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This paper deals the stochastic cell formation problem (SCFP)
and presents a new nonlinear integer programming model for the
SCFP in which the effect of buffer size on the grouping efficacy of
cells has been investigated. The objective function is the
maximization of the grouping efficacy of cells. A chance constraint
is applied to explore the effect of buffer on the SCFP. Processing
time and arrival time of the part for each cell are considered
stochastic which follow exponential probability distribution. To
find the optimal solution in a reasonable time, a heuristic
approach is used to linearize the proposed nonlinear model. This
problem has been known as an NP-hard problem. Therefore, two
metaheuristic methods, namely genetic algorithm and particle
swarm optimization, are employed to solve examples. The
parameters of the algorithms are calibrated using Taguchi and
full factorial methods, and the performances of the algorithms in
the examples of various sizes are analyzed against global
solutions obtained from Lingo software’s branch and bound
(B&B) in terms of quality of solutions and computational time.
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1. Introduction

uses both the job and mass production. The

Celular manufacturing (CM) is considered
as the application of group technology (GT)
philosophy and its principle, which focuses
on the identification of similar parts to the
benefit of a particular production. It offers
promising aternative solutions to
manufacturing systems. The CM approach
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main enhancement of cellular manufacturing

implementation  incorporates  reduction in
set-up time, throughput time, materia
handling, and improved quality

management. One of the basic problems that
has to be solved before implementing CM is
the cel formation (CF) problem. The
objective of the CF is the establishment of
the family of pats and the group of
machines for subsequent processes [1].
Addressing the CF in the uncertainty
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conditions is closer to reality because
demand, machine availability, processing
time, setup time, etc. are uncertain in the
real world. In this research, processing time
is stochastic. Study of buffer effects has not
been ever considered in the SCFP; hence,
buffer effects will be discussed in this
research.  Whenever there is  variation,
inventory is needed to compensate for the
variation if we wish to maintain the
production rate. This is not quite a true
statement.  Specifically, when there is
variation, this  variation needs to be
compensated in order to a maintain rate.
Inventory is discussed as a countermeasure
for variation; however, in a more general
sense, a buffer is required. A buffer is the
excess resource designed to account for the
fact that production cannot be in perfect
lock-step with consumption [2]. In the
following, a review of new researches is
presented about the SCFP.

Egilmez et al. [3] addressed the impact of
probabilistic demand and processing times
on cell formation. The objective function
was the maximization of the total similarity
among products that are formed as families
to be produced in dedicated cells, while
minimizing the total number of cells.
Rabbani et al. [4] proposed a bi-objective
cell formation problem with demand of
products expressed in a number of
probabilistic scenarios. To deal with the
uncertain demand of products, a framework
of a two-stage stochastic programming
model was presented. The first crucial
objective function minimized the machine
constant cost, expected machine variable
cost, cell fixed-charge cost, and expected
inter-cell movement cost; the second crucial
objective function minimized the expected
total cell loading variation. Egilmez et al. [5]
proposed a non-linear mathematical model
to solve stochastic capacitated CM system.
The problem was observed in both machine
and labor-intensive cells, where operation
times were probabilistic in addition to
uncertain customer demand. They assumed

that processing time and customer demand
are normally distributed. Their objective was
to design a CM system with product families
formed with the most similar products and
minimum number of cells and machines for
a specified risk level. Aghajani et al. [6]
presented a dynamic multi-objective mixed
integer mathematical model for a cell
formation problem with probabilistic
demand and machine reliability analysis.
Their  objective  functions included the
minimization of the system production costs
for meeting the demand, machine
underutilization cost, and system failure rate
simultaneously. The objective function of
system production costs included machine
operating, internal part production,
intercellular material handling, and
subcontracting costs. Egilmez et al. [7]
studied a stochastic skill-based manpower
allocation problem, where operation times
and customer demand were uncertain. Their
proposed methodology optimized the
manpower levels, product-cell formations,
and individual worker assignment
hierarchically with respect to a specified risk
level. They developed three stochastic
nonlinear mathematical models to deal with
manpower level determination, cell loading,
and individual worker assignment phases.
Salarian et al. [8] developed a mathematical
model to formulate a cellular manufacturing
system  with  uncertain  parameters. The
processing time and demand were
considered  random  variables  following
normal  probability distribution, and the
inter-arrival time for part was considered a
random  variable  following  exponential
probability  distribution. The objective of
their proposed mathematical model was to
configure machines’ layout in cells so that
the inter-cell movements are minimized.
Egilmez and Suer [9] researched the
stochastic ~ cell loading  problem.  The
objective function was to minimize the
number of tardy jobs subject to maximum
acceptable probability of tardiness (risk

