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ABSTRACT 
Plants manufacturing large-sized high-volume products, such as automobiles and trucks, usually 
encounter Multi-manned Assembly Line Balancing Problems (MALBPs). In this paper, a cost-oriented 
version of MALBPs, namely CMALBP, is taken into account. These types of problems may arise in the 
final assembly lines of products in which the manufacturing process is pretty labor-intensive. Since 
CMALBP is NP-Hard, a heuristic approach based on a Tabu search algorithm is developed to solve 
the problem. The proposed algorithm uses two neighborhood generation mechanisms, namely swap 
and mutation, which effectively collaborate with each other to provide new feasible solutions. 
Moreover, two separate tabu lists (corresponding with the two mentioned generation mechanisms) are 
used to check whether or not moving to a new generated neighbor solution is forbidden. To examine 
the efficiency of the proposed algorithm, some experimental instances were collected from the 
literature and solved. The obtained results show the effectiveness of the proposed tabu search 
approach. 
 
KEYWORDS: Assembly line balancing; Multi-manned workstations; Tabu search; Cost-oriented 
Optimization. 
 
 

1. Introduction1 
Assembly Line Balancing Problem (ALBP) is the 
problem of assigning assembly tasks to a series of 
workstations, arranged along a conveyor belt or a 
similar transportation facility, with the aim of 
optimizing one or more objectives when 
considering some restrictions that are imposed on 
the line. In this type of problem, each task takes a 
specific amount of time units to be accomplished; 
thus, in order to meet the desired production 
level, the sum of processing times of all tasks 
assigned to each workstation must be less than or 
equal to the predetermined cycle time (which is 
the reciprocal of the production rate). Such a 
restriction is called cycle time constraint. 
Moreover, there are precedence relations among 
tasks, represented by a precedence graph. In a 
precedence graph, each node represents a task 
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and each arc (i; h) represents a precedence 
relation between task i and task h. In other words, 
(i; h) restricts the execution of job h to the 
execution of job i); this constraint is called 
precedence constraint. The objective function that 
is usually expected to balance a new assembly 
line is to minimize the number of workstations 
(line length) for a given cycle time. ALBP with 
this objective function is called ALBP type I. 
Whenever an assembly line is to be rebalanced 
with the aim of achieving a desired production 
rate, the objective function that must be 
considered is to minimize the cycle time for a 
given number of workstations (which actually 
corresponds to the maximization of the 
production rate). ALBP with this objective 
function is called ALBP type II. The 
minimization of both the number of workstations 
and the cycle time simultaneously characterizes 
the problem called ALBP type E [1].  
Salveson [2] was the first researcher who 
presented a mathematical formulation for ALBP. 
His formulation has some basic assumptions: 
mass-production of one homogeneous product, 
paced-line with fixed cycle time, and serial line 
layout with single-manned workstations. Since 
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then, a number of researchers have developed 
solution approaches to ALBP. In recent years, a 
majority of researchers have attempted to model 
more realistic and generalized problems of the 
assembly line balancing. The literature now 
contains additional characteristics such as the 
mixed-model production, paralleling, and multi-
manned assembly lines (MAL) among many 
others. Detailed reviews of such studies were 
given by Becker and Scholl [1] and, more 
recently, by Battaia and Dolgui [3] and 
Sivasankaran and Shahabudeen [4]. 
Assembly line balancing problems can be 
classified as simple Assembly Line Balancing 
Problems (SALBPs) and Multi-manned 
Assembly Line Balancing Problems (MALBPs). 
Whereas only one worker is assigned to each 
workstation in a Simple Assembly Line (SAL), 
several workers can be assigned simultaneously 
to each workstation of an MAL. In this paper, 
multi-manned assembly lines were investigated. 
MALs are usually designed to produce high-
volume large-sized standardized products such as 
automobiles, trucks, and buses. The reason why 
MALs are usually found in these kinds of 
production systems is because the designer of 
these assembly systems is allowed to assign more 
than one worker to each workstation due to the 
size of such products. The maximum number of 
workers that can be assigned to each multi-
manned workstation is predetermined in 
accordance with the product size, tools 
availability, workstation design, etc. [5]. For 
instance, in automobile manufacturing, at most 
two workers can  simultaneously work on two 
sides of the product. However, in assembly lines 
of bigger products such as trucks or buses, more 
than two workers simultaneously work on the 
product due to the size of the product and 
multiplicity of tasks that must be simultaneously 
done. According to [5], when using multi-
manned workstations in such classes of assembly 
production systems, attempts are made to reduce 
the line length while the total number of workers 
on the line remains optimal. An MAL with a 
short line length provides, in practice, several 
advantages over a SAL as follows: shorter 
throughput time, lower cost of tools and fixtures, 
less material handling, etc. [6]. 
As far as this study is concerned, Dimitriadis [5] 
was the first researcher who dealt with the class 
of assembly lines at the multi-manned 
workstations; he also proposed a two-level 
heuristic-based approach to solve MALBP 
aiming at, first, minimizing the number of 
workers and, second, the number of workstations 

