݎߣ2
݇
൰ = ܲ(߯ଶଶ ≥

ݎߣ2
݇

) 
 

(10) 

As Equation 10 implies, the probability of 
accepting a lot depends on ߣ, k and r and is not 
affected by n. 
 

4. Numerical Examples and Analyses 
In this section, numerical examples and 
sensitivity analyses are provided regarding the 
proposed model. The data of an example are 
presented in Table 1.  

 
Tab. 1. The data of the example 

 ଵߣ ߣ ߚ ߙ ଷܥ ଶܥ ଵܥ
10 150 1 0.01 0.05 0.001 0.002 

 
A grid search algorithm is applied to optimize the 
model. For the three alternatives of the objective 
function, which correspond to ߣ ଵߣ ,   and 

ߣ)0.5 + (ଵߣ , the result of the model 
optimization is provided in Table 2.  

 
Tab. 2. The result of optimizing the example 

Decision variables  
 
Value of ߣ  in the 
objective function 

 ETC ݇ ݊ ݎ

  36 70 0.0016 17682ߣ
 ଵ 36 57 0.0016 13504ߣ

ߣ)0.5 +  ଵ) 36 61 0.0016 15055ߣ
 
For the case in which the objective function is 
optimized with ߣ considered, the results indicate 
that, a sample with the size of 70 should be put to 
the test, and the test continues until 36 failed 
items are observed. Using the data of the 
experiment, the value of 

ௐ
 is computed and 

compared to ݇ = 0.0016 . The lot is accepted, 
which means the acceptance of  ܪ , if 

ௐ
<

0.006; otherwise it is rejected. The results of the 
example can be interpreted, and the objective 
function is optimized assuming ߣଵ  or 0.5(ߣ +
 ଵߣ ଵ). As the results of Table 2 show, the use ofߣ
or 0.5(ߣ + (ଵߣ  instead of ߣ  in the objective 
function of Equation 9 does not affect the values 
of ݎ and ݇, while this change impacts the values 
of ETC and ݊ . More precisely, optimizing the 
objective function for the larger values of ߣ leads 
to smaller ݊. Figure 1 shows the OC curve of this 
plan. According to the figure, for example, the 
probability of accepting a lot with ߣ = 0.0017 is 
0.336. As the OC curve suggests, with an 

increase in ߣ, i.e., deterioration of the quality, the 
acceptance probability of the lot decreases. 
Figure 2 shows the impact of the sample size (n) 
on the different components of the cost. As 
discussed before and according to this figure, an 
increase of n leads to a decrease in the operation 
costs, which, in turn, increases the sampling cost. 
Hence, with an increase of n from 40, the 
expected total cost first decreases and then 
increases. In this case, ETC minimizes at ݊ = 70. 
The figure also shows that, around the optimal 
value of n, the curve of ETC is relatively smooth. 
This means that the slight changes of n do not 
have a significant effect on ETC.  
In the rest of this section, some analyses are 
conducted to provide an insight concerning the 
performance of the model and the proposed 
RASP. It is worth noting that the forthcoming 
analyses assume ߣ  to optimize the objective 
function of Equation 9.  
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Fig. 1. Operating characteristic curve of the plan 

 

 
Fig. 2. Changes of the different components of costs involved in the RASP versus the sample 

size 
 
The impacts of  ߣ and  ߣଵ are illustrated in Table 
3. Generally, the change of these two parameters 
gives the insight that, as the difference between 
ߣ  and ߣଵ  becomes wider, the values of ݊,  and ݎ
ETC decrease. It implies that, the same level of 

producer’s and consumer’s risks can be 
guaranteed for the cases with a larger difference 
between ߣ  and  ߣଵ  and a smaller sample size. 
Also, due to the decrease of n and r, the value of 
ETC decreases too.  

 
Tab. 3. Analyses of the effects of ࣅ and ࣅ 

ࢻ = .; ࢼ	 = .; 	 = ;	 = ;	 =  
 ଵ n r k ETCߣ ߣ

0.001 0.002 70 36 0.0016 17682 
0.0025 49 21 0.0018 12891 
0.003 39 15 0.0021 10641 

0.002 0.003 126 100 0.0026 26815 
0.0035 76 53 0.0028 17354 
0.004 61 40 0.003 14445 

0.003 0.005 80 63 0.0041 17149 
0.006 50 35 0.0046 11472 

0

0.1
0.2
0.3

0.4
0.5
0.6

0.7
0.8
0.9

1

0.0007 0.0012 0.0017 0.0022

Pr
ob

ab
ili

ty
 o

f a
cc

ep
ta

nc
e

lambda

0

5

10

15

20

25

0

5000

10000

15000

20000

25000

30000

40 50 60 70 80 90 100 110 120

op
er

at
io

n 
co

st

sa
m

pl
in

g 
an

d 
to

ta
l c

os
ts

n

sampling cost expected total cost operation cost

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ie
pr

.iu
st

.a
c.