level). They developed a stochastic non-
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linear ~ mathematical model in  which
processing times had a normal distribution
and due dates were deterministic.
Esmailnezhad and Fattahi [10] presented a
mathematical model considering the queuing
theory and reliability concept for the SCFP.
Their mathematical model considered inter-
arrival times,

machines’

processing  times, and
breakdown as probabilistic.
Zohrevand et al. [11] proposed a new bi-
objective  stochastic model in order to
consider human-related issues in dynamic
cell formation problem. They used fuzzy
stochastic programming to cope with the
vagueness involved in  part demands,
machine capacities in regular time and
overtime, and machine selling prices. The
first objective function of the developed
model was to minimize total cost of machine
procurement, machine relocation, inter-cell
moves, overtime utilization, worker
hiring/laying-off, and worker moves
between cells; the second objective function
was to maximize labor utilization of the
cellular manufacturing system. Egilmez et
al. [12] offered a nonlinear stochastic p-
median for the SCFP. The objective was to
maximize the total similarity and minimize
the total number of cells. In this model,
capacity requirement is probabilistic,
because the product’s demand and
processing time are probabilistic. It should
be noted that capacity requirement is equal
to the multiplication of the product’s
demand and the corresponding processing
time.

This study seeks to model the SCFP with
queuing  theory  approach  through  the
maximization of the grouping efficacy of
cells. In addition, buffer effects are
considered on the  grouping efficacy
measure. The rest of the paper is organized
as follows: In the next section, mathematic
modeling is presented. The experimental
results, solution procedure, and
computational  results are described in
sections 3, 4 and 5, respectively. Finally,
conclusion is presented in section 6.

2. Mathematic Modeling
2-1.Problem description
In this section, The SCFP will be formulated

as a queue system. Each part is assumed as a
customer and each machine is assumed as a
server. The arrival rate of each part is
represented by A and the service rate of each
machine is represented by p.

2-2. Assumptions

e M/M/1 queuing model is wused to
formulate  the SCFP; moreover,
distribution of processing times of
each part and the time interval
between two consecutive arrivals of
parts follow exponential distribution;

e Only one part can be processed by a
machine at each time;

e The order of service is based on first-
come, first-service method;

e Exceptional elements will be out-
sourced to operate

2-3.Notation
Indexing sets

i: Index for partsi = 1,...,P

j: Index for machinesj = 1,...,M

k: Index forcellsk = 1,...,C

Parameters

Ai: Mean arrival rate for part i (mean
number of parts entered per unit time).

Hj: Mean service rate for machine ]
(mean number of customers served per unit
time by machine j).

N: The number of inventory buffer for
each machine

a: Maximum allowed probability that the
queue length behind each machine can be
more than the number of inventory buffer
for each machine

Mpax:  The
machines per cell.

maximum number of

aii
_ {1 if partiis to be processed on machine j
0 otherwise.
Decision variables
S {1 if part i is assigned to cell k
k1o otherwise
1 if machine j is assigned to cell k

Yik = {0 otherwise
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2-4. Model formulation