for a given cycle time. Cevikcan, Durmusoglu, 
and Unal [7] devised a mathematical 
programming model to create the assembly 
physical multi-manned workstations in mixed-
model assembly lines; however, their proposed 
mathematical model was too complex to use and 
failed to find the desired solution to the problem. 
To this end, they developed a scheduling-based 
heuristic algorithm to solve the problem. Becker 
and Scholl [8] considered a special case of 
MALBP with Variable Workplace Parallel 
Assembly Line Balancing Problem (VWALBP). 
They assumed that the work-piece was divided 
into mounting positions each of which could be 
used by only a single worker in each workstation. 
In VWALBP, tasks that require at least one joint 
mounting position (at the same workstation) must 
be assigned to the same worker, i.e., after 
assigning a task to a worker, only the tasks which 
require the same or neighboring mounting 
positions with the assigned tasks can be assigned 
to that worker. The two authors developed an 
exact solution procedure (called VWSolver) 
based on the application of the branch-and-bound 
principle. Fattahi et al. [6] presented for the first 
time a mixed-integer mathematical programming 
model for MALBP that minimized the number of 
workers and workstations as its primary and 
secondary objectives, respectively. Since 
MALBP is NP-Hard, they were able to find (in a 
reasonable amount of time) an optimal solution 
by using the proposed MILP model only in the 
case of small-sized problems. In order to find the 
solution to medium- and large-sized problems, 
they also developed for MALBP a heuristic 
algorithm based on the ant colony optimization 
approach. Kellegoz and Toklu [9] discussed an 
assembly line balancing problem characterized 
by the presence of multi-manned workstations 
and, following the problem definition, developed 
a branch-and-bound algorithm called Jumper, to 
optimally solve it. Chang and Chang [10] studied 
the mixed-model multi-manned assembly lines 
and proposed a mathematical programming 
formulation of the problem, aiming to minimize 
the number of multi-manned workstations. 
Roshani et al. [11] addressed the multi-objective 
MALBP and proposed a simulated-annealing 
search algorithm to solve the problem while 
considering the line efficiency, the line length, 
and the smoothness index as the performance 
criteria. Kellegoz and Toklu [12] presented a 
mathematical formulation of MALBP and 
attempted to minimize the total number of 
workers on the line; they also developed a new 
constructive heuristic algorithm based on priority 
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rules and a genetic algorithm-based solution 
procedure to improve the solutions found by the 
constructive heuristic. Roshani and Ghazi 
Nezami [13] presented the mixed-model multi-
manned assembly line models and solution 
methods. Roshani and Giglio [14] investigated 
the MALBP and strived to minimize the cycle 
time of the line as the primary objective, for a 
given number of workstations. Besides the MILP 
model, two meta-heuristics were also developed 
based on SA algorithm: the indirect and direct SA 
(ISA and DSA, respectively). More recently, 
Sahin and Kellegz [15] proposed a mathematical 
formulation and a particle swarm optimization 
algorithm hybridized by a special constructive 
heuristic for an MAL balancing problem with a 
fixed cycle time that aimed to minimize both the 
number of workstations and the cost of the 
needed renewable resources. 
ALBPs were categorized into two classes in 
accordance with the type of objective function: 
time-oriented ALBP and cost-oriented ALBP. 
Moreover, there are three variants of time-
oriented ALBP, namely ALBP-I, ALBP-II, and 
ALBP-E, all of which aim to minimize the total 
idle time for the whole capacity provided by the 
sum of the workstations of the line; in this 
respect, this is called time-oriented assembly line 
balancing [16]. Further, the objective of cost-
oriented ALBP is to minimize the total costs per 
production unit for a given cycle time. This 
objective optimizes the number of workstations 
by considering not only the cost of installing 
workstations, but also by taking into account the 
wage that must be payed to each worker on the 
line. There are some studies conducted on the 
cost-oriented SALBPs in the literature [16-21]. 
However, according to our best knowledge, only 
three studies appeared in the literature for Cost-
oriented MALBP (CMALBP). Kazemi and 
Sedighi [22] presented a mathematical model and 
a genetic algorithm for the single model 
CMALBP. Their model minimized the total cost 
per production unit by taking into account the 
cost of the transportation facility per each multi-
manned workstation and the wage rate of the 
workers; their cost function was the objective 
function used for balancing the simple assembly 
lines, too. In SALs, only one worker performs 
assembly tasks in each workstation; therefore, the 
total investment cost to be faced in installing the 
line is directly related to the line length, i.e., to 
the number of workstations equal to the number 
of workers. However, in MALBPs, the installing 
cost per each multi-manned workstation increases 
with an increase in the number of workers 

assigned to the workstation. To this end, in order 
to define a suitable cost function for CMALBP, it 
is necessary to consider the cost of tools and 
machinery (at each workstation) per each worker 
separately. Kazemi and Sedighi [23] extended 
their previous work to the mixed-model multi-
manned assembly lines and attempted to 
minimize the total cost per production unit when 
considering the cost of tools and machinery per 
each worker separately. They developed a 
mathematical formulation of the problem and 
proposed a Genetic Algorithm (GA) and a 
particle swarm optimization algorithm to solve 
the problem. Roshani and Giglio [24] developed 
a mixed-integer programming formulation for 
CMALBP. 
In this paper, the single model CMALBP with the 
aim of minimizing the total cost per production 
unit is investigated. A solution approach based on 
a tabu search algorithm is proposed to solve the 
problem. According to the authors’ best 
knowledge, this is the first study that adapts a 
heuristic approach based on Tabu Search to solve 
CMALBP. The rest of this paper is organized as 
follows. Section 2 provides a brief description of 
CMALBP. Section 3 describes the proposed tabu 
search algorithm. Section 4 elaborates the 
computational studies. Section 5 concludes 
remarks the study. 

2. Cost-Oriented Multi-Manned 
Assembly Line Balancing Problem 

Firstly, in Subsection 2.1, the problem is defined. 
Secondly, a numerical example is presented in 
Subsection 2.2.  
 
2.1. Problem definition 
Assembly lines with multi-manned workstations 
are usually found in industries with large-sized 
and high-volume products such as automotive 
industry. A typical example of multi-manned 
assembly line configuration is shown in Figure 1. 
The main difference between such kinds of 
assembly line and SAL is the number of workers 
that can be assigned to each workstation. Only 
one worker is assigned to each workstation of a 
SAL, whereas several workers may be assigned 
simultaneously to each workstation of an MAL. 
The assignment of workers to a workstation of an 
MAL is not unregulated as the number of 
workers in a workstation is restricted by the 
maximum feasible “worker concentration” which 
is predetermined by the system designer in 
accordance with the product size, tools 
availability, workstation design, and so on.  
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The present research investigates the balancing 
problem of the cost-oriented MALs, which is a 
generalization of the time-oriented MALBP-I, 
whose objective is to minimize the number of 
workstations for a given cycle time. The 
objective in the cost-oriented ALBPs is to 
minimize the total cost per product unit [19]. In 
general, the installation cost of each assembly 
line system can be divided into two groups [21]: 
labor costs and invested capital (like machinery 
and transportation facility as well as production 
equipment). According to [21], the workers 
payment (wage rate) at a workstation is specified 
in accordance with the job value. If a task is 
taken individually, it is likely to relate its job 
value directly to a wage rate per time unit. In 
other words, the payment of a worker at a 
workstation can be considered as the same as the 
wage rate of the task assigned to him/her. 
However, the tasks assigned to a worker may 
differ in the degree of difficulty, job values, and, 
consequently, the corresponding wage rates. In 
such situations, the worker’s wage rate is 
considered as a function of the maximum job 
value of the tasks assigned to the workstation to 
which the worker has been allocated. Final 
assembly is, nevertheless, in need of invested 
capital like tools, machinery, and transportation 
facilities. According to [16], in a SAL, the costs 
associated with such resources can always be 
directly connected to the length of the SAL, i.e., 
to the number of workstations if the quantity of 
tools and machinery needed at workstations is 
assumed fixed and independent of the assignment 
of tasks to the workstations. Further, it is 
assumed that universal machinery is identical for 
all similar assembly tasks [21]. However, in 
MALs, the invested capital must be analyzed 
more carefully. In an MAL configuration, the 
costs of the transportation facility can be reliant 
on the length of the line (the same as in SAL), 
which is defined, in the case of MAL, by the 
number of multi-manned workstations based on 
the assumption that universal machinery is 
identical for all workstations. However, due to 
the different number of workers, the multi-
manned workstations may need different tools 
and equipment to perform the assigned tasks 
(and, then, different costs). For instance, at a 
multi-manned workstation, it is likely to utilize 

