
International Journal of Industrial Engineering & Production Research June 2020 Vol. 31, No. 2: 189-202
DOI: 10.22068/ijiepr.31.2.189

A Tabu Search Algorithm for the Cost-Oriented Multi-Manned
Assembly Line Balancing Problem

Abdolreza Roshani*1, Davide Giglio2

Received 15 April 2020; Revised 15 May 2020; Accepted 1 June 2020; Published online 30 June 2020
© Iran University of Science and Technology 2020

ABSTRACT
Plants manufacturing large-sized high-volume products, such as automobiles and trucks, usually
encounter Multi-manned Assembly Line Balancing Problems (MALBPs). In this paper, a cost-oriented
version of MALBPs, namely CMALBP, is taken into account. These types of problems may arise in the
final assembly lines of products in which the manufacturing process is pretty labor-intensive. Since
CMALBP is NP-Hard, a heuristic approach based on a Tabu search algorithm is developed to solve
the problem. The proposed algorithm uses two neighborhood generation mechanisms, namely swap
and mutation, which effectively collaborate with each other to provide new feasible solutions.
Moreover, two separate tabu lists (corresponding with the two mentioned generation mechanisms) are
used to check whether or not moving to a new generated neighbor solution is forbidden. To examine
the efficiency of the proposed algorithm, some experimental instances were collected from the
literature and solved. The obtained results show the effectiveness of the proposed tabu search
approach.

KEYWORDS: Assembly line balancing; Multi-manned workstations; Tabu search; Cost-oriented
Optimization.

1. Introduction1
Assembly Line Balancing Problem (ALBP) is the
problem of assigning assembly tasks to a series of
workstations, arranged along a conveyor belt or a
similar transportation facility, with the aim of
optimizing one or more objectives when
considering some restrictions that are imposed on
the line. In this type of problem, each task takes a
specific amount of time units to be accomplished;
thus, in order to meet the desired production
level, the sum of processing times of all tasks
assigned to each workstation must be less than or
equal to the predetermined cycle time (which is
the reciprocal of the production rate). Such a
restriction is called cycle time constraint.
Moreover, there are precedence relations among
tasks, represented by a precedence graph. In a
precedence graph, each node represents a task

Corresponding author: Abdolreza Roshani
*

a.roshani@kut.ac.ir

1. Department of Industrial Engineering, Faculty of Engineering
Management, Kermanshah University of Technology,
Kermanshah, Iran.

2. Department of Mechanical, Energy, Management, and
Transportation Engineering (DIME), University of Genova,
Genova, Italy.

and each arc (i; h) represents a precedence
relation between task i and task h. In other words,
(i; h) restricts the execution of job h to the
execution of job i); this constraint is called
precedence constraint. The objective function that
is usually expected to balance a new assembly
line is to minimize the number of workstations
(line length) for a given cycle time. ALBP with
this objective function is called ALBP type I.
Whenever an assembly line is to be rebalanced
with the aim of achieving a desired production
rate, the objective function that must be
considered is to minimize the cycle time for a
given number of workstations (which actually
corresponds to the maximization of the
production rate). ALBP with this objective
function is called ALBP type II. The
minimization of both the number of workstations
and the cycle time simultaneously characterizes
the problem called ALBP type E [1].
Salveson [2] was the first researcher who
presented a mathematical formulation for ALBP.
His formulation has some basic assumptions:
mass-production of one homogeneous product,
paced-line with fixed cycle time, and serial line
layout with single-manned workstations. Since

RESEARCH PAPER

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ie
pr

.iu
st

.a
c.

ir
 o

n
20

24
-0

7-
18

]

 1 / 14

http://ijiepr.iust.ac.ir/article-1-1052-fa.html

190 A Tabu Search Algorithm for the Cost-Oriented Multi-Manned Assembly Line Balancing
Problem

International Journal of Industrial Engineering & Production Research, June 2020, Vol. 31, No. 2

then, a number of researchers have developed
solution approaches to ALBP. In recent years, a
majority of researchers have attempted to model
more realistic and generalized problems of the
assembly line balancing. The literature now
contains additional characteristics such as the
mixed-model production, paralleling, and multi-
manned assembly lines (MAL) among many
others. Detailed reviews of such studies were
given by Becker and Scholl [1] and, more
recently, by Battaia and Dolgui [3] and
Sivasankaran and Shahabudeen [4].
Assembly line balancing problems can be
classified as simple Assembly Line Balancing
Problems (SALBPs) and Multi-manned
Assembly Line Balancing Problems (MALBPs).
Whereas only one worker is assigned to each
workstation in a Simple Assembly Line (SAL),
several workers can be assigned simultaneously
to each workstation of an MAL. In this paper,
multi-manned assembly lines were investigated.
MALs are usually designed to produce high-
volume large-sized standardized products such as
automobiles, trucks, and buses. The reason why
MALs are usually found in these kinds of
production systems is because the designer of
these assembly systems is allowed to assign more
than one worker to each workstation due to the
size of such products. The maximum number of
workers that can be assigned to each multi-
manned workstation is predetermined in
accordance with the product size, tools
availability, workstation design, etc. [5]. For
instance, in automobile manufacturing, at most
two workers can simultaneously work on two
sides of the product. However, in assembly lines
of bigger products such as trucks or buses, more
than two workers simultaneously work on the
product due to the size of the product and
multiplicity of tasks that must be simultaneously
done. According to [5], when using multi-
manned workstations in such classes of assembly
production systems, attempts are made to reduce
the line length while the total number of workers
on the line remains optimal. An MAL with a
short line length provides, in practice, several
advantages over a SAL as follows: shorter
throughput time, lower cost of tools and fixtures,
less material handling, etc. [6].
As far as this study is concerned, Dimitriadis [5]
was the first researcher who dealt with the class
of assembly lines at the multi-manned
workstations; he also proposed a two-level
heuristic-based approach to solve MALBP
aiming at, first, minimizing the number of
workers and, second, the number of workstations

for a given cycle time. Cevikcan, Durmusoglu,
and Unal [7] devised a mathematical
programming model to create the assembly
physical multi-manned workstations in mixed-
model assembly lines; however, their proposed
mathematical model was too complex to use and
failed to find the desired solution to the problem.
To this end, they developed a scheduling-based
heuristic algorithm to solve the problem. Becker
and Scholl [8] considered a special case of
MALBP with Variable Workplace Parallel
Assembly Line Balancing Problem (VWALBP).
They assumed that the work-piece was divided
into mounting positions each of which could be
used by only a single worker in each workstation.
In VWALBP, tasks that require at least one joint
mounting position (at the same workstation) must
be assigned to the same worker, i.e., after
assigning a task to a worker, only the tasks which
require the same or neighboring mounting
positions with the assigned tasks can be assigned
to that worker. The two authors developed an
exact solution procedure (called VWSolver)
based on the application of the branch-and-bound
principle. Fattahi et al. [6] presented for the first
time a mixed-integer mathematical programming
model for MALBP that minimized the number of
workers and workstations as its primary and
secondary objectives, respectively. Since
MALBP is NP-Hard, they were able to find (in a
reasonable amount of time) an optimal solution
by using the proposed MILP model only in the
case of small-sized problems. In order to find the
solution to medium- and large-sized problems,
they also developed for MALBP a heuristic
algorithm based on the ant colony optimization
approach. Kellegoz and Toklu [9] discussed an
assembly line balancing problem characterized
by the presence of multi-manned workstations
and, following the problem definition, developed
a branch-and-bound algorithm called Jumper, to
optimally solve it. Chang and Chang [10] studied
the mixed-model multi-manned assembly lines
and proposed a mathematical programming
formulation of the problem, aiming to minimize
the number of multi-manned workstations.
Roshani et al. [11] addressed the multi-objective
MALBP and proposed a simulated-annealing
search algorithm to solve the problem while
considering the line efficiency, the line length,
and the smoothness index as the performance
criteria. Kellegoz and Toklu [12] presented a
mathematical formulation of MALBP and
attempted to minimize the total number of
workers on the line; they also developed a new
constructive heuristic algorithm based on priority