There are several measures for machine-part
matrix clustering in the cell formation
problem. Kumar and Chandrasekharan [13]
introduced grouping efficacy to compare the
quality  rates of  machine-part  matrix
clustering. Special property of grouping
efficacy is that it is not affected by the size
of the machine-part matrix. In this measure,
high grouping efficacy will result in a good
CF. Grouping efficacy is calculated through

e—e . .
® where e is the total number of ones in

the given machine-part matrix, e, is the
number of exceptional elements (exceptional
elements are defined as parts which must be
processed in different cells and, therefore,
have intercellular movements), and e, is the
number of voids (a void indicates that a
machine assigned to a cell is not required for
the processing of a part in the cell). Based
on the presented description, the proposed
model can be formulated as follows:

etey
Max 7 = 2119:1 Zj]\i1 ajj — Zlc<=1 Z$:1 ZjM=1 ainjk(l — Xik) @)
a2 ay + TR (B0 2 Xk — 2ieq XL XiYiai)
¢ 2
s.t: Z Xixg = 1 Vi
k=1

¢ 3)
D=1 vj
k=1

u “4)
Z Vik < Myax vk
=1
P{queue length of machine j > N} < «a ®)
Xik 'yjk € {0'1} Vi'j' k (6)

Equation (1) is the objective function used
to maximize the grouping efficacy of
produced parts in cells in the planning
horizon. Equation (2) restricts allocation of
each part to only one cell. Similarly,
Equation (3) ensures that each machine is
allocated to only one cell. Equation (4)
guarantees that the number of machines to
be allocated to each cell should be less than
the maximum number of machines allowed
in each cell. Equation (5) is a chance
constraint that limits the probability through
which the length of queue behind each
machine exceeds the number of inventory
buffer. According to the assumptions and
notations mentioned, the arrival time of part
for processing on a special machine can be
found. It is equal to the minimum arrival

time of parts. On the other hand, the
minimum of some independent exponential
random variables is also exponential at a
rate equal to the sum of arrival rates. In
addition, the utilization factor is the ratio of
mean arrival rate over mean service rate for
each machine. Hence, the utilization factor
Z]E:lzil::lxixikyl'kaij
K
probability that machine j is busy). On the

for machine j is (or the

other hand, P{queue length of machinej >
N} is equal to
(the utilization factor of machine j)N+2

[14]. Finally, left side of Equation (5) is

N+2
Tkt Tho1 MiXikyikaij
equal to (k1 11u11 jkdij
j

®) can be

Equation

rewritten as
1

C P — .
Yk=12i=1 AiXikYjkajj < pjaN+z  for each j.
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Equation (5) avoids the infinite queue length @)
behind each machine. Equation (6) specifies Vijk = Xk —Yjk + 1.5 20 Vijk

the type of decision variables. ®)

2-5. Linearization of the proposed model
Objective function (1) and Equation (5) need

to be linearized. In the first step, define
binary variable Vj;,, which is equal to

Vijk = Xik X ¥jk Vi jk

By considering the above equation, the
following set constraints should be added to
the proposed model:

Y2 ay — oy Xing DL gy (1 —

L5Vijk =Xk —yjk =< 0 Vi jk

Two other auxiliary variables are introduced
in order to linearize objective function (1)
along with additional constraints. The new
variables can be defined by the following
equations:

Xik)

Q=
Rjjk = Q X Vijk Vi, k

Where Q = 0 and Rjx = 0 Vi, j, k.
Considering the above  equations, the

following constraints should be added to the
mathematical model:

P M cC P M (9)
QD 2+ 0, 0, 0
i=1j=1 k i j
C P M
PN
K 1 j
P M
D
i=1 j=1
C P M
=02, 2,
k i j
C P M
RN
K 1 j
Rjjx <L X Vjjx  Vijk (10)
Rijx =Q Vijk (11)
Rijk = Q—(1— Vi) XL Vi jk (12)

Which L is sufficiently large number.