the service of only one worker to perform the 
operations, while at another one, it may be 
necessary to assign more than one worker to the 
workstation; therefore, the required tools and 
equipment at the first workstation to which only 
one worker can be assigned may be smaller than 
the number of the required tools and equipment at 
the second workstation. That is why the invested 
capital at a multi-manned workstation should be 
computed not only through the universal 
machinery (like transportation equipment) costs, 
which can be considered identical for each multi-
manned workstation, but also through the costs 
associated to the total number of tools which are 
required for all the workers at the workstation.  
The following assumptions are given for different 
classes of problems considered in this study: 
 the system is configured for the mass-

production of one homogeneous product; 
 task times are deterministic and known; 
 the wage rate of each task is deterministic and 

known; 
 the costs of the transportation facility per each 

workstation are fixed; 
 the total costs of the machinery per each 

worker are fixed; 
 the precedence graph is given; 
 each task must be performed by a single 

worker; 
 travel times of workers are ignored; 
 parallel tasks and parallel workstations are not 

allowed; 
 multi-manned workstation is allowed; 
 the maximum number of workers that can be 

assigned to each workstation is given; 
 workstations are aligned in a serial manner; 
 the cycle time is given and fixed; 
 the optimal total number of workstations and 

workers on the line is determined by the 
model; 

 no further assignment restrictions are exerted 
besides the cycle time and precedence 
constraint; 

 transportation facility is identical for each 
multi-manned workstation; 

 tools and equipment are identical and 
independent for all workers regardless of their 
assigned tasks. 
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Fig. 1. Configuration of a multi-manned assembly line 

 
2.2. Numerical example 
To give a better insight into the problem, an 
example with respect to the CMALBP is given. 
Consider the precedence graph in Figure 2 
presented by Bowman [25]. In this graph, each 
task corresponds to a node, and the links between 
nodes represent the precedence relation among 
the tasks. To each task is associated a pair of 
values, namely (ti;wi), where ti is the processing 
time of the ith task (expressed in terms of time 
unit, TU) and wi is the wage rate of the ith task 
(expressed in terms of money units per time unit, 
MU/TU). Given the assumption that the cycle 
time is 17 TU in the example, it is possible to 

assign up to two workers to each workstation. 
Moreover, it is assumed that the cost of the 
transportation facility per each workstation and 
the cost of the machinery per each worker are 50 
and 10 money units (MU), respectively. The 
optimal solution to this problem is obtained in the 
cases of both time-oriented and cost-oriented 
objective functions. In this connection, it should 
be noted that the time-oriented objective function 
minimizes the number of workers as the first 
objective and number of workstations as the 
second one. 
Table 1 reports the optimal solutions to the two 
aforementioned cases.  

 

 
Fig. 2. Precedence diagram of an example of a multi-manned assembly line. 

 

Tab. 1. The comparison of the optimal solution of time- and cost-oriented 
  Time-oriented Cost-oriented 
Workstation Worker Tasks Wage rate Total wage Tasks Wage rate Total wage 

1 1 1 2 34 1 2 34 
 2 - - - - - - 
2 1 2 1 17 2 1 17 
 2 - - - - - - 
3 1 3, 5 2 34 4 1 17 
 2 - - - 3, 5 2 34 
4 1 4, 6 1 17 7 1 17 
 2 - - - 6, 8 2 34 
5 1 7, 8 2 34 - - - 
 2 - - - - - - 

 

WORKER WORKERWORKER

WORKER WORKERWORKER

WORKER

1 2 

3 

4 

5 

6 

7 

8 

(11, 2) (17, 1) 

(9, 1) 

(5, 
1) 

(8, 2) 

(12, 
1) 

(10, 1) 

(3, 1) 
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The summary of the results reported in Table 2 
shows that the optimal number of both the 
workstations and workers is different in the two 
optimal solutions to the time-oriented and cost-
oriented versions of the multi-manned assembly 
line balancing problem. In fact, the numbers 
associated with the multi-manned workstations in 
the first experiment (relative to the time-oriented 

MALBP) and the second experiment (relative to 
CMALBP) are 5 and 4, respectively. Whereas the 
number of workers is equal to 5 in the first 
experiment, it is equal to 6 in the second one. 
This difficulty increases the complexity of 
CMALBP with respect to the time-oriented 
MALBP.

 
Tab. 2. The comparison of the optimal solution of time- and cost-oriented (summary) 

 Time-oriented Cost-oriented 
Total Wage 136 153 

Workstations 5 4 
Workers 5 6 

Total cost 436 413 
 

3. Proposed Solution Approach 
In this paper, a Tabu Search (TS) algorithm was 
proposed to solve CMALBP. In fact, Gutiahr et 
al. [26] showed that the simple assembly line 
balancing problem fell into the class of NP-Hard 
optimization problems. In other words, the 
unbearable computational times prevent the 
determination of an optimal solution to problems 

of significant sizes; however, if SALBP is NP-
Hard, CMALBP addressed in this paper is NP-
Hard, too. Therefore, a solution approach based 
on a tabu search algorithm [27], which is among 
the most popular techniques for solving such a 
class of problems, is proposed. The solution 
approach is summarized in Figure 3. 

 
Step 1 Initialization: 

Step 1.1 Generate an initial solution (Y0). Calculate f (Y0).  
Step 1.2 Encode the generated initial solution by using the encoding scheme, thus 

obtain the initial solution string Π0. 
Step 1.3 Set the best and current solution string Πb= Πc=Π0, the best and current 

solution Yb=Yc=Y0, the best and the current objective function f (Yb)=f 
(Yc)=f (Y0). 

Step 2 While stopping criterion is not met do:  
Step 2.1 Set τ to 1. 
Step 2.2 While τ ≤ Neighbor-Size (NS) do: 

Step 2.2.1 To generate a new neighbor solution string (Πn), apply neighbor 
generation mechanism on the current solution string (Πc).  

Step 2.2.2 Decode Πn, by using the proposed decoding method, in order to 
generate a neighbor solution Yn. 

Step 2.2.3 Calculate f(Yn). 
Step 2.2.4 Store the neighbor solution Yn and the corresponding value f(Yn). 
Step 2.2.5 Set τ = τ+1. 

Step 2.3 Find the neighbor solution with the best objective function among those 
stored at Step 2.2.4; let it be Yn

b. If such a neighbor solution is generated by 
tabu move, then go to Step 2.4. Otherwise (that is, if the neighbor solution is 
not generated by a tabu move): 

 Set Yc = Yn
b and Πc = Πn

b, and update the tabu list; 
 If f (Yn

b) – f (Yc) ≤ 0, then set Πb = Πnb and Yb = Yn
b (thus f (Yb) = f 

(Yn
b), and update the aspiration criterion. 