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ie
pr

.iu
st

.a
c.

ir
 o

n
20

24
-0

7-
18

]

 2 / 14

http://ijiepr.iust.ac.ir/article-1-1052-fa.html

191 A Tabu Search Algorithm for the Cost-Oriented Multi-Manned Assembly Line Balancing
Problem

International Journal of Industrial Engineering & Production Research, June 2020, Vol. 31, No. 2

rules and a genetic algorithm-based solution
procedure to improve the solutions found by the
constructive heuristic. Roshani and Ghazi
Nezami [13] presented the mixed-model multi-
manned assembly line models and solution
methods. Roshani and Giglio [14] investigated
the MALBP and strived to minimize the cycle
time of the line as the primary objective, for a
given number of workstations. Besides the MILP
model, two meta-heuristics were also developed
based on SA algorithm: the indirect and direct SA
(ISA and DSA, respectively). More recently,
Sahin and Kellegz [15] proposed a mathematical
formulation and a particle swarm optimization
algorithm hybridized by a special constructive
heuristic for an MAL balancing problem with a
fixed cycle time that aimed to minimize both the
number of workstations and the cost of the
needed renewable resources.
ALBPs were categorized into two classes in
accordance with the type of objective function:
time-oriented ALBP and cost-oriented ALBP.
Moreover, there are three variants of time-
oriented ALBP, namely ALBP-I, ALBP-II, and
ALBP-E, all of which aim to minimize the total
idle time for the whole capacity provided by the
sum of the workstations of the line; in this
respect, this is called time-oriented assembly line
balancing [16]. Further, the objective of cost-
oriented ALBP is to minimize the total costs per
production unit for a given cycle time. This
objective optimizes the number of workstations
by considering not only the cost of installing
workstations, but also by taking into account the
wage that must be payed to each worker on the
line. There are some studies conducted on the
cost-oriented SALBPs in the literature [16-21].
However, according to our best knowledge, only
three studies appeared in the literature for Cost-
oriented MALBP (CMALBP). Kazemi and
Sedighi [22] presented a mathematical model and
a genetic algorithm for the single model
CMALBP. Their model minimized the total cost
per production unit by taking into account the
cost of the transportation facility per each multi-
manned workstation and the wage rate of the
workers; their cost function was the objective
function used for balancing the simple assembly
lines, too. In SALs, only one worker performs
assembly tasks in each workstation; therefore, the
total investment cost to be faced in installing the
line is directly related to the line length, i.e., to
the number of workstations equal to the number
of workers. However, in MALBPs, the installing
cost per each multi-manned workstation increases
with an increase in the number of workers

assigned to the workstation. To this end, in order
to define a suitable cost function for CMALBP, it
is necessary to consider the cost of tools and
machinery (at each workstation) per each worker
separately. Kazemi and Sedighi [23] extended
their previous work to the mixed-model multi-
manned assembly lines and attempted to
minimize the total cost per production unit when
considering the cost of tools and machinery per
each worker separately. They developed a
mathematical formulation of the problem and
proposed a Genetic Algorithm (GA) and a
particle swarm optimization algorithm to solve
the problem. Roshani and Giglio [24] developed
a mixed-integer programming formulation for
CMALBP.
In this paper, the single model CMALBP with the
aim of minimizing the total cost per production
unit is investigated. A solution approach based on
a tabu search algorithm is proposed to solve the
problem. According to the authors’ best
knowledge, this is the first study that adapts a
heuristic approach based on Tabu Search to solve
CMALBP. The rest of this paper is organized as
follows. Section 2 provides a brief description of
CMALBP. Section 3 describes the proposed tabu
search algorithm. Section 4 elaborates the
computational studies. Section 5 concludes
remarks the study.

2. Cost-Oriented Multi-Manned
Assembly Line Balancing Problem

Firstly, in Subsection 2.1, the problem is defined.
Secondly, a numerical example is presented in
Subsection 2.2.

2.1. Problem definition
Assembly lines with multi-manned workstations
are usually found in industries with large-sized
and high-volume products such as automotive
industry. A typical example of multi-manned
assembly line configuration is shown in Figure 1.
The main difference between such kinds of
assembly line and SAL is the number of workers
that can be assigned to each workstation. Only
one worker is assigned to each workstation of a
SAL, whereas several workers may be assigned
simultaneously to each workstation of an MAL.
The assignment of workers to a workstation of an
MAL is not unregulated as the number of
workers in a workstation is restricted by the
maximum feasible “worker concentration” which
is predetermined by the system designer in
accordance with the product size, tools
availability, workstation design, and so on.

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ie
pr

.iu
st

.a
c.

ir
 o

n
20

24
-0

7-
18

]

 3 / 14

http://ijiepr.iust.ac.ir/article-1-1052-fa.html

192 A Tabu Search Algorithm for the Cost-Oriented Multi-Manned Assembly Line Balancing
Problem

International Journal of Industrial Engineering & Production Research, June 2020, Vol. 31, No. 2

The present research investigates the balancing
problem of the cost-oriented MALs, which is a
generalization of the time-oriented MALBP-I,
whose objective is to minimize the number of
workstations for a given cycle time. The
objective in the cost-oriented ALBPs is to
minimize the total cost per product unit [19]. In
general, the installation cost of each assembly
line system can be divided into two groups [21]:
labor costs and invested capital (like machinery
and transportation facility as well as production
equipment). According to [21], the workers
payment (wage rate) at a workstation is specified
in accordance with the job value. If a task is
taken individually, it is likely to relate its job
value directly to a wage rate per time unit. In
other words, the payment of a worker at a
workstation can be considered as the same as the
wage rate of the task assigned to him/her.
However, the tasks assigned to a worker may
differ in the degree of difficulty, job values, and,
consequently, the corresponding wage rates. In
such situations, the worker’s wage rate is
considered as a function of the maximum job
value of the tasks assigned to the workstation to
which the worker has been allocated. Final
assembly is, nevertheless, in need of invested
capital like tools, machinery, and transportation
facilities. According to [16], in a SAL, the costs
associated with such resources can always be
directly connected to the length of the SAL, i.e.,
to the number of workstations if the quantity of
tools and machinery needed at workstations is
assumed fixed and independent of the assignment
of tasks to the workstations. Further, it is
assumed that universal machinery is identical for
all similar assembly tasks [21]. However, in
MALs, the invested capital must be analyzed
more carefully. In an MAL configuration, the
costs of the transportation facility can be reliant
on the length of the line (the same as in SAL),
which is defined, in the case of MAL, by the
number of multi-manned workstations based on
the assumption that universal machinery is
identical for all workstations. However, due to
the different number of workers, the multi-
manned workstations may need different tools
and equipment to perform the assigned tasks
(and, then, different costs). For instance, at a
multi-manned workstation, it is likely to utilize