C P M P M
=1 Z] =13dj T Zk=1(21=1 Zj:l XikYjk — Yi=1 Zj=1 Xikyjkaij)

3. Experimental Results

An example is considered with P=7,M=
7,C = 3,and My, = 4. This randomly
generated example is used to examine the effects
of N and o on the grouping efficacy measure.
Fig. 1 shows the relation between N and the
grouping efficacy measure with constant amount
for a=0.1. When N increases, the grouping
efficacy measure rises, too. Based on the result,
by increasing N, more parts can be processed on
each machine. Indeed, the number of operation
for exceptional parts and that of voids will
reduce in each cell, and more parts will be done
on each machine. Therefore, the grouping
efficacy measure will increase. Fig. 2 shows the
relation between o and the grouping efficacy
measure with constant amount for N = 4. This
Figure illustrates that, for a fixed N, if a
increases, the upper bound of linearized equation
(5) will increase, where this growth will decrease
exceptional elements and voids in each cell.
Then, more parts will be done on each machine;
therefore, the grouping efficacy measure will
increase.
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N & the grouping efficacy measure with a=0.1

© o o ©
> 0 oo W
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Grouping efficacy measure
o
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15 20 25

Fig. 1. The relation between the number of inventory buffer and the grouping efficacy measure with
constant amount for ¢ = 0.1

o & Grouping efficacy measure
with N=4

o©
N

Grouping efficacy measure
© o o o o o
[ N w Sy w [e)}

®

o

0.3 0.4 0.5 0.6
a

Fig. 2. The relation between the maximum allowed probability and the grouping efficacy measure
with constant amount for N = 4

4. Solution procedure

The CF is known as NP-hard. For that reason,
two metaheuristic algorithms are presented. The
following Figure (3) shows the particle (or
chromosome). The first part of particle relates to
the cells assigned to machines, and the second

part relates to the cells assigned to parts. The
following heuristic algorithm is used to generate
an initial solution. Steps of heuristic algorithm,
particle swarm optimization algorithm, and
genetic algorithm are presented in the following,
respectively:

Machinel Machine2

Machine M Parl Patl Pat P

the cell

number i z

1 3 2 3

Fig. 3. Sample of particle (or chromosome) structure

4-1. Heuristic algorithm

Heuristic algorithm steps involve the following
steps:

Step 1: Set r = 1 (population index);
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Step 2: Set
the number of machines inside each cell =
0;
Step 3: Set i = 1 (index for machine and part);
Step 4: If “i < M + P” (M is the number of
machines and P is the number of parts);

4-1: 1If“i < M7

Generate a random integer

between 1 to C — d, and go to step §;

4-2: Else, generate a random integer
between 1 to C — d, and go to step 5;

Else, if “i > M + P”;
f“i<M+P+17
Find the value of the fitness

function and go to step 6;

Else, go to step 6;
Step 5: If there is a machine in all cells whose
queue length is infinite;

rer—1landi=M+ P+ 1. Then,
go to step 9;

Else, if the machine queue length is

infinite in cell d, go back to sub-step 4-2;

Else, make clear machines where
part i needs to be processed on them, and then go
to step 10;

Step 6: 7 <1+ 1;
Step 7: If “population > r” (population is the
number of particles);

Go back to step 2;

Else “End”;
Step 8: If “the number of assigned machines to
cell d < Myax”

8-1: (The number of machines inside
the cell d) + 1 — (the number of machines inside
the cell d) and X (i) « d (X is the row vector of
particle number and X (i) is the i"™ position of the
row vector X ). Then, go to step 9;

Else go back to sub-step 8-1;
Step 9: i « i + 1 and go back to step 4;
Step 10: Adding the arrival rate of part i to the
queue length of machines that are needed to be
processed on them;
Step 11: If there is the machine whose queue
length is infinite;

X(i) « d and go to step 9;

Else, Subtract the arrival rate of part i of
the queue length of machines that are needed to
be processed on them and, then, go back to sub-
step 4-2;

R Positions_ _ ,
_ v i VYV i =31122]
Q;E ﬁ;ﬂ}”f”l‘[‘” 1o ‘”*{Z;Hjﬂ*{p 23524\2] Sx=[21132]