 Go to step 2. 
Step 2.4 Check the aspiration criterion, that is, if f (Yn

b) – f (Yb) < 0, then set Yb  = Yc 
= Yn

b and Πb= Πc=Πn
b. Update the tabu list and aspiration criteria.  

Step 3 Report the best solution (Yb). 
Fig. 3. The proposed tabu search algorithm 
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The algorithm starts with a feasible initial 
solution (Y0) that is generated by a heuristic 
approach reported in Subsection 3.1. Such a 
solution is initially considered as the current 
solution (Yc) and the best solution (Yb); the value 
of the objective function for these solutions is 
also calculated. The algorithm contains two main 
loops, namely the inner and outer loops. In the 
inner loop (which consists of steps from 2.2.1 to 
2.2.5), the set V(Yc) containing all neighborhood 
solutions Yn of the current solution Yc is 
determined (note that, in case V(Yc) is too big to 
be fully explored, then the sub-neighborhood set 
V’(Yc) is determined). After exploring the 
neighbor solutions, the current solution, in the 
outer loop of the algorithm (which consists of 
steps from 2.1 to 2.4), is updated by the best 
neighborhood solution (Yn

b) even if it is not better 
than the current one. This moving mechanism 
may cause the algorithm to be trapped in a cycle 
while exploring V(Yn

b) during the next step; this 
phenomenon may occur because Yn is considered 
the best solution regarding the V(Yn

b), in which 
case we should come back to Yc and then 
oscillate indefinitely between Yc and Yn

b. To 
avoid such a situation (and, more generally, such 
cycling situations), the algorithm makes use of a 
tabu list TL which contains a certain number of 
last moves used to generate neighbor solutions. 
An aspiration criterion is introduced in tabu 
search to determine when tabu restriction can be 
overridden, thus removing a tabu classification 
otherwise applied to a move. A solution is above 
the current aspiration level if it is better than any 
solution met before. 
 
3.1. Initial solution 
Tabu Search (TS) is a local search meta-heuristic 
method that starts exploring the solution space 
from an initial solution. In this class of 
algorithms, the quality of the generated initial 
solution affects the quality of the final solution 
significantly. As a matter of fact, if TS starts its 
search from an initial solution of poor quality, it 
may be trapped in a local optimum. Thus, 
proposing an approach that can generate initial 
solution of good quality is necessary. In this 
paper, a station-oriented heuristic algorithm is 
proposed to find a suitable initial solution. The 
steps of the algorithm are as follows: 
(1) Calculate an upper bound of acceptable idle 

time, namely 푈 = ∙ ∑ ∈  . Initiate the 
values of Initial Controlling Parameter (ICP) 
and Final Controlling Parameter (FPC). 

(2) If ICP > FPC, then go to (3); else, go to (12). 

(3) Let j be the counter for multi-manned 
workstations; set j = 0. 

(4) If j = nw (number of workstations), then go to 
(11); else set j = j + 1. 

(5) Create a multi-manned workstation with m = 
Mmax workers. Let Dk be the load time of 
worker k; set Dk = 0; k K  . 

(6) Determine the set 퐼 ⊆ 퐼 including all tasks 
having no predecessors or having their 
predecessors assigned before. 

(7) For each worker k, set the starting time Si of 
all the tasks 푖 ∈ 퐼  to the maximum value 
between the completion times predecessors 
and Dk. Then, exclude the tasks i that violate 
their direct Si + ti ≤ ct for all workers at the 
workstation j. 

(8) If 퐼 = ∅	 , then go to (4); else, build a 
roulette wheel based on the ranked positional 
weight of tasks and randomly select a task. 

(9) Assign the selected task to the worker that can 
start it earlier (if tie occurs, then select a 
worker randomly). Go to (6). 

(10) If m = 1, then accept the generated workload 
and go to (4); else, compute the mean idle 
time per worker, namely Id, in the current 
workstation, as: 퐼 = ∙ ∑ ∈ . If 퐼 ≤ 푈 , 
then accept the generated workload; else, 
generate a random number r (0 < r < 1). If r 
< ICP, then accept the generated workload; 
else, set m = m - 1 and go to (6). 

(11) Update the best initial solution. Set 퐼퐶푃 =
휆 ∙ 퐼퐶푃	and go to (2). 

(12) Stop. 
Of note, both ICP and FCP take values between 0 
and 1, and FCP is always less than ICP. 
Moreover, at Step (8) of the proposed approach, 
the ranked positional weight of a task is the sum 
of processing times of the task and of all its 
successors [28]. Moreover, the condition used at 
Step (10) was first introduced by Dimitriadis [5] 
with the aim of exploring the suitability of 
generated workloads for multi-manned 
workstations and also reducing the computational 
time of the algorithm. 
 
3.2. Encoding 
To design the tabu search algorithm for solving 
CMALBP, a suitable encoding scheme of a 
potential solution is required. In this paper, a 
modified version of the group-numbering 
encoding scheme that Kim et al. [29] used in their 
genetic algorithm approach was employed to 
solve a two-sided assembly line balancing 
problem. In such a representation, each solution 
is encoded through a string Π of length nt (the 
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number of tasks), and each element of Π is an 
integer number between 1 and nw (the number of 
workstations). Thus, if task i is assigned to 
workstation j, then the ith element of the string is 
equal to j. For example, the string representations 
of the two task assignments illustrated in Table 1 
are Π1 = [1; 2; 3; 4; 3; 4; 5; 5] and Π2 = [1; 2; 3; 
3; 3; 4; 4; 4], respectively, for the time-oriented 
and the cost-oriented solutions. 
 
3.3. Decoding  
The encoding scheme proposed in the previous 
subsection specifies the assignment of tasks to 
the multi-manned workstations; however, it does 
not include any information about the assignment 
of tasks to the workers. Therefore, it is necessary 
to provide a decoding algorithm that assigns tasks 
to the workers and also minimizes the number of 
workers, taking into account the cycle time 
constraint and precedence relationships among 
the tasks. In this paper, the following heuristic 
method was proposed to decode the solutions. 
(1) Let j be the counter for multi-manned 
workstations; set j = 0. 
(2) If j = nw, then go to (8); else set j = j + 1. 
(3) Let m be the counter for the number of 
workers working at j; set m = 1. 
(4) Determine the set 퐼 ⊆ 퐼 including all tasks 
having a value of j in the encoding string. 
(5) Determine the set 퐼 ⊆ 퐼  including all 

tasks of the set Ien which have no precedence 
relation or have their predecessors assigned 
before. If 퐼 ≠ ∅, then select the task i with 
the highest ranked positional weight and go 
to (6); else go to (7). 

(6) Assign the selected task to the worker that can 
start it earlier (if tie occurs, then select a 
worker randomly). Go to (5). 