the service of only one worker to perform the
operations, while at another one, it may be
necessary to assign more than one worker to the
workstation; therefore, the required tools and
equipment at the first workstation to which only
one worker can be assigned may be smaller than
the number of the required tools and equipment at
the second workstation. That is why the invested
capital at a multi-manned workstation should be
computed not only through the universal
machinery (like transportation equipment) costs,
which can be considered identical for each multi-
manned workstation, but also through the costs
associated to the total number of tools which are
required for all the workers at the workstation.
The following assumptions are given for different
classes of problems considered in this study:
 the system is configured for the mass-

production of one homogeneous product;
 task times are deterministic and known;
 the wage rate of each task is deterministic and

known;
 the costs of the transportation facility per each

workstation are fixed;
 the total costs of the machinery per each

worker are fixed;
 the precedence graph is given;
 each task must be performed by a single

worker;
 travel times of workers are ignored;
 parallel tasks and parallel workstations are not

allowed;
 multi-manned workstation is allowed;
 the maximum number of workers that can be

assigned to each workstation is given;
 workstations are aligned in a serial manner;
 the cycle time is given and fixed;
 the optimal total number of workstations and

workers on the line is determined by the
model;

 no further assignment restrictions are exerted
besides the cycle time and precedence
constraint;

 transportation facility is identical for each
multi-manned workstation;

 tools and equipment are identical and
independent for all workers regardless of their
assigned tasks.

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ie
pr

.iu
st

.a
c.

ir
 o

n
20

24
-0

7-
18

]

 4 / 14

http://ijiepr.iust.ac.ir/article-1-1052-fa.html

193 A Tabu Search Algorithm for the Cost-Oriented Multi-Manned Assembly Line Balancing
Problem

International Journal of Industrial Engineering & Production Research, June 2020, Vol. 31, No. 2

Fig. 1. Configuration of a multi-manned assembly line

2.2. Numerical example
To give a better insight into the problem, an
example with respect to the CMALBP is given.
Consider the precedence graph in Figure 2
presented by Bowman [25]. In this graph, each
task corresponds to a node, and the links between
nodes represent the precedence relation among
the tasks. To each task is associated a pair of
values, namely (ti;wi), where ti is the processing
time of the ith task (expressed in terms of time
unit, TU) and wi is the wage rate of the ith task
(expressed in terms of money units per time unit,
MU/TU). Given the assumption that the cycle
time is 17 TU in the example, it is possible to

assign up to two workers to each workstation.
Moreover, it is assumed that the cost of the
transportation facility per each workstation and
the cost of the machinery per each worker are 50
and 10 money units (MU), respectively. The
optimal solution to this problem is obtained in the
cases of both time-oriented and cost-oriented
objective functions. In this connection, it should
be noted that the time-oriented objective function
minimizes the number of workers as the first
objective and number of workstations as the
second one.
Table 1 reports the optimal solutions to the two
aforementioned cases.

Fig. 2. Precedence diagram of an example of a multi-manned assembly line.

Tab. 1. The comparison of the optimal solution of time- and cost-oriented
 Time-oriented Cost-oriented
Workstation Worker Tasks Wage rate Total wage Tasks Wage rate Total wage

1 1 1 2 34 1 2 34
 2 - - - - - -
2 1 2 1 17 2 1 17
 2 - - - - - -
3 1 3, 5 2 34 4 1 17
 2 - - - 3, 5 2 34
4 1 4, 6 1 17 7 1 17
 2 - - - 6, 8 2 34
5 1 7, 8 2 34 - - -
 2 - - - - - -

WORKER WORKERWORKER

WORKER WORKERWORKER

WORKER

1 2

3

4

5

6

7

8

(11, 2) (17, 1)

(9, 1)

(5,
1)

(8, 2)

(12,
1)

(10, 1)

(3, 1)

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ie
pr

.iu
st

.a
c.

ir
 o

n
20

24
-0

7-
18

]

 5 / 14

http://ijiepr.iust.ac.ir/article-1-1052-fa.html

194 A Tabu Search Algorithm for the Cost-Oriented Multi-Manned Assembly Line Balancing
Problem

International Journal of Industrial Engineering & Production Research, June 2020, Vol. 31, No. 2

The summary of the results reported in Table 2
shows that the optimal number of both the
workstations and workers is different in the two
optimal solutions to the time-oriented and cost-
oriented versions of the multi-manned assembly
line balancing problem. In fact, the numbers
associated with the multi-manned workstations in
the first experiment (relative to the time-oriented

MALBP) and the second experiment (relative to
CMALBP) are 5 and 4, respectively. Whereas the
number of workers is equal to 5 in the first
experiment, it is equal to 6 in the second one.
This difficulty increases the complexity of
CMALBP with respect to the time-oriented
MALBP.

Tab. 2. The comparison of the optimal solution of time- and cost-oriented (summary)

 Time-oriented Cost-oriented
Total Wage 136 153

Workstations 5 4
Workers 5 6

Total cost 436 413

3. Proposed Solution Approach
In this paper, a Tabu Search (TS) algorithm was
proposed to solve CMALBP. In fact, Gutiahr et
al. [26] showed that the simple assembly line
balancing problem fell into the class of NP-Hard
optimization problems. In other words, the
unbearable computational times prevent the
determination of an optimal solution to problems

of significant sizes; however, if SALBP is NP-
Hard, CMALBP addressed in this paper is NP-
Hard, too. Therefore, a solution approach based
on a tabu search algorithm [27], which is among
the most popular techniques for solving such a
class of problems, is proposed. The solution
approach is summarized in Figure 3.

Step 1 Initialization:

Step 1.1 Generate an initial solution (Y0). Calculate f (Y0).
Step 1.2 Encode the generated initial solution by using the encoding scheme, thus

obtain the initial solution string Π0.
Step 1.3 Set the best and current solution string Πb= Πc=Π0, the best and current

solution Yb=Yc=Y0, the best and the current objective function f (Yb)=f
(Yc)=f (Y0).

Step 2 While stopping criterion is not met do:
Step 2.1 Set τ to 1.
Step 2.2 While τ ≤ Neighbor-Size (NS) do:

Step 2.2.1 To generate a new neighbor solution string (Πn), apply neighbor
generation mechanism on the current solution string (Πc).

Step 2.2.2 Decode Πn, by using the proposed decoding method, in order to
generate a neighbor solution Yn.