ir
 o

n 
20

25
-0

7-
16

 ]
 

                             6 / 11

https://ijiepr.iust.ac.ir/article-1-1225-fa.html


7 Developing a Constrained Mathematical Model to Optimize the Expected Total Costs of Life 
Testing 

 

International Journal of Industrial Engineering & Production Research, June 2021, Vol. 32, No. 2 

The effects of the type-I and type-II errors, i.e., 
the producer’s and consumer’s risks, are shown in 
Table 4. The main finding is that the increment of 
ߙ  or ߚ  values has a decreasing effect on the 
values of ݊, ݎ  and ܥܶܧ.	  This is in line with a 
basic concept of the sampling theory of statistics. 
According to it, in case the decision maker can 
endure more risks, a smaller sample size can be 
selected. For example, as the table shows, when 

ߙ = 0.01 and ߚ = 0.01, the sample size is 84 and 
the test terminates after the failure of 47 items. 
This leads to the minimum expected total cost of 
20771. According to one of the results of the 
experiment gained through Equation 3, if 
ௐ


= ௐ
ସ

< 0.0015, the lot is accepted; otherwise, 
it is rejected.  

 
Tab. 4. Analyses of the effects of the producer’s and consumer’s risks 

ࣅ = .;	ࣅ = .;	 = ;	 = ;	 =  
 n r k ETC ߚ ߙ

0.01 0.01 84 47 0.0015 20771 
0.05 70 36 0.0016 17682 
0.1 62 30 0.0016 15869 

0.05 0.01 66 33 0.0014 16789 
0.05 53 24 0.0015 13927 
0.1 46 19 0.0015 12171 

0.1 0.01 56 26 0.0013 14591 
0.05 44 18 0.0014 11801 
0.1 39 15 0.0015 10641 

  
Finally, the cost parameters ܥଵ,ܥଶ  and ܥଷ  are 
analyzed in Table 5. For the fixed values of ܥଶ 
and ܥଷ, the increment of the operating cost leads 
to an increase in the values of ETC and n.  This 
can be interpreted in due terms. According to 
Equation 5, as the number of the items put to the 
test (n) increases, the expected time to terminate 
the test decreases. Hence, for the larger values of 
the operation cost per time unit, the value of n 

increases to mitigate the impact of increasing ܥଵ.  
For the fixed values of ܥଵ and ܥଷ, an increase of 
 ଶ has a decreasing effect on ݊. Considering theܥ
impacts of ܥଵ and ܥଶ   briefly, as the ratio of భ

మ
 

rises, more items should be put to the test. From 
Table 5, it seems that the cost of the failed items, 
ଷܥ , does not have a significant effect on the 
decision variables.  

 
Tab. 5. Analyses of the effects of the cost parameters 

ࣅ = .;	ࣅ = .; ࢻ	 = .; ࢼ	 = . 
 ଷ n r k ETCܥ ଶܥ ଵܥ

5 100 1 
10 

64 
64 

36 
36 

0.0016 
0.0016 

10520 
10844 

150 1 
10 

57 
57 

36 
36 

0.0016 
0.0016 

13504 
13828 

200 1 
10 

52 
52 

36 
36 

0.0016 
0.0016 

16223 
16547 

10 100 1 
10 

80 
80 

36 
36 

0.0016 
0.0016 

13964 
14288 

150 1 
10 

70 
70 

36 
36 

0.0016 
0.0016 

17682 
18006 

200 1 
10 

64 
64 

36 
36 

0.0016 
0.0016 

21003 
21327 

15 100 1 
10 

93 
93 

36 
36 

0.0016 
0.0016 

16629 
16953 

150 1 
10 

80 
80 

36 
36 

0.0016 
0.0016 

20927 
21251 

200 1 
10 

72 
72 

36 
36 

0.0016 
0.0016 

24730 
25054 
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For the RASP under failure censoring, the 
average number of failures is optimized, and two 
real data sets are analyzed [8]. The first one 
belongs to the electrical insulating fluids, and the 
second concerns the endurance of deep-grove ball 
bearings. Unfortunately, since no data have been 
provided on the costs of these experiments, it is 
not possible to directly apply our model in these 
real data sets. Naturally, once the data are 
provided, the proposed model can be easily 
employed to optimize the parameters of the plans.   
 