(7) Calculate the completion time of all tasks 
assigned to workstation j, namely 퐶 , and 
the number of workers to whom at least one 
task has been assigned. If 퐶 ≤ 푐푡 , then 
accept the current assignment and go to (2); 
else: 
 if m < Mmax, then let all tasks in Ien be 

unassigned, set m = m + 1, and go to (5); 
 if m = Mmax, then accept that assignment 

and go to (2). 
(8) Stop. 
Based on the assumption that there is always a 
feasible assignment of tasks to the workers for 
each workstation, the above algorithm assigns the 
tasks to the workers, taking into account both the 
precedence constraint (at Step (5)) and the cycle 
time constraints (at Step (7)). Besides, Step (7) is 

used to not only verify if the generated workload 
satisfies the cycle time constraint, but also 
provides a workload which minimizes the 
number of workers. 
 
3.4. Neighborhood generation operators 
In order to generate neighbor solutions of the 
current solution, two neighborhood generation 
mechanisms are proposed in this paper: swap and 
mutation. 

 
3.4.1. Swap operator 
The swap operator is applied to two randomly 
selected tasks and changes the value of their 
elements (i.e., of their workstations) in the 
encoded string of the current solution. The stages 
of swap operator procedure are given as follows. 
(1) Randomly select the two tasks i and h that 

have no precedence relations. Read in the 
encoding string Πc the workstations ji and jh, 
respectively, to which they have been 
assigned. If ji= jh, then go to (1); else go to 
(2). 

(2) Specify the first and the last workstations, 
namely jFi and jLi for task i and jFh and jLh for 
task h, respectively, to which the selected 
tasks can be moved by determining the 
workstations of their immediate predecessors 
and successors. If ji < jh, then go to (3). If ji > 
jh, then go to (4). 

(3) If ji ≥ jFh, jh ≤ jLi, and the cycle time constraint 
is not violated by exchanging the 
workstations of the selected tasks, then set 
the workstation of i to jh and workstation of h 
to ji (that is, swap ji and jh); else go to (1). 

(4) If ji ≤ jLh, jh ≥ jFi and the cycle time constraint 
is not violated by exchanging the 
workstations of the selected tasks, then set 
the workstation of i to jh and workstation of h 
to ji (that is, swap ji and jh); else go to (1). 

As an example, reconsider the precedence graph 
in figure 2. The string representation for the time-
oriented solution of that problem is Πc = [1; 2; 3; 
4; 3; 4; 5; 5]. By applying the swap operator and 
randomly selecting the tasks 6 and 7, the new 
string for generating a neighbor solution is Πn = 
[1; 2; 3; 3; 4; 5; 4; 5]. 
 
3.4.2. Mutation operator 
The mutation operator selects a task randomly 
and changes its multi-manned workstation to a 
randomly selected multi-manned workstation it 
can be assigned to. The mutation operator 
procedure is as follows: 
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(1) Randomly select a task i. Read in the 
encoding string Πc the workstation ji to 
which it was assigned. Go to (2). 

(2) Specify the first and the last workstations, 
namely jFi and jLi, to which the selected tasks 
can be moved by determining the 
workstations of its immediate predecessors 
and successors. If ji = jFi = jLi, then go to (1). 
If ji = jFi and ji < jLi, then go to (3). If ji > jFi 
and ji = jLi, then go to (4). If ji > jFi and ji < jLi, 
then go to (5). 

(3) Determine the set Jct of workstations j such 
that ji < j ≤ jLi and the cycle time constraint is 
not violated by transferring the selected task 
to them. If  퐽 = ∅ , then go to (1); else, 
randomly select a workstation 푗 ∈ 	퐽  and 
change the value of task i in the encoding 
string Πc to j. 

(4) Determine the set Jct of workstations j so that 
jFi  ≤ j < ji and the cycle time constraint is not 
violated by transferring the selected task to 
them. If  퐽 = ∅ , then go to (1); else, 
randomly select a workstation 푗 ∈ 	퐽  and 
change the value of task i in the encoding 
string Πc to j. 

 
(5) Determine the set Jct of workstations j so that 

either jFi ≤ j < ji or ji < j ≤ jLi, and the cycle 
time constraint is not violated by transferring 
the selected task to them. If 퐽 = ∅, then go 
to (1); else, randomly select a workstation 
푗 ∈ 	퐽  and change the value of task i in the 
encoding string Πc to j. 

For example, consider again the precedence 
graph in Figure 2 and the string representation Πc 
= [1; 2; 3; 3; 3; 4; 4; 4]. By applying the mutation 
operator and randomly selecting Tasks 7 and 
Workstation 5 to transfer it, the new string for 
generating a neighbor solution is Πn = [1; 2; 3; 3; 
3; 4; 5; 4]. 
 
3.5. Tabu list, aspiration criterion, and 
stopping rule 
In this paper, two tabu lists are employed to 
check whether or not moving to a new generated 
neighbor solution is allowed. The first list, which 
is denoted by TLs, is associated with the swap 
operator, and the second list, denoted by TLm, is 
defined to control the neighbor solutions 
generated by the mutation operator. TLs is a two-
dimensional matrix of size [nt ∙nt], whose generic 
element TLs

ih represents the number of iterations 
for which the swap of tasks i and h is forbidden. 
When the algorithm starts, TLs is the null matrix. 
Whenever the best neighbor solution of current 
solution, generated by swapping tasks i and h, is 

accepted as the next current solution, values TLs
ih 

and TLs
hi are set to tabu sizes which, in this paper, 

are set as √푁푆 . TLm is instead a three-
dimensional matrix of size [nt ∙ nw ∙ nw], whose 
generic element TLm

ijl represents the number of 
iterations for which moving the task i from 
workstation j to workstation l is forbidden. 
Similar to the first list, when the algorithm starts, 
TLm is a null matrix. If task i is moved from 
workstation j to workstation l for generating by 
the mutation operator, the best neighbor solution 
of current solution, TLm

ijl, is set to the tabu size, 
i.e., √푁푆. The aspiration criterion is applied to 
both tabu lists. If the best neighbor solution of 
current solution generated by swap or mutation 
operator is better than the best solution, it is 
accepted as the current solution. The termination 
condition (stopping criterion) which is used in the 
proposed tabu search algorithm is a function of 
the number of iterations. 