Step 2.2.3 Calculate f(Yn).
Step 2.2.4 Store the neighbor solution Yn and the corresponding value f(Yn).
Step 2.2.5 Set τ = τ+1.

Step 2.3 Find the neighbor solution with the best objective function among those
stored at Step 2.2.4; let it be Yn

b. If such a neighbor solution is generated by
tabu move, then go to Step 2.4. Otherwise (that is, if the neighbor solution is
not generated by a tabu move):

 Set Yc = Yn
b and Πc = Πn

b, and update the tabu list;
 If f (Yn

b) – f (Yc) ≤ 0, then set Πb = Πnb and Yb = Yn
b (thus f (Yb) = f

(Yn
b), and update the aspiration criterion.

 Go to step 2.
Step 2.4 Check the aspiration criterion, that is, if f (Yn

b) – f (Yb) < 0, then set Yb = Yc
= Yn

b and Πb= Πc=Πn
b. Update the tabu list and aspiration criteria.

Step 3 Report the best solution (Yb).
Fig. 3. The proposed tabu search algorithm

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ie
pr

.iu
st

.a
c.

ir
 o

n
20

24
-0

7-
18

]

 6 / 14

http://ijiepr.iust.ac.ir/article-1-1052-fa.html

195 A Tabu Search Algorithm for the Cost-Oriented Multi-Manned Assembly Line Balancing
Problem

International Journal of Industrial Engineering & Production Research, June 2020, Vol. 31, No. 2

The algorithm starts with a feasible initial
solution (Y0) that is generated by a heuristic
approach reported in Subsection 3.1. Such a
solution is initially considered as the current
solution (Yc) and the best solution (Yb); the value
of the objective function for these solutions is
also calculated. The algorithm contains two main
loops, namely the inner and outer loops. In the
inner loop (which consists of steps from 2.2.1 to
2.2.5), the set V(Yc) containing all neighborhood
solutions Yn of the current solution Yc is
determined (note that, in case V(Yc) is too big to
be fully explored, then the sub-neighborhood set
V’(Yc) is determined). After exploring the
neighbor solutions, the current solution, in the
outer loop of the algorithm (which consists of
steps from 2.1 to 2.4), is updated by the best
neighborhood solution (Yn

b) even if it is not better
than the current one. This moving mechanism
may cause the algorithm to be trapped in a cycle
while exploring V(Yn

b) during the next step; this
phenomenon may occur because Yn is considered
the best solution regarding the V(Yn

b), in which
case we should come back to Yc and then
oscillate indefinitely between Yc and Yn

b. To
avoid such a situation (and, more generally, such
cycling situations), the algorithm makes use of a
tabu list TL which contains a certain number of
last moves used to generate neighbor solutions.
An aspiration criterion is introduced in tabu
search to determine when tabu restriction can be
overridden, thus removing a tabu classification
otherwise applied to a move. A solution is above
the current aspiration level if it is better than any
solution met before.

3.1. Initial solution
Tabu Search (TS) is a local search meta-heuristic
method that starts exploring the solution space
from an initial solution. In this class of
algorithms, the quality of the generated initial
solution affects the quality of the final solution
significantly. As a matter of fact, if TS starts its
search from an initial solution of poor quality, it
may be trapped in a local optimum. Thus,
proposing an approach that can generate initial
solution of good quality is necessary. In this
paper, a station-oriented heuristic algorithm is
proposed to find a suitable initial solution. The
steps of the algorithm are as follows:
(1) Calculate an upper bound of acceptable idle

time, namely 푈 = ∙ ∑ ∈ . Initiate the
values of Initial Controlling Parameter (ICP)
and Final Controlling Parameter (FPC).

(2) If ICP > FPC, then go to (3); else, go to (12).

(3) Let j be the counter for multi-manned
workstations; set j = 0.

(4) If j = nw (number of workstations), then go to
(11); else set j = j + 1.

(5) Create a multi-manned workstation with m =
Mmax workers. Let Dk be the load time of
worker k; set Dk = 0; k K .

(6) Determine the set 퐼 ⊆ 퐼 including all tasks
having no predecessors or having their
predecessors assigned before.

(7) For each worker k, set the starting time Si of
all the tasks 푖 ∈ 퐼 to the maximum value
between the completion times predecessors
and Dk. Then, exclude the tasks i that violate
their direct Si + ti ≤ ct for all workers at the
workstation j.

(8) If 퐼 = ∅	 , then go to (4); else, build a
roulette wheel based on the ranked positional
weight of tasks and randomly select a task.

(9) Assign the selected task to the worker that can
start it earlier (if tie occurs, then select a
worker randomly). Go to (6).

(10) If m = 1, then accept the generated workload
and go to (4); else, compute the mean idle
time per worker, namely Id, in the current
workstation, as: 퐼 = ∙ ∑ ∈ . If 퐼 ≤ 푈 ,
then accept the generated workload; else,
generate a random number r (0 < r < 1). If r
< ICP, then accept the generated workload;
else, set m = m - 1 and go to (6).

(11) Update the best initial solution. Set 퐼퐶푃 =
휆 ∙ 퐼퐶푃	and go to (2).

(12) Stop.
Of note, both ICP and FCP take values between 0
and 1, and FCP is always less than ICP.
Moreover, at Step (8) of the proposed approach,
the ranked positional weight of a task is the sum
of processing times of the task and of all its
successors [28]. Moreover, the condition used at
Step (10) was first introduced by Dimitriadis [5]
with the aim of exploring the suitability of
generated workloads for multi-manned
workstations and also reducing the computational
time of the algorithm.

3.2. Encoding
To design the tabu search algorithm for solving
CMALBP, a suitable encoding scheme of a
potential solution is required. In this paper, a
modified version of the group-numbering
encoding scheme that Kim et al. [29] used in their
genetic algorithm approach was employed to
solve a two-sided assembly line balancing
problem. In such a representation, each solution
is encoded through a string Π of length nt (the

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ie
pr

.iu
st

.a
c.

ir
 o

n
20

24
-0

7-
18

]

 7 / 14

http://ijiepr.iust.ac.ir/article-1-1052-fa.html

196 A Tabu Search Algorithm for the Cost-Oriented Multi-Manned Assembly Line Balancing
Problem

International Journal of Industrial Engineering & Production Research, June 2020, Vol. 31, No. 2

number of tasks), and each element of Π is an
integer number between 1 and nw (the number of
workstations). Thus, if task i is assigned to
workstation j, then the ith element of the string is
equal to j. For example, the string representations
of the two task assignments illustrated in Table 1
are Π1 = [1; 2; 3; 4; 3; 4; 5; 5] and Π2 = [1; 2; 3;
3; 3; 4; 4; 4], respectively, for the time-oriented
and the cost-oriented solutions.