Selected elements

Fig. 4. A sample of how to convert x; into x;

4-2. Particle swarm optimization (PSO)

The particle swarm is a population-based
stochastic algorithm for optimization, which is
based on social-psychological principles. Unlike
evolutionary algorithms, the particle swarm does
not use selection; typically, all population
members survive from the beginning of a trial to
the end. Their interactions result in iterative
improvement of the quality of problem solutions
over time [15]. The PSO algorithm steps consist
of the following steps:

Step 1: Generate initial population by the
presented heuristic algorithm and set { = 1;

Step 2: Evaluate the fitness (objective function
(1)) of each particle;

Step 3: Calculate the values of the best function
result so far for particle i (pbesti) and for all
particles (gbest);

Step 4: Calculate positions where elements X;
(each potential solution is called a particle) and P;

(the particle is better than any that has been found
for particle i so far) are not equal —P;
Step 5: Generate Q (the vector with the same
length and vector P) and set j=1;
Step 6: If “Q(j) = 17, the change is made,
namely %;(P(j)) < B;(P(i)));
Else, do nothing;
Step 7: If Equations (4) and (5) are satisfied;
7-1: If the next position exists for P;
7-1-1:j < j + 1 and go back to
step 6;
Else, positions where elements
;i (calculation method of ;i is shown in figure
(4)) and [_)’g (the vector of the best particle has
been found so far) are not equal = P and go to
step 8;
Else, return the change made and go to
sub-step 7-1;
Step 8: If “ Q(j) = 17, the change is made,

namely ;i(P(j)) < pg(P());
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Else, do nothing;
Step 9: If Equations (4) and (5) are satisfied;
9-1: If the next position exists for P;
9-1-1:j < j+ 1 and go back to
step 8;
Else, if “i = population”
(population is the number of particles);
i < i+ 1 and go back to
step 4;
Else, if “i < population”;
Evaluate the fitness of
each particle and go to step 10;
Else return the made change and go to
sub-step 9-1;
Step 10: Update gbest and pbest;;
Step 11: If “Iteration <
Maximum iteration”
Go back to step 4;
Else “End”;

4-3. Genetic algorithm (GA)

GA is a directed random search technique, which
can find the global optimal solution in complex
multi-dimensional search spaces. GA is modelled
on natural evolution in that the operators it
employs are inspired by the natural evolution
process. These operators, known as genetic
operators, manipulate individuals in a population
over several generations to improve their fitness
gradually [16]. The selection method of initial
generation is based on the tournament selection
method in the presented genetic algorithm. GA
steps consist of the following steps:
Step 1: Initial population is generated using the
presented heuristic algorithm and seti = 1, k
(the tournament size), p (the fraction of selected
population for crossover), and q (the fraction of
selected population for mutation);
Step 2: The fitness value of each chromosome is
calculated by objectives function (1);
Step 3: Select two parent chromosomes from the
selected population (i.e. px population);
Step 4: Choose k chromosomes from the selected
population at random;
Step 5: Choose the best chromosome from the
selected k chromosomes and, then, insert it in the
new selected population;
Step 6: If “i > p X population”;
Gotostep 7and setj = 1;

Else, i « i + 1 and go back to step 3;
Step 7:
the select population «
the new selected population,
Step 8: Select two parents from the selected
population;

Step 9: Generate a random number between 1 and
M + P (M is the number of machines and P is
the number of parts);
Step 10: Select a single crossover point on both
parents’ chromosomes;
Step 11: Swap all data beyond that point in either
chromosome between the two parent
chromosomes (the derived combinations are the
children);
Step 12: If “j > p X population”;
Go to step 13 and set t=1;
Else, if Equations (4) and (5) are

satisfied;

j < j+ 1 and go back to step 8;