4. Computational Experiments 
This section assesses the performance of the 
proposed TS algorithms on some well-known test 
problems in the literature regarding assembly line 
balancing problems. Five small-sized, four 
medium-sized, and three large-sized problems are 
selected. The considered dataset can be 
downloaded from the website “www.assembly-
linebalancing.de”. The efficiency and 
effectiveness of the proposed algorithm in case of 
small-sized problems are compared with the 
optimal solutions found by solving the MILP 
model presented in Section 3. Instead, since 
reaching the optimal solutions in a reasonable 
CPU time for medium- and large-sized problems 
by using MIP is not possible, a comparison 
between the results of the proposed TS and some 
reliable results in the literature needs to be made. 
As discussed in Section 1, there are two studies 
that have proposed solution approaches to 
CMALBP. However, in both of these studies, the 
wage rate of tasks was reported; moreover, 
Kazemi and Sedighi [23] presented two solution 
approaches to mixed-model CMALBP. 
Therefore, comparing the performance of the 
proposed algorithm with the results published in 
these studies is not made possible. The 
comparison is made with a modified version of 
the simulated annealing approach that Roshani et 
al. [11] proposed for the time-oriented MALBPs. 
In addition, their proposed algorithm minimizes 
the number of workers as the first objective, the 
number of workstations as the second one, and 
the smoothness index as the third objective for a 
given cycle time. The adopted modified version 
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takes into account labor cost as considered in this 
paper. Thus, the aim of conducting computational 
experiments in the case of medium-and large-
sized instances of the problem is mainly that of 
examining the suitability of the proposed TS 
algorithm in solving CMALBP in comparison to 
a heuristic proved to be acceptable for the time-
oriented MALBP. For what concerns the 
determination of the optimal solutions for small-
size problems, the MILP model presented by 
Roshani and Giglio [24] was coded and solved 
using Lingo 9.0 solver. The modified SA and TS 
algorithm were implemented in C++ language. 
Experiments have been carried out on a PC with 
a core (TM)i3 (M330) 2.13 GHz processor and 
4.00 GB Ram. All the parameters of the 
algorithms were experimentally obtained. For 
small-size problems, the neighbor size and 
maximum number of iterations were set to 10 and 
1000, respectively. Instead, in the case of 
medium-and large-sized problems, neighbor sizes 

were set to 20 and 30, and the maximum number 
of iterations was fixed to 3000 and 5000. 
Moreover, for all of the experiments, the 
probability of generating neighbor solutions by 
swap operator is 0.35 and for mutation operator is 
0.65. 
 
4.1. Small-sized problems 
The results of experiments on the small-sized 
problems are presented in Table 3. The optimal 
number of workstations, optimal number of 
workers, optimal total cost per production unit 
found by the MILP model, and necessary CPU 
time are summarized in the mentioned table. In 
addition, the results of the proposed TS approach 
are shown. As seen in this table, TS is capable of 
achieving the optimal solutions for the small-
sized problems in a very short period of time 
(less than one second). 

 
Tab. 3. Optimal solutions of small-sized problems 

   MIP TS 
Problem nt ct nw nwo TC cpu nw nwo TC cpu 
Merten 7 6 3 6 360 1 3 6 360 0.09 
  7 3 5 355 1 3 5 355 0.09 
  8 3 5 346 1 3 5 346 0.06 
  10 3 3 290 7 3 3 290 0.07 
  15 2 2 230 8 2 2 230 0.07 
  18 1 2 198 5 1 2 198 0.04 
Bowman 8 17 4 6 625 3 4 6 625 0.09 
  21 4 5 615 10 4 5 615 0.11 
  24 4 5 636 3 4 5 636 0.09 
  28 2 3 524 13 2 3 524 0.06 
  31 2 3 501 1 2 3 501 0.06 
Jaeschke 9 6 6 8 598 39 6 8 598 0.11 
  7 6 7 594 1 6 7 594 0.09 
  8 5 6 522 1 5 6 522 0.11 
  10 3 5 410 27 3 5 410 0.09 
  18 2 3 358 10 2 3 358 0.07 
Jackson 11 7 6 8 663 369 6 8 663 0.14 
  9 4 6 518 518 4 6 518 0.12 
  10 4 5 510 151 4 5 510 0.11 
  13 3 4 451 714 3 4 451 0.07 
  14 3 4 440 663 3 4 440 0.11 
  21 2 3 391 322 2 3 391 0.09 
Mansoor 11 45 3 5 925 519 3 5 925 0.42 
  54 3 4 932 170 3 4 932 0.43 
  63 3 4 986 199 3 4 986 0.35 
  72 2 3 952 34 2 3 952 0.39 
  81 2 3 1051 283 2 3 1051 0.37 

nw: optimal number of workstations; nwo: optimal number of workers; TC: optimal total cost per production unit; cpu: 
CPU time (seconds). 
 
4.2. Medium-and large-sized problems 
The performance of the proposed tabu search 
algorithm in solving medium- and large-sized 
instances of the problem is examined in this 

subsection. The proposed TS was applied to four 
medium-sized problems (respectively presented 
by Mitchell, Heskia, Sawyer, and Kilbridge) and 
three large-sized problems (one proposed by 
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Tange, and two by Arcus), with different cycle 
times. Generally, 40 experiments were carried out 
whose results are shown in Table 4. As discussed 
earlier, the solutions generated by the proposed 
TS are not compared in this case with those 
provided by the MILP model (it does not provide 
an optimal solution in a reasonable  amount of 
CPU time), but are compared with the modified 
simulated annealing algorithm version proposed 

by Roshani et al. [11] to solve the medium- and 
large-sized problems. Thus, in Table 4, the 
number of workstations, number of workers, and 
total costs per production unit found by SA are 
also reported. In this table, Imp value represents 
the improvement of the cost function from SA to 
TS; it is computed as 100 ∙ .  

 
Tab. 4. Computational results of medium- and large-sized problems 

   SA TS 
Problem nt ct nw nwo TC cpu nw nwo TC cpu Imp 
Mitchell 21 14 7 8 1168 15.39 7 8 1140 1.29 2.39 
  15 7 8 1185 11.18 7 8 1140 1.24 3.79 
  21 5 5 1001 22.73 5 5 1001 1.23 0 
  26 4 5 1054 14.37 4 5 1028 1.07 2.46 
  35 3 3 980 9.38 3 3 980 0.95 0 
Heskia 28 138 5 8 7708 13.9 5 8 7432 12.56 3.58 
  205 4 5 8060 22.81 4 6 7340 13.23 8.93 
  216 3 5 7514 20.29 4 5 7116 15.28 5.29 
  256 3 5 7906 21.17 4 5 7388 12.32 6.55 
  324 2 4 8028 19.32 3 4 8028 14.92 0 
  342 2 3 8324 34.98 3 3 7890 13.68 5.21 
Sawyer 30 25 8 14 2830 32.76 9 15 2725 13.39 3.71 
  27 8 14 2840 29.84 10 13 2731 13.68 3.83 
  30 7 12 2720 34.82 8 12 2710 12.59 0.36 
  36 6 10 2732 58.95 7 10 2674 13.07 2.20 
  41 5 9 2644 23.87 6 9 2612 23.37 1.21 
  54 4 7 2662 25.89 6 7 2708 18.03 -1.7 
Kilbridge 45 57 6 10 14306 65.75 6 10 14306 60.76 0 
  79 4 8 11792 74.59 4 8 11634 65.96 1.34 
  92 4 7 11732 83.96 4 7 10904 75.75 7.06 
  110 3 6 10070 39.78 3 6 9960 38.82 1.09 
  138 3 4 9416 76.17 3 4 9416 50.51 0 
  184 2 3 7732 69.17 2 3 7916 54.67 -2.37 
Tonge 70 176 12 22 51160 265.81 12 20 45760 149.2 10.55 
  364 6 10 40848 159.78 7 10 40756 72.11 0.22 
  410 5 9 38200 157.22 6 9 38790 186.25 -1.54 
  468 5 8 38016 153.75 5 8 38016 146.29 0 
  527 4 7 39120 159.59 4 7 38066 81.86 2.69 
Arcus 83 5048 12 16 681760 346.41 16 17 657328 70.06 3.58 
  5853 10 14 719536 326.11 14 14 657594 62.81 8.61 
  6842 8 12 674622 204.6 10 12 657254 78.64 2.57 
  7571 10 11 681822 303.2 10 11 651538 74.53 4.44 
  8412 8 10 689312 296.4 10 10 674076 69.41 2.21 
  8998 7 9 664862 217.4 7 9 673860 91.43 -1.35 
  10816 5 8 703592 283.6 7 8 670328 83.02 4.72 
Arcus 111 8847 14 18 1273500 720.3 18 19 1046780 79.71 15.41 
  10027 12 16 1269210 643.6 14 18 1170920 105.7 7.74 
  10743 14 15 1170040 714.1 12 15 1052610 132.4 10.03 
  11378 9 14 1299200 592.1 11 15 1139530 111 12.28 
  17067 7 9 1255760 593.1 9 10 1164360 85.3 7.27 