3.3. Decoding
The encoding scheme proposed in the previous
subsection specifies the assignment of tasks to
the multi-manned workstations; however, it does
not include any information about the assignment
of tasks to the workers. Therefore, it is necessary
to provide a decoding algorithm that assigns tasks
to the workers and also minimizes the number of
workers, taking into account the cycle time
constraint and precedence relationships among
the tasks. In this paper, the following heuristic
method was proposed to decode the solutions.
(1) Let j be the counter for multi-manned
workstations; set j = 0.
(2) If j = nw, then go to (8); else set j = j + 1.
(3) Let m be the counter for the number of
workers working at j; set m = 1.
(4) Determine the set 퐼 ⊆ 퐼 including all tasks
having a value of j in the encoding string.
(5) Determine the set 퐼 ⊆ 퐼 including all

tasks of the set Ien which have no precedence
relation or have their predecessors assigned
before. If 퐼 ≠ ∅, then select the task i with
the highest ranked positional weight and go
to (6); else go to (7).

(6) Assign the selected task to the worker that can
start it earlier (if tie occurs, then select a
worker randomly). Go to (5).

(7) Calculate the completion time of all tasks
assigned to workstation j, namely 퐶 , and
the number of workers to whom at least one
task has been assigned. If 퐶 ≤ 푐푡 , then
accept the current assignment and go to (2);
else:
 if m < Mmax, then let all tasks in Ien be

unassigned, set m = m + 1, and go to (5);
 if m = Mmax, then accept that assignment

and go to (2).
(8) Stop.
Based on the assumption that there is always a
feasible assignment of tasks to the workers for
each workstation, the above algorithm assigns the
tasks to the workers, taking into account both the
precedence constraint (at Step (5)) and the cycle
time constraints (at Step (7)). Besides, Step (7) is

used to not only verify if the generated workload
satisfies the cycle time constraint, but also
provides a workload which minimizes the
number of workers.

3.4. Neighborhood generation operators
In order to generate neighbor solutions of the
current solution, two neighborhood generation
mechanisms are proposed in this paper: swap and
mutation.

3.4.1. Swap operator
The swap operator is applied to two randomly
selected tasks and changes the value of their
elements (i.e., of their workstations) in the
encoded string of the current solution. The stages
of swap operator procedure are given as follows.
(1) Randomly select the two tasks i and h that

have no precedence relations. Read in the
encoding string Πc the workstations ji and jh,
respectively, to which they have been
assigned. If ji= jh, then go to (1); else go to
(2).

(2) Specify the first and the last workstations,
namely jFi and jLi for task i and jFh and jLh for
task h, respectively, to which the selected
tasks can be moved by determining the
workstations of their immediate predecessors
and successors. If ji < jh, then go to (3). If ji >
jh, then go to (4).

(3) If ji ≥ jFh, jh ≤ jLi, and the cycle time constraint
is not violated by exchanging the
workstations of the selected tasks, then set
the workstation of i to jh and workstation of h
to ji (that is, swap ji and jh); else go to (1).

(4) If ji ≤ jLh, jh ≥ jFi and the cycle time constraint
is not violated by exchanging the
workstations of the selected tasks, then set
the workstation of i to jh and workstation of h
to ji (that is, swap ji and jh); else go to (1).

As an example, reconsider the precedence graph
in figure 2. The string representation for the time-
oriented solution of that problem is Πc = [1; 2; 3;
4; 3; 4; 5; 5]. By applying the swap operator and
randomly selecting the tasks 6 and 7, the new
string for generating a neighbor solution is Πn =
[1; 2; 3; 3; 4; 5; 4; 5].

3.4.2. Mutation operator
The mutation operator selects a task randomly
and changes its multi-manned workstation to a
randomly selected multi-manned workstation it
can be assigned to. The mutation operator
procedure is as follows:

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ie
pr

.iu
st

.a
c.

ir
 o

n
20

24
-0

7-
18

]

 8 / 14

http://ijiepr.iust.ac.ir/article-1-1052-fa.html

197 A Tabu Search Algorithm for the Cost-Oriented Multi-Manned Assembly Line Balancing
Problem

International Journal of Industrial Engineering & Production Research, June 2020, Vol. 31, No. 2

(1) Randomly select a task i. Read in the
encoding string Πc the workstation ji to
which it was assigned. Go to (2).

(2) Specify the first and the last workstations,
namely jFi and jLi, to which the selected tasks
can be moved by determining the
workstations of its immediate predecessors
and successors. If ji = jFi = jLi, then go to (1).
If ji = jFi and ji < jLi, then go to (3). If ji > jFi
and ji = jLi, then go to (4). If ji > jFi and ji < jLi,
then go to (5).

(3) Determine the set Jct of workstations j such
that ji < j ≤ jLi and the cycle time constraint is
not violated by transferring the selected task
to them. If 퐽 = ∅ , then go to (1); else,
randomly select a workstation 푗 ∈ 	퐽 and
change the value of task i in the encoding
string Πc to j.

(4) Determine the set Jct of workstations j so that
jFi ≤ j < ji and the cycle time constraint is not
violated by transferring the selected task to
them. If 퐽 = ∅ , then go to (1); else,
randomly select a workstation 푗 ∈ 	퐽 and
change the value of task i in the encoding
string Πc to j.

(5) Determine the set Jct of workstations j so that

either jFi ≤ j < ji or ji < j ≤ jLi, and the cycle
time constraint is not violated by transferring
the selected task to them. If 퐽 = ∅, then go
to (1); else, randomly select a workstation
푗 ∈ 	퐽 and change the value of task i in the
encoding string Πc to j.

For example, consider again the precedence
graph in Figure 2 and the string representation Πc
= [1; 2; 3; 3; 3; 4; 4; 4]. By applying the mutation
operator and randomly selecting Tasks 7 and
Workstation 5 to transfer it, the new string for
generating a neighbor solution is Πn = [1; 2; 3; 3;
3; 4; 5; 4].

3.5. Tabu list, aspiration criterion, and
stopping rule
In this paper, two tabu lists are employed to
check whether or not moving to a new generated
neighbor solution is allowed. The first list, which
is denoted by TLs, is associated with the swap
operator, and the second list, denoted by TLm, is
defined to control the neighbor solutions
generated by the mutation operator. TLs is a two-
dimensional matrix of size [nt ∙nt], whose generic
element TLs

ih represents the number of iterations
for which the swap of tasks i and h is forbidden.
When the algorithm starts, TLs is the null matrix.
Whenever the best neighbor solution of current
solution, generated by swapping tasks i and h, is

accepted as the next current solution, values TLs
ih

and TLs
hi are set to tabu sizes which, in this paper,

are set as √푁푆 . TLm is instead a three-
dimensional matrix of size [nt ∙ nw ∙ nw], whose
generic element TLm

ijl represents the number of
iterations for which moving the task i from
workstation j to workstation l is forbidden.
Similar to the first list, when the algorithm starts,
TLm is a null matrix. If task i is moved from
workstation j to workstation l for generating by
the mutation operator, the best neighbor solution
of current solution, TLm

ijl, is set to the tabu size,
i.e., √푁푆. The aspiration criterion is applied to
both tabu lists. If the best neighbor solution of
current solution generated by swap or mutation
operator is better than the best solution, it is
accepted as the current solution. The termination
condition (stopping criterion) which is used in the
proposed tabu search algorithm is a function of
the number of iterations.