Else, return the made change;
Step 13: Select the fraction of the initial
population with a probability q (i.e., q*
population);
Step 14: Select a random number between 1 and
M + P;
Step 15: Alter selected array value in a
chromosome from the selected population
(mutation operator of Mahdavi et al. [17] is used
for the mutation);
Step 16: If “t > q X population”;
Go to step 17;
Else, if Equations (4) and (5) are

satisfied;

t « t+ 1 and go back to step
13;

Else, return the made change;
Step 17: Select the best solutions by comparing
the previous generation and the solutions
generated by the crossover (steps 7 to 11) and the
mutation (steps 13 to 16) and, then, insert them
into a new generation (the size of the new
generation or the next population is the same as
the previous one);
Step 18: If “Iteration <
Maximum iteration”,
Go back to step 3;
Else “End”;

5. Computational Results

This section describes some computational
experiments, which are applied to evaluate the
efficiency and performance of GA and PSO
algorithms. For this reason, 9 examples are
defined and, then, solved by Lingo software B&B
algorithm, PSO and GA. Finally, the generated
solutions will be compared with each other
according to the criteria of solution quality and
solving time. The proposed model is coded in
LINGO 11.0 optimization software, and the used
metaheuristic algorithms are coded in MATLAB
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2013a on a computer with 4.00 GB RAM and 2 5 4 2 3
core 15 with 2.5 GHz processor. For each i ‘9‘ g g i
example, 5400 seconds (1.5 hours) are allowed to 5 3 p 3 4
run. In B&B algorithm (achieved by Lingo 6 3 9 3 4
software package), if the example was solved in 7 35 20 4 7
less than 5400 seconds (1.5 hour), it is classified 8 37 20 5 7
as small-medium size examples; otherwise, it is 9 43 22 > 7
classified as large-sized examples. This Tab. 2. GA .
procedure is similar to Safaei et al. [18]. Since 1an. 2. parameter settings
. . . Size 5% 8x8  20x
the efficiency of the metaheurstic algorithms 4 37
depends strongly on the operators and Population 35 125 560
parameters, the design of experiments is done to 0 0 0
set parameters. Design of experiments features Iteration 5590 100
the combination of control factors with the lowest 5 :g:;t:ilrty of % 0.6 07
Variatiqn, airping for r.obustness in solutﬁons. For Probability of 0 04 06
protection different sizes, examples with small mutation 3
size (5%4), medium size (8x8), and large size Number of 22 2
(20x37) have been selected. PSO and GA members
. . . competition in the
parameters are set using the full factorial design tournament
and Taguchi technique design, respectively. A
summary of all obtained PSO and GA parameters Tab. 3. PSO parameter settings
is given in . 20%
Tab. 1 and Tab. 2, respectively. Size >4 B8
. Populati 300
Tab. 1. details of the examples on 330 1000 0
No. No. Iteratio
of No.of of n >3 100 130
exampl part machi cell Mma
e No. s nes S X
1 4 4 2 3
Tab. 4. Comparison of B&B, PSO, and GA results
B&B PSO GA
examp Fbou TB&B( TPSO(  Gave(  Gbest( TGA( Gave(  Gbest(
le No. Fbest nd s) Zave  Zbest s) %) %) Zave  Zbest s) %) %)
1 0.7 0.7 0 0.7 0.7 1 0.00 0.00 0.7 0.7 1 0.00 0.00
0.384 0.384 0.384  0.38 0.38 0.38
2 6 6 1 6 46 2 0.00 0.00 46 46 1 0.00 0.00
0.615 0.615 0.615  0.61 0.61 0.61
3 4 4 2 4 54 1 0.00 0.00 54 54 1 0.00 0.00
0.512  0.512 0.490 0.51 _ 0.50 0.51
4 5 > 501 1 2 6.9 4.32108 0.00 35 9 13.6 -0.71 0.00
0.468 0.468 0.447  0.46 . 0.46 0.46
5 ] ] 551 7 38 7.8 4.5;)13 0.01 18 88 13 -1.49 0.01
0.395 0.395 0.392  0.39 . 0.39 0.39
6 3 3 1099 7 53 11.9 0.6:01 0.00 36 53 13 -0.44 0.00
70 0000 08B sa0 TP 0as me20 w20 az020 % 022 a008 34767 30302
0.017 0.405 0.225 0.24 1312.1 0.21 0.22 1148.3 1192.4
8 0 5 5400 3 07 76.7 1224.5 1 28 03 367.2 1 3
0.133 0432 0.187  0.20 0.17 0.19
9 ] ] 5400 7 18 82.9 40.2 50.79 ]7 3 406.7 33.54 44.21
According to the Lingo software’s documents, objective function (F") is limited