nw: optimal number of workstations; nwo: optimal number of workers; TC: optimal total cost per production unit; cpu: 
CPU time (seconds). 
 
In the case of small-sized problems, for all 
medium- and large-sized instances, the wage rate 
of tasks is fixed to an integer random number 
obtained from the discrete uniform distribution 

between 1 (MU/TU) and 10 (MU/TU). In this 
respect, the costs of installing each workstation 
and of tools and machinery per each worker they 
are set to 50 (MU) and 20 (MU) for Mitchell and 
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Sawyer problems, respectively, 250 (MU) and 
100 (MU) for Heskia problems; 1000 (MU) and 
500 (MU) for Kilbridge and Tonge problems, 
respectively, and 15000 (MU) and 1000 (MU) for 
Arcus problems. With reference to the 
experiments conducted on the medium- and 
large-sized problems, it can be stated that TS 
outperforms the SA algorithm in accordance with 
the Imp factor which is positive (that is, TS 
produced a lower total cost than SA) in 30 out of 
40 medium- and large-sized problem cases. In six 
experiments, the same result was obtained; the 
worst results were found by TS only in four 
problems. Moreover, the average improvement 
rate of 23 medium-sized problems and 17 large-
sized problems was 2.387 and 5.26, respectively. 
Thus, it can be concluded that the proposed TS is 
more effective than SA in terms of medium-sized 
problems. Finally, the computation times of TS 
are between 0.95 and 186.25 seconds on a PC 
with a 2.13 GHz core i3 CPU and 4.00 GB Ram; 
instead, the CPU time of SA was shorter than 
720.3 seconds for each problem. According to 
these results, it can be concluded that the 
proposed TS algorithm consumes a shorter 
computational amount of time than the SA 
method. 
 

5. Conclusion 
In this paper, the balancing problem of the cost-
oriented multi-manned assembly lines, called 
CMALBP, was studied with the aim of 
minimizing the total cost per production unit. An 
illustrative example showed that given the same 
precedence graph of a multi-manned assembly 
line with the same cycle time, two different 
optimal solutions could be actually found when 
switching from the time-oriented objective 
function to the cost-oriented one, and vice versa. 
This difficulty increased the complexity of 
CMALBP with respect to MALBPs addressed in 
the literature. Since CMALBP is NP-Hard, it is 
impossible to find an optimal solution to the 
large-sized problem by using the mathematical 
programming formulation. Thus, a tabu search 
algorithm was presented to solve different sizes 
of the problem cases. The proposed algorithm 
uses a heuristic approach to generate initial 
solutions. Moreover, it contains two 
neighborhood generation mechanisms to generate 
new solutions and uses two different tabu lists to 
manage forbidden moves. The performance of 
the proposed TS was examined on some small-, 
medium-, and large-sized problem cases collected 
from the literature. The optimal solutions to the 
small-sized problems were found by coding the 

proposed mathematical formulation in Lingo 9.0 
software; the comparison of the results showed 
that the proposed method could find optimal 
solutions. For medium- and large-sized problems, 
the performance of TS was compared with the 
simulated annealing proposed by Roshani et al. 
[11] for time-oriented MALBP, appropriately 
modified and used to solve the CMALBP. Both 
SA and TS were applied to the cases, and the 
comparison of the results of TS and SA reveals 
that TS is more effective than SA in terms of 
solution quality and computational time. 
The model and solution approach proposed in 
this paper may be developed in future studies by 
considering more realistic constraints such as the 
sequence-dependent finish time of tasks. 
Moreover, since the performance of the TS 
approach is significantly related to the encoding 
algorithm, it is necessary to develop an optimal 
seeking procedure to optimally encode the new 
neighbor solutions in a reasonable amount of 
time.  

Disclosure statement 
No potential conflict of interest was reported by 
the authors. 

References 
[1] Becker, C. and Scholl, A., “A survey on 

problems and methods in generalized 
assembly line balancing.” European Journal 
of Operational Research, Vol. 168, No. 3, 
(2006), pp. 694-715. 

 
[2] Salveson, M.E. “The assembly line 

balancing problem.” Journal of industrial 
engineering Vol. 6, No. 3, (1955), pp. 18-25. 

 
[3] Battaia, O., and Dolgui, A. “A taxonomy of 

line balancing problems and their solution 
approaches.” International Journal of 
Production Economics, Vol. 142, No. 2, 
(2013), pp. 259-277. 

 
[4] Sivasankaran, P., and P. Shahabudeen. 

“Literature review of assembly line 
balancing problems.” The International 
Journal of Advanced Manufacturing 
Technology, Vol. 73, No. 9-12, (2014), pp. 
1665-1694. 

 
[5] Dimitriadis, S.G., “Assembly line balancing 

and group working: A heuristic procedure 
for workers' groups operating on the same 
product and workstation.” Computers & 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ie
pr

.iu
st

.a
c.

ir
 o

n 
20

24
-0

7-
18

 ]
 

                            12 / 14

http://ijiepr.iust.ac.ir/article-1-1052-fa.html


201 A Tabu Search Algorithm for the Cost-Oriented Multi-Manned Assembly Line Balancing 
Problem  

 

International Journal of Industrial Engineering & Production Research, June 2020, Vol. 31, No. 2 

Operations Research, Vol. 33, No. 9, (2006), 
pp. 2757-2774. 