4. Computational Experiments
This section assesses the performance of the
proposed TS algorithms on some well-known test
problems in the literature regarding assembly line
balancing problems. Five small-sized, four
medium-sized, and three large-sized problems are
selected. The considered dataset can be
downloaded from the website “www.assembly-
linebalancing.de”. The efficiency and
effectiveness of the proposed algorithm in case of
small-sized problems are compared with the
optimal solutions found by solving the MILP
model presented in Section 3. Instead, since
reaching the optimal solutions in a reasonable
CPU time for medium- and large-sized problems
by using MIP is not possible, a comparison
between the results of the proposed TS and some
reliable results in the literature needs to be made.
As discussed in Section 1, there are two studies
that have proposed solution approaches to
CMALBP. However, in both of these studies, the
wage rate of tasks was reported; moreover,
Kazemi and Sedighi [23] presented two solution
approaches to mixed-model CMALBP.
Therefore, comparing the performance of the
proposed algorithm with the results published in
these studies is not made possible. The
comparison is made with a modified version of
the simulated annealing approach that Roshani et
al. [11] proposed for the time-oriented MALBPs.
In addition, their proposed algorithm minimizes
the number of workers as the first objective, the
number of workstations as the second one, and
the smoothness index as the third objective for a
given cycle time. The adopted modified version

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ie
pr

.iu
st

.a
c.

ir
 o

n
20

24
-0

7-
18

]

 9 / 14

http://ijiepr.iust.ac.ir/article-1-1052-fa.html

198 A Tabu Search Algorithm for the Cost-Oriented Multi-Manned Assembly Line Balancing
Problem

International Journal of Industrial Engineering & Production Research, June 2020, Vol. 31, No. 2

takes into account labor cost as considered in this
paper. Thus, the aim of conducting computational
experiments in the case of medium-and large-
sized instances of the problem is mainly that of
examining the suitability of the proposed TS
algorithm in solving CMALBP in comparison to
a heuristic proved to be acceptable for the time-
oriented MALBP. For what concerns the
determination of the optimal solutions for small-
size problems, the MILP model presented by
Roshani and Giglio [24] was coded and solved
using Lingo 9.0 solver. The modified SA and TS
algorithm were implemented in C++ language.
Experiments have been carried out on a PC with
a core (TM)i3 (M330) 2.13 GHz processor and
4.00 GB Ram. All the parameters of the
algorithms were experimentally obtained. For
small-size problems, the neighbor size and
maximum number of iterations were set to 10 and
1000, respectively. Instead, in the case of
medium-and large-sized problems, neighbor sizes

were set to 20 and 30, and the maximum number
of iterations was fixed to 3000 and 5000.
Moreover, for all of the experiments, the
probability of generating neighbor solutions by
swap operator is 0.35 and for mutation operator is
0.65.

4.1. Small-sized problems
The results of experiments on the small-sized
problems are presented in Table 3. The optimal
number of workstations, optimal number of
workers, optimal total cost per production unit
found by the MILP model, and necessary CPU
time are summarized in the mentioned table. In
addition, the results of the proposed TS approach
are shown. As seen in this table, TS is capable of
achieving the optimal solutions for the small-
sized problems in a very short period of time
(less than one second).

Tab. 3. Optimal solutions of small-sized problems

 MIP TS
Problem nt ct nw nwo TC cpu nw nwo TC cpu
Merten 7 6 3 6 360 1 3 6 360 0.09
 7 3 5 355 1 3 5 355 0.09
 8 3 5 346 1 3 5 346 0.06
 10 3 3 290 7 3 3 290 0.07
 15 2 2 230 8 2 2 230 0.07
 18 1 2 198 5 1 2 198 0.04
Bowman 8 17 4 6 625 3 4 6 625 0.09
 21 4 5 615 10 4 5 615 0.11
 24 4 5 636 3 4 5 636 0.09
 28 2 3 524 13 2 3 524 0.06
 31 2 3 501 1 2 3 501 0.06
Jaeschke 9 6 6 8 598 39 6 8 598 0.11
 7 6 7 594 1 6 7 594 0.09
 8 5 6 522 1 5 6 522 0.11
 10 3 5 410 27 3 5 410 0.09
 18 2 3 358 10 2 3 358 0.07
Jackson 11 7 6 8 663 369 6 8 663 0.14
 9 4 6 518 518 4 6 518 0.12
 10 4 5 510 151 4 5 510 0.11
 13 3 4 451 714 3 4 451 0.07
 14 3 4 440 663 3 4 440 0.11
 21 2 3 391 322 2 3 391 0.09
Mansoor 11 45 3 5 925 519 3 5 925 0.42
 54 3 4 932 170 3 4 932 0.43
 63 3 4 986 199 3 4 986 0.35
 72 2 3 952 34 2 3 952 0.39
 81 2 3 1051 283 2 3 1051 0.37

nw: optimal number of workstations; nwo: optimal number of workers; TC: optimal total cost per production unit; cpu:
CPU time (seconds).

4.2. Medium-and large-sized problems
The performance of the proposed tabu search
algorithm in solving medium- and large-sized
instances of the problem is examined in this

subsection. The proposed TS was applied to four
medium-sized problems (respectively presented
by Mitchell, Heskia, Sawyer, and Kilbridge) and
three large-sized problems (one proposed by

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ie
pr

.iu
st

.a
c.

ir
 o

n
20

24
-0

7-
18

]

 10 / 14

http://ijiepr.iust.ac.ir/article-1-1052-fa.html

199 A Tabu Search Algorithm for the Cost-Oriented Multi-Manned Assembly Line Balancing
Problem

International Journal of Industrial Engineering & Production Research, June 2020, Vol. 31, No. 2

Tange, and two by Arcus), with different cycle
times. Generally, 40 experiments were carried out
whose results are shown in Table 4. As discussed
earlier, the solutions generated by the proposed
TS are not compared in this case with those
provided by the MILP model (it does not provide
an optimal solution in a reasonable amount of
CPU time), but are compared with the modified
simulated annealing algorithm version proposed

by Roshani et al. [11] to solve the medium- and
large-sized problems. Thus, in Table 4, the
number of workstations, number of workers, and
total costs per production unit found by SA are
also reported. In this table, Imp value represents
the improvement of the cost function from SA to
TS; it is computed as 100 ∙ .

