International Journal of Industiral Engineering & Producion Research
نشریه بین المللی مهندسی صنایع و تحقیقات تولید
IJIEPR
Engineering & Technology
http://ijiepr.iust.ac.ir
18
agent2
2008-4889
2345-363X
10.22068/ijiepr
en
jalali
1398
6
1
gregorian
2019
9
1
30
3
online
1
fulltext
en
Integration of grey-based Taguchi technique in optimization of parameters process during the turning operation of 16MnCr5 steel
Optimization Techniques
Optimization Techniques
پژوهشي
Research
CNC turning is widely used as a manufacturing process through which unwanted material is removed to get the high degree of surface rough. In this research article, Taguchi technique was coupled with grey relation analysis (GRA) to optimize the turning parameters for simultaneous improvement of productivity, average surface roughness (R<sub>a</sub>), and root mean square roughness (R<sub>q</sub>).Taguchi technique L27 (3<sup>4</sup>) orthogonal array was used in this experimental work. Feed, speed, and depth of cut were considered as the controllable process parameters. average roughness (R<sub>a</sub>), root mean square roughness (R<sub>q</sub>),and material removal rate (MRR) were considered as the performance characteristic and from TGRA result, it was revealed that the optimum combinational parameters for multi-performance, based on mean response values and confirmation experiments with Taguchi-based GRA is A1B1C1 (Vc=400 rpm, f=0.06 mm/rev, and DOC=0.5 mm). The optimum values obtained from experimental investigations for R<sub>a</sub> was 6.86 μm, and MRR was 20690.31 mm<sup>3</sup>/s,further analysis of variance(ANOVA) were applied and it was identified that the depth of cut having most significant effect followed by speed and feed for multiresponse optimization. The percentage contribution of depth of cut was 38.28.71 %, speed was 11.89 % and feed was 8.466 %.<br>
CNC turning is widely used as a manufacturing process through which unwanted material is removed to get a high degree of surface roughness. In this research article, Taguchi technique was coupled with grey relation analysis (GRA) to optimize the turning parameters for simultaneous improvement of productivity, the average surface roughness (R<sub>a</sub>), and root means square roughness (R<sub>q</sub>). Taguchi technique L27 (3<sup>4</sup>) orthogonal array was used in this experimental work. Feed, speed, and depth of cut were considered as the controllable process parameters. average roughness (R<sub>a</sub>), root mean square roughness (R<sub>q</sub>), and material removal rate (MRR) were considered as the performance characteristic and from TGRA result, it was revealed that the optimum combinational parameters for multi-performance, based on mean response values and confirmation experiments with Taguchi-based GRA is A1B1C1 (Vc=400 rpm, f=0.06 mm/rev, and DOC=0.5 mm). The optimum values obtained from experimental investigations for R<sub>a</sub> was 6.86 μm, and MRR was 20690.31 mm<sup>3</sup>/s, further analysis of variance(ANOVA) were applied and it was identified that the depth of cut having most significant effect followed by speed and feed for multiresponse optimization. The percentage contribution of the depth of cut was 38.28.71 %, speed was 11.89 % and feed was 8.466 %.
ANOVA,surface roughness, MRR, grey relation analysis, Taguchi technique
245
254
http://ijiepr.iust.ac.ir/browse.php?a_code=A-10-886-1&slc_lang=en&sid=1
Saadat Ali
Rizvi
saritbhu@gmail.com
`180031947532846005226`

180031947532846005226
Yes
JMI
Ali
Wajahat
`180031947532846005227`

180031947532846005227
No
JMI