 
[6] Fattahi, P., and Roshani, A. and Roshani, A., 

“A mathematical model and ant colony 
algorithm for multi-manned assembly line 
balancing problem.” The International 
Journal of Advanced Manufacturing 
Technology, Vol. 53, No. 1-4, (2011), pp. 
363-378. 

 
[7] Cevikcan, E., Durmusoglu, M.B., and Unal, 

M.E., “A team-oriented design methodology 
for mixed model assembly systems.” 
Computers & Industrial Engineering, Vol. 
56, No. 2, (2009), pp. 576-599. 

 
[8] Becker, C. and Scholl, A., “Balancing 

assembly lines with variable parallel 
workplaces: Problem definition and effective 
solution procedure.” European Journal of 
Operational Research, Vol. 199, No. 2, 
(2009), pp. 359-374. 

 
[9] Kellegoz, T. and Toklu, B., “An efficient 

branch and bound algorithm for assembly 
line balancing problems with parallel multi-
manned workstations.” Computers & 
Operations Research, Vol. 39, No. 12, 
(2012), pp. 3344-3360. 

 
[10] Chang, H.-J., and Chang, T.-M. 

“Simultaneous Perspective-based Mixed-
model Assembly Line Balancing Problem.” 
Tamkang Journal of Science and 
Engineering, Vol. 13, (2010), pp. 327-336. 

 
[11] Roshani, A., Roshani, A., Roshani, A., 

Salehi, M., and Esfandyari, A., “A simulated 
annealing algorithm for multi-manned 
assembly line balancing problem.” Journal 
of Manufacturing Systems, Vol. 32, No. 1, 
(2013), pp. 238-247. 

 
[12] Kellegoz, T. and Toklu, B., “A priority rule-

based constructive heuristic and an 
improvement method for balancing 
assembly lines with parallel multi-manned 
workstations.” International Journal of 
Production Research, Vol. 53, No. 3, (2015), 
pp. 736-756. 

 
[13] Roshani, A., & Nezami, F. G., “Mixed-

model multi-manned assembly line 
balancing problem: A mathematical model 
and a simulated annealing approach.” 

Assembly Automation, Vol. 37, No. 1, 
(2017), pp. 34-50.  

 
[14] Roshani, A., & Giglio, D., “Simulated 

annealing algorithms for the multi- manned 
assembly line balancing problem: 
Minimising cycle time.” International 
Journal of Production Research, Vol. 55, No. 
10, (2017), pp. 2731-2751.  

 
[15] Sahin, M., Kellegz, T., “A new mixed-

integer linear programming formulation and 
particle swarm optimization based hybrid 
heuristic for the problem of resource 
investment and balancing of the assembly 
line with multi-manned workstations.” 
Computers & Industrial Engineering, Vol. 
133, (2019), pp. 107 - 120. 

 
[16] Amen, M., “An exact method for cost-

oriented assembly line balancing.” 
International Journal of Production 
Economics, Vol. 64, (2000), pp. 187-195. 

 
[17] Rosenberg, O., Ziegler, H., “A comparison 

of heuristic algorithms for cost-oriented 
assembly line balancing.” Zeitschrift fur 
Operations Research, Vol. 36, (1992), pp. 
477-495. 

 
[18] Amen, M., “Heuristic methods for cost-

oriented assembly line balancing: A survey.” 
International Journal of Production 
Economics, Vol. 68, (2000), pp. 1-14. 

 
[19] Amen, M., “Heuristic methods for cost-

oriented assembly line balancing: A 
comparison on solution quality and 
computing time.” International Journal of 
Production Economics, Vol. 69, (2001), pp. 
255-264. 

 
[20] Scholl, A. and Becker, C., “A note on “An 

exact method for cost-oriented assembly line 
balancing”.” International Journal of 
Production Economics, Vol. 97, (2005), pp. 
343-352. 

 
[21] Amen, M., “Cost-oriented assembly line 

balancing: Model formulations, solution 
difficulty, upper and lower bounds.” 
European Journal of Operational Research, 
Vol. 168, (2006), pp. 747-770. 

 
[22] Kazemi, A., and A. Sedighi., “A Cost-

oriented Model for Multi-manned Assembly 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ie
pr

.iu
st

.a
c.

ir
 o

n 
20

24
-0

7-
18

 ]
 

                            13 / 14

http://ijiepr.iust.ac.ir/article-1-1052-fa.html


202 A Tabu Search Algorithm for the Cost-Oriented Multi-Manned Assembly Line Balancing 
Problem  

 

International Journal of Industrial Engineering & Production Research, June 2020, Vol. 31, No. 2 

Line Balancing Problem.” Journal of 
Optimization in Industrial Engineering, Vol. 
13, (2013), pp. 13-25. 

 
[23] Kazemi, A., and A. Sedighi., “A Cost-

oriented Model for Balancing Mixed-model 
Assembly Lines with Multi-manned 
Workstations.” International Journal of 
Services and Operations Management, Vol. 
16, (2013), pp. 289-309. 

 
[24] Roshani, A., Giglio, D., A mathematical 

programming formulation for cost-oriented 
multi-manned assembly line balancing 
problem. IFAC-PapersOnLine, Vol. 48, No. 
3, (2015), pp. 2293-2298. 

 
[25] Bowman, EH., “Assembly Line Balancing 

by Linear Programming.” Operations 
research, Vol. 8, No. 3, (1960), pp. 385-389. 

[26] Gutiahr, A.L., and Neumhauser, G.L. “An 
algorithm for balancing problem.” 
Management science, Vol. 11, No. 2, (1964), 
pp. 308-315. 

 
[27] Glover, F., “Tabu search: A tutorial.” 

Interfaces, Vol. 20, No. 4, (1990), pp. 74-94. 
 
[28] Helgeson WB., Birnie DP., “Assembly line 

balancing using the ranked positional weight 
technique.” Journal of Industrial 
Engineering, Vol. 12, (1961), pp. 394-398. 

 
[29] Kim, Y.K. Song, W.S. Kim, J.H., “A 

mathematical model and a genetic algorithm 
for two-sided assembly line balancing.” 
Computers & Operations Research, Vol. 36, 
(2009), pp. 853-865. 

 
 

Follow This Article at The Following Site: 
 
Roshani A, Giglio D. A tabu search algorithm for the cost-oriented multi-manned 
assembly line balancing problem. IJIEPR. 2020; 31 (2) :189-202 
URL: http://ijiepr.iust.ac.ir/article-1-1052-en.html 

 

 

 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ie
pr

.iu
st

.a
c.

ir
 o

n 
20

24
-0

7-
18

 ]
 

Powered by TCPDF (www.tcpdf.org)

                            14 / 14

http://ijiepr.iust.ac.ir/article-1-1052-fa.html
http://www.tcpdf.org