5. Comparative Studies 
In many studies regarding RASPs, minimizing 
the average failure number (AFN) has been 
considered as an objective function, and the 
RASPs has been designed without considering 
the cost parameters. Herein, in order to perform a 
comparative study, another mathematical model 
is developed to optimally design RASPs under 
failure censoring and to minimize the value of 
AFN during the test as the objective function. The 
procedure of the failure censoring in this model is 
similar to the one proposed in Section 3. That is, 
n items are randomly selected and put to the test. 
Then, the test continues until observing r failures. 
Based on the data of the test, the proper statistics 
are computed according to Equation 3. If 

ௐ
≤ ݇, 

the lot is accepted; otherwise, the lot is rejected. 
In this case, k is a critical value determined by the 

model. Accordingly, the following optimization 
model is proposed: 
 
,ݎ)ܰܨܣ	݁ݖ݅݉݅݊݅ܯ ݇) =  ݎ	

࢚	࢚ࢉࢋ࢈࢛ࡿ ∶ 			ܲ(߯ଶଶ ≤
ݎߣ2
݇

) ≤  ߙ

ܲ(߯ଶଶ ≥
ݎଵߣ2
݇

) ≤  ߚ

݇ > 0, ݎ ∈ ܼା 
 

(11) 

As the model shows, the objective is to minimize 
the AFN, and the parameters of cost are not taken 
into consideration. Once the optimal values of r 
and k are obtained, the tester can specify the 
value of ݊ so as to have ݊ ≥  In other words, in .ݎ
this approach, the value of n is not specified 
exactly by the model; after the value of r is 
determined, any value of n which is larger than 
(or equal to) r is acceptable. To provide an 
insight, the results of the comparative studies are 
reported in Table 6. As the table shows, the 
model proposed in this paper not only optimizes 
the ETC of the test but also yields appropriate 
results for AFN. For example, according to the 
data in the first row of the table, the model 
delineated through Equation 9 specifies that 70 
items should be put to the test and the test can be 
terminated after 36 items fail. However, the 
model in Equation 11 does not specify an exact 
number for the sample size; it can be any number 
larger than 35.   

 
Tab. 6. Comparative studies 

Parameters The model of minimizing 
ECT (Equation 9) 

The model of minimizing AFN 
(Equation 11) 

n r k n r k 

ߙ = ߚ,0.01 = ߣ,0.05 = ଵߣ,0.001
= 0.002, ܿଵ
= 10, ܿଶ = 150, ܿଷ
= 1 

 
70 

 
36 

 
0.0016 

݊ > 35  
36 

 
0.0015 

ߙ = ߚ,0.01 = ߣ,0.01 = ଵߣ,0.001
= 0.002, ܿଵ
= 10, ܿଶ = 150, ܿଷ
= 1 

84 47 0.0015 ݊ > 46 47 0.0015 

ߙ = ߚ,0.01 = ߣ,0.05 = ଵߣ,0.001
= 0.003, ܿଵ
= 10, ܿଶ = 150, ܿଷ
= 1 

39 15 0.0021 ݊ > 15 16 0.002 

 
6. Conclusion 

Three factors affect the total costs of a reliability 
sampling plan under failure censoring. They 
include b) the total number of the items put to the 

test, b) the observed number of failed items to 
terminate the test, and c) the value of the criterion 
employed to decide about the 
acceptance/rejection of the lot. In this study, a 
mathematical model is developed to optimally 
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determine the values of these three factors. 
Minimizing the total expected cost of the 
experiment is considered as the objective 
function, and producer’s and consumer’s risks 
serve as the constraints of the model. An equation 
is also derived to compute the OC curve of the 
plan. Finally, numerical examples are provided 
and analyses are performed regarding the impact 
of the model parameters.   
Most RASPs involve the conduction of life 
testing schemes which are intrinsically 
destructive. Hence, it is worth investigating how 
to minimize the expected total costs of 
experiments. In some studies, life testing schemes 
and RASPs are designed to minimize the average 
failure number without considering the cost 
parameters. In this paper, however, both 
approaches are studied and compared. Designing 
RASPs according to the mathematical models 
proposed in this study insures minimizing the 
expected total costs of the test while the risks of 
producers and consumers are guaranteed too. 
According to the analyses, increasing n leads to a 
decrease in the operation costs, and this increases 
the sampling cost. So, when n increases, the 
expected total cost first decreases and then 
increases. Also, ETC is minimized around a 
proper value, which is, indeed, the optimal value 
of n . Another important aspect of the proposed 
model concerns the ETC curve; around the 
optimal value of n, the curve is relatively smooth, 
implying that the slight changes of n do not have 
a significant effect on ETC.  
The present study can be extended in several 
directions. For example, the mathematical model 
proposed here can also consider Weibull, gamma 
or log-normal distribution to deal with lifetime. 
Designing other sampling schemes, e.g., 
repetitive group sampling or sequential sampling, 
under failure censoring is another suggestion to 
optimize the expected total costs. Presenting 
mathematical models by considering multiple 
objective functions (e.g., minimizing the costs 
and the average number of failures) may also be 
of insight in future studies.  
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