Tab. 4. Computational results of medium- and large-sized problems

 SA TS
Problem nt ct nw nwo TC cpu nw nwo TC cpu Imp
Mitchell 21 14 7 8 1168 15.39 7 8 1140 1.29 2.39
 15 7 8 1185 11.18 7 8 1140 1.24 3.79
 21 5 5 1001 22.73 5 5 1001 1.23 0
 26 4 5 1054 14.37 4 5 1028 1.07 2.46
 35 3 3 980 9.38 3 3 980 0.95 0
Heskia 28 138 5 8 7708 13.9 5 8 7432 12.56 3.58
 205 4 5 8060 22.81 4 6 7340 13.23 8.93
 216 3 5 7514 20.29 4 5 7116 15.28 5.29
 256 3 5 7906 21.17 4 5 7388 12.32 6.55
 324 2 4 8028 19.32 3 4 8028 14.92 0
 342 2 3 8324 34.98 3 3 7890 13.68 5.21
Sawyer 30 25 8 14 2830 32.76 9 15 2725 13.39 3.71
 27 8 14 2840 29.84 10 13 2731 13.68 3.83
 30 7 12 2720 34.82 8 12 2710 12.59 0.36
 36 6 10 2732 58.95 7 10 2674 13.07 2.20
 41 5 9 2644 23.87 6 9 2612 23.37 1.21
 54 4 7 2662 25.89 6 7 2708 18.03 -1.7
Kilbridge 45 57 6 10 14306 65.75 6 10 14306 60.76 0
 79 4 8 11792 74.59 4 8 11634 65.96 1.34
 92 4 7 11732 83.96 4 7 10904 75.75 7.06
 110 3 6 10070 39.78 3 6 9960 38.82 1.09
 138 3 4 9416 76.17 3 4 9416 50.51 0
 184 2 3 7732 69.17 2 3 7916 54.67 -2.37
Tonge 70 176 12 22 51160 265.81 12 20 45760 149.2 10.55
 364 6 10 40848 159.78 7 10 40756 72.11 0.22
 410 5 9 38200 157.22 6 9 38790 186.25 -1.54
 468 5 8 38016 153.75 5 8 38016 146.29 0
 527 4 7 39120 159.59 4 7 38066 81.86 2.69
Arcus 83 5048 12 16 681760 346.41 16 17 657328 70.06 3.58
 5853 10 14 719536 326.11 14 14 657594 62.81 8.61
 6842 8 12 674622 204.6 10 12 657254 78.64 2.57
 7571 10 11 681822 303.2 10 11 651538 74.53 4.44
 8412 8 10 689312 296.4 10 10 674076 69.41 2.21
 8998 7 9 664862 217.4 7 9 673860 91.43 -1.35
 10816 5 8 703592 283.6 7 8 670328 83.02 4.72
Arcus 111 8847 14 18 1273500 720.3 18 19 1046780 79.71 15.41
 10027 12 16 1269210 643.6 14 18 1170920 105.7 7.74
 10743 14 15 1170040 714.1 12 15 1052610 132.4 10.03
 11378 9 14 1299200 592.1 11 15 1139530 111 12.28
 17067 7 9 1255760 593.1 9 10 1164360 85.3 7.27

nw: optimal number of workstations; nwo: optimal number of workers; TC: optimal total cost per production unit; cpu:
CPU time (seconds).

In the case of small-sized problems, for all
medium- and large-sized instances, the wage rate
of tasks is fixed to an integer random number
obtained from the discrete uniform distribution

between 1 (MU/TU) and 10 (MU/TU). In this
respect, the costs of installing each workstation
and of tools and machinery per each worker they
are set to 50 (MU) and 20 (MU) for Mitchell and

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ie
pr

.iu
st

.a
c.

ir
 o

n
20

24
-0

7-
18

]

 11 / 14

http://ijiepr.iust.ac.ir/article-1-1052-fa.html

200 A Tabu Search Algorithm for the Cost-Oriented Multi-Manned Assembly Line Balancing
Problem

International Journal of Industrial Engineering & Production Research, June 2020, Vol. 31, No. 2

Sawyer problems, respectively, 250 (MU) and
100 (MU) for Heskia problems; 1000 (MU) and
500 (MU) for Kilbridge and Tonge problems,
respectively, and 15000 (MU) and 1000 (MU) for
Arcus problems. With reference to the
experiments conducted on the medium- and
large-sized problems, it can be stated that TS
outperforms the SA algorithm in accordance with
the Imp factor which is positive (that is, TS
produced a lower total cost than SA) in 30 out of
40 medium- and large-sized problem cases. In six
experiments, the same result was obtained; the
worst results were found by TS only in four
problems. Moreover, the average improvement
rate of 23 medium-sized problems and 17 large-
sized problems was 2.387 and 5.26, respectively.
Thus, it can be concluded that the proposed TS is
more effective than SA in terms of medium-sized
problems. Finally, the computation times of TS
are between 0.95 and 186.25 seconds on a PC
with a 2.13 GHz core i3 CPU and 4.00 GB Ram;
instead, the CPU time of SA was shorter than
720.3 seconds for each problem. According to
these results, it can be concluded that the
proposed TS algorithm consumes a shorter
computational amount of time than the SA
method.

5. Conclusion
In this paper, the balancing problem of the cost-
oriented multi-manned assembly lines, called
CMALBP, was studied with the aim of
minimizing the total cost per production unit. An
illustrative example showed that given the same
precedence graph of a multi-manned assembly
line with the same cycle time, two different
optimal solutions could be actually found when
switching from the time-oriented objective
function to the cost-oriented one, and vice versa.
This difficulty increased the complexity of
CMALBP with respect to MALBPs addressed in
the literature. Since CMALBP is NP-Hard, it is
impossible to find an optimal solution to the
large-sized problem by using the mathematical
programming formulation. Thus, a tabu search
algorithm was presented to solve different sizes
of the problem cases. The proposed algorithm
uses a heuristic approach to generate initial
solutions. Moreover, it contains two
neighborhood generation mechanisms to generate
new solutions and uses two different tabu lists to
manage forbidden moves. The performance of
the proposed TS was examined on some small-,
medium-, and large-sized problem cases collected
from the literature. The optimal solutions to the
small-sized problems were found by coding the

proposed mathematical formulation in Lingo 9.0
software; the comparison of the results showed
that the proposed method could find optimal
solutions. For medium- and large-sized problems,
the performance of TS was compared with the
simulated annealing proposed by Roshani et al.
[11] for time-oriented MALBP, appropriately
modified and used to solve the CMALBP. Both
SA and TS were applied to the cases, and the
comparison of the results of TS and SA reveals
that TS is more effective than SA in terms of
solution quality and computational time.
The model and solution approach proposed in
this paper may be developed in future studies by
considering more realistic constraints such as the
sequence-dependent finish time of tasks.
Moreover, since the performance of the TS
approach is significantly related to the encoding
algorithm, it is necessary to develop an optimal
seeking procedure to optimally encode the new
neighbor solutions in a reasonable amount of
time.

Disclosure statement
No potential conflict of interest was reported by
the authors.

References
[1] Becker, C. and Scholl, A., “A survey on

problems and methods in generalized
assembly line balancing.” European Journal
of Operational Research, Vol. 168, No. 3,
(2006), pp. 694-715.

[2] Salveson, M.E. “The assembly line

balancing problem.” Journal of industrial
engineering Vol. 6, No. 3, (1955), pp. 18-25.

[3] Battaia, O., and Dolgui, A. “A taxonomy of

line balancing problems and their solution
approaches.” International Journal of
Production Economics, Vol. 142, No. 2,
(2013), pp. 259-277.

[4] Sivasankaran, P., and P. Shahabudeen.