Fpest shows the best feasible objective function
value (OFV) found so far. Fyoyng shows the
bound on the objective function value. Thus, a
possible domain for the optimum value of

between Fpesy < F* < Fpoung. The details of 9
examples are displayed in Tab. 3. Tab. 4
indicates the comparison of the Lingo software’s
B&B algorithm results with PSO and GA
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corresponding to 9 examples. Each example is
run 10 times; the average of OFV (Z,y.), the best
OFV (Zpest), and average of run time (Tpgg) are
represented in this Table. The relative gap
between the best OFV found by Lingo (Fpest)
and Z,,. found by the metaheurstic algorithms is
displayed in column ““G,ye’’. Gaye is calculated
as:Gaye = [(Zave — Fpest)/Fpest] X 100. In
addition, the relative gap between Fpegr and Zpest
is displayed in column ‘‘Gpes:’’. In a similar
manner, Gpest 18  calculated  as:Gpest =
[(Zbest — Fpest)/Fpest] % 100. In Lingo
software’s B&B algorithm, if Fyoung = Fpests
the optimal solution is achieved. In Tab. 4, in
some cases, Zyye and Zpesr are between Fyoung
and Fpeq that show a feasible better solution;
under this condition, G,ye and Gyegt are positive.

As explained earlier, in small-medium size
examples, a limited run time (1.5 h) is considered
for Lingo solver to find optimal solutions.
Therefore, as concluded from Tab. 4, the percent
error of the optimal solution is very small for
medium-sized example and is zero for small-
sized example in both metaheurstic algorithms. In
addition, in large-sized examples, PSO and GA
outperform the Lingo software B&B algorithm in
all examples in a limited time. It implies that PSO
and GA algorithms are so effective in solving the
proposed model in all classes of examples. A
paired t test was conducted to analyze a
significant difference between the obtained
solutions of the metaheurstic algorithms.

The  statistical details are shown in

Tab. 5. Tests show that there is no statistically
significant difference between solutions obtained
by PSO and GA.

Tab. 5. Detailed statistics of paired t test

Paired Differences

95% Confidence
Interval of the
Difference )
Std. Std. Error Sig. (2-
Mean Deviation Mean Lower Upper t df  tailed)
Pair 1 PSO - GA .0005556 .0114802 .0038267 -.0082689 .0093800 .145 8 .888

6. Conclusions

In this research, the probability nonlinear integer
model was proposed for cell formation problem.
Buffer effects on the grouping efficacy measure
of cells were studied using the buffer chance
constraint. The proposed model maximized the
grouping efficacy measure of cells through
queuing system approach. Each part as a
customer and each machine as a server were
assumed. To find the optimal solution in a
reasonable time, the proposed model was
linearized with a heuristic method. Experimental
results showed buffer effects on the grouping
efficacy measure of cells. Nine examples were
generated randomly in order to explore of
proposed model. As the proposed model is
known as a NP-hard optimization problem, GA
and PSO algorithms were used to solve the model
efficiently. The results showed that the two
metaheurstic algorithms have better performance
based on the computational time and the solution
quality against the method of Lingo software’s
B&B. Finally, the paired t test showed that there
was no statistically significant difference between
solutions obtained by PSO and GA. The purchase

of the bottleneck machine would decrease
outsourcing operations, yet it would increase
purchase costs. Therefore, the purchase of the
bottleneck machine and outsourcing operations
need to be integrated, left for future works.
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