“Literature review of assembly line
balancing problems.” The International
Journal of Advanced Manufacturing
Technology, Vol. 73, No. 9-12, (2014), pp.
1665-1694.

[5] Dimitriadis, S.G., “Assembly line balancing

and group working: A heuristic procedure
for workers' groups operating on the same
product and workstation.” Computers &

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ie
pr

.iu
st

.a
c.

ir
 o

n
20

24
-0

7-
18

]

 12 / 14

http://ijiepr.iust.ac.ir/article-1-1052-fa.html

201 A Tabu Search Algorithm for the Cost-Oriented Multi-Manned Assembly Line Balancing
Problem

International Journal of Industrial Engineering & Production Research, June 2020, Vol. 31, No. 2

Operations Research, Vol. 33, No. 9, (2006),
pp. 2757-2774.

[6] Fattahi, P., and Roshani, A. and Roshani, A.,

“A mathematical model and ant colony
algorithm for multi-manned assembly line
balancing problem.” The International
Journal of Advanced Manufacturing
Technology, Vol. 53, No. 1-4, (2011), pp.
363-378.

[7] Cevikcan, E., Durmusoglu, M.B., and Unal,

M.E., “A team-oriented design methodology
for mixed model assembly systems.”
Computers & Industrial Engineering, Vol.
56, No. 2, (2009), pp. 576-599.

[8] Becker, C. and Scholl, A., “Balancing

assembly lines with variable parallel
workplaces: Problem definition and effective
solution procedure.” European Journal of
Operational Research, Vol. 199, No. 2,
(2009), pp. 359-374.

[9] Kellegoz, T. and Toklu, B., “An efficient

branch and bound algorithm for assembly
line balancing problems with parallel multi-
manned workstations.” Computers &
Operations Research, Vol. 39, No. 12,
(2012), pp. 3344-3360.

[10] Chang, H.-J., and Chang, T.-M.

“Simultaneous Perspective-based Mixed-
model Assembly Line Balancing Problem.”
Tamkang Journal of Science and
Engineering, Vol. 13, (2010), pp. 327-336.

[11] Roshani, A., Roshani, A., Roshani, A.,

Salehi, M., and Esfandyari, A., “A simulated
annealing algorithm for multi-manned
assembly line balancing problem.” Journal
of Manufacturing Systems, Vol. 32, No. 1,
(2013), pp. 238-247.

[12] Kellegoz, T. and Toklu, B., “A priority rule-

based constructive heuristic and an
improvement method for balancing
assembly lines with parallel multi-manned
workstations.” International Journal of
Production Research, Vol. 53, No. 3, (2015),
pp. 736-756.

[13] Roshani, A., & Nezami, F. G., “Mixed-

model multi-manned assembly line
balancing problem: A mathematical model
and a simulated annealing approach.”

Assembly Automation, Vol. 37, No. 1,
(2017), pp. 34-50.

[14] Roshani, A., & Giglio, D., “Simulated

annealing algorithms for the multi- manned
assembly line balancing problem:
Minimising cycle time.” International
Journal of Production Research, Vol. 55, No.
10, (2017), pp. 2731-2751.

[15] Sahin, M., Kellegz, T., “A new mixed-

integer linear programming formulation and
particle swarm optimization based hybrid
heuristic for the problem of resource
investment and balancing of the assembly
line with multi-manned workstations.”
Computers & Industrial Engineering, Vol.
133, (2019), pp. 107 - 120.

[16] Amen, M., “An exact method for cost-

oriented assembly line balancing.”
International Journal of Production
Economics, Vol. 64, (2000), pp. 187-195.

[17] Rosenberg, O., Ziegler, H., “A comparison

of heuristic algorithms for cost-oriented
assembly line balancing.” Zeitschrift fur
Operations Research, Vol. 36, (1992), pp.
477-495.

[18] Amen, M., “Heuristic methods for cost-

oriented assembly line balancing: A survey.”
International Journal of Production
Economics, Vol. 68, (2000), pp. 1-14.

[19] Amen, M., “Heuristic methods for cost-

oriented assembly line balancing: A
comparison on solution quality and
computing time.” International Journal of
Production Economics, Vol. 69, (2001), pp.
255-264.

[20] Scholl, A. and Becker, C., “A note on “An

exact method for cost-oriented assembly line
balancing”.” International Journal of
Production Economics, Vol. 97, (2005), pp.
343-352.

[21] Amen, M., “Cost-oriented assembly line

balancing: Model formulations, solution
difficulty, upper and lower bounds.”
European Journal of Operational Research,
Vol. 168, (2006), pp. 747-770.

[22] Kazemi, A., and A. Sedighi., “A Cost-

oriented Model for Multi-manned Assembly

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ie
pr

.iu
st

.a
c.

ir
 o

n
20

24
-0

7-
18

]

 13 / 14

http://ijiepr.iust.ac.ir/article-1-1052-fa.html

202 A Tabu Search Algorithm for the Cost-Oriented Multi-Manned Assembly Line Balancing
Problem

International Journal of Industrial Engineering & Production Research, June 2020, Vol. 31, No. 2

Line Balancing Problem.” Journal of
Optimization in Industrial Engineering, Vol.
13, (2013), pp. 13-25.

[23] Kazemi, A., and A. Sedighi., “A Cost-

oriented Model for Balancing Mixed-model
Assembly Lines with Multi-manned
Workstations.” International Journal of
Services and Operations Management, Vol.
16, (2013), pp. 289-309.

[24] Roshani, A., Giglio, D., A mathematical

programming formulation for cost-oriented
multi-manned assembly line balancing
problem. IFAC-PapersOnLine, Vol. 48, No.
3, (2015), pp. 2293-2298.

[25] Bowman, EH., “Assembly Line Balancing

by Linear Programming.” Operations
research, Vol. 8, No. 3, (1960), pp. 385-389.

[26] Gutiahr, A.L., and Neumhauser, G.L. “An
algorithm for balancing problem.”
Management science, Vol. 11, No. 2, (1964),
pp. 308-315.

[27] Glover, F., “Tabu search: A tutorial.”

Interfaces, Vol. 20, No. 4, (1990), pp. 74-94.

[28] Helgeson WB., Birnie DP., “Assembly line

balancing using the ranked positional weight
technique.” Journal of Industrial
Engineering, Vol. 12, (1961), pp. 394-398.

[29] Kim, Y.K. Song, W.S. Kim, J.H., “A

mathematical model and a genetic algorithm
for two-sided assembly line balancing.”
Computers & Operations Research, Vol. 36,
(2009), pp. 853-865.

Follow This Article at The Following Site:

Roshani A, Giglio D. A tabu search algorithm for the cost-oriented multi-manned
assembly line balancing problem. IJIEPR. 2020; 31 (2) :189-202
URL: http://ijiepr.iust.ac.ir/article-1-1052-en.html

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ie
pr

.iu
st

.a
c.

ir
 o

n
20

24
-0

7-
18

]

Powered by TCPDF (www.tcpdf.org)

 14 / 14

http://ijiepr.iust.ac.ir/article-1-1052-fa.html
http://www.tcpdf.org

