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KKEEYYWWOORRDDSS                                  ABSTRACT 
 

 

In this paper, we consider a flow shop scheduling problem with bypass 
consideration for minimizing the sum of earliness and tardiness costs. 
We propose a new mathematical modeling to formulate this problem. 
There are several constraints which are involved in our modeling such 
as the due date of jobs, the job ready times, the earliness and the 
tardiness cost of jobs, and so on. We apply adapted genetic algorithm 
based on bypass consideration to solve the problem. The basic 
parameters of this meta-heuristic are briefly discussed in this paper. 
Also a computational experiment is conducted to evaluate the 
performance of the implemented methods. The implemented algorithm 
can be used to solve large scale flow shop scheduling problem with 
bypass effectively. 
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11..  IInnttrroodduuccttiioonn

                                                

   
 Production scheduling is a decision-making 
process in the operation class. It can be defined as the 
allocation of available production resources to carry 
out certain tasks in an efficient way. Such a frequently 
occurring scheduling problem is difficult to solve due 
to its complex nature. 
This paper is primarily concerned with industrial 
scheduling problems, where one has to sequence the 
jobs on each resource over time.  
In a flow shop environment, a set of jobs must be 
processed on a number of sequential machines, 
processing routes of all jobs are the same, that is the 
operations of any job are processed in the same order, 
whereas a flow shop with bypass model, a 
generalization of the ordinary flow shop model, is 
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more realistic, and it assumes that at least one job 
does not visit one machine. Moreover, a machine can 
process at most one job at a time and a job can be 
processed by at most one machine at a time. 
Preemption of processing is not allowed. The problem 
consists of sequencing the jobs to the each machine so 
that some optimality criteria are minimized. 
Since flow shop as well as job shop problems with few 
exceptions have been proved to be NP-hard [1], 
heuristic procedures are the most suitable ones for their 
solution, especially for large-size instances. Several 
approaches and models are proposed to solve the 
scheduling problem, namely the discrete variable 
mathematical programming, simulation techniques and 
the network analysis. Johnson [2] was the first to 
propose a method to solve the scheduling problem in a 
flow shop production environment for a single criterion 
context. His algorithm has been utilized by other 
researchers, including, for instance, Palmer [3], 
Campbell et al. [4], Gupta [5], Gupta et al. [6] and 
Tadei et al. [7]. Flow shop scheduling with the 
makespan objective has been investigated for instance, 

Flow Shop Scheduling,  
Bypass,  
Mathematical Programming, 
Meta-heuristic Algorithm 

SSeepptteemmbbeerr  22001100,,  VVoolluummee  2211,,  NNuummbbeerr  22    
 

IInntteerrnnaattiioonnaall  JJoouurrnnaall  ooff  IInndduussttrriiaall  EEnnggiinneeeerriinngg  &&  PPrroodduuccttiioonn  RReesseeaarrcchh  
  

htthttpp://IJIEP://IJIEPRR.iust.ac.ir/.iust.ac.ir/

InIntteerrnnaattiioonnaall  JJoouurrnnaall  ooff  IInndduussttrriiaall  EEnnggiinneeeerriinngg  &&  PPrroodduuccttiioonn  RReesseeaarrcchh    ((22001100))    pppp..  9977--110044  

 ISSN: 2008-4889  

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VC4-4SHMCNR-1&_user=1895934&_coverDate=06%2F30%2F2009&_rdoc=1&_fmt=full&_orig=search&_cdi=5944&_sort=d&_docanchor=&view=c&_acct=C000055233&_version=1&_urlVersion=0&_userid=1895934&md5=894b7fccb8239d3281d11c5170fa4e9c#bib3
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VC4-4SHMCNR-1&_user=1895934&_coverDate=06%2F30%2F2009&_rdoc=1&_fmt=full&_orig=search&_cdi=5944&_sort=d&_docanchor=&view=c&_acct=C000055233&_version=1&_urlVersion=0&_userid=1895934&md5=894b7fccb8239d3281d11c5170fa4e9c#bib15
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VC4-4SHMCNR-1&_user=1895934&_coverDate=06%2F30%2F2009&_rdoc=1&_fmt=full&_orig=search&_cdi=5944&_sort=d&_docanchor=&view=c&_acct=C000055233&_version=1&_urlVersion=0&_userid=1895934&md5=894b7fccb8239d3281d11c5170fa4e9c#bib15
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VC4-4SHMCNR-1&_user=1895934&_coverDate=06%2F30%2F2009&_rdoc=1&_fmt=full&_orig=search&_cdi=5944&_sort=d&_docanchor=&view=c&_acct=C000055233&_version=1&_urlVersion=0&_userid=1895934&md5=894b7fccb8239d3281d11c5170fa4e9c#bib15
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VC4-4SHMCNR-1&_user=1895934&_coverDate=06%2F30%2F2009&_rdoc=1&_fmt=full&_orig=search&_cdi=5944&_sort=d&_docanchor=&view=c&_acct=C000055233&_version=1&_urlVersion=0&_userid=1895934&md5=894b7fccb8239d3281d11c5170fa4e9c#bib15
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VC4-4SHMCNR-1&_user=1895934&_coverDate=06%2F30%2F2009&_rdoc=1&_fmt=full&_orig=search&_cdi=5944&_sort=d&_docanchor=&view=c&_acct=C000055233&_version=1&_urlVersion=0&_userid=1895934&md5=894b7fccb8239d3281d11c5170fa4e9c#bib15
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VC4-4SHMCNR-1&_user=1895934&_coverDate=06%2F30%2F2009&_rdoc=1&_fmt=full&_orig=search&_cdi=5944&_sort=d&_docanchor=&view=c&_acct=C000055233&_version=1&_urlVersion=0&_userid=1895934&md5=894b7fccb8239d3281d11c5170fa4e9c#bib15
mailto:Mheydari@iust.ac.ir
mailto:Reza_Ramezanian@
mailto:Mirarya@iust.ac.ir


9988          R. Ramezanian, M.B. Aryanezhad & M. Heydari              AA  MMaatthheemmaattiiccaall  PPrrooggrraammmmiinngg  MMooddeell  ffoorr  FFllooww  …  

Simons [8], Huq et al. [9], Zobolas et al. [10]. Flow 
shop scheduling with the sum of earliness and tardiness 
costs objective has been investigated for instance, 
bulbul et al. [11], Lauff and Werner [12]. 
Actually, we are not the first who observed the 
phenomenon of "bypass". The fact that the 
computational complexity of a more general problem 
(admitting missing operations) may be much harder 
than that of the corresponding problem without 
missing operations was the subject of some previous 
papers known in the literature. For instance, as 
observed by Leisten and Kolbe [13], Glass et al. [14]. 
Glass et al. [14] considers the no-wait scheduling of n 
jobs in a two-machine flow shop, where some jobs 
require processing on the first machine only. The 
objective is to minimize the maximum completion 
time, or makespan.  
We consider the scheduling of n jobs in a m machine 
flow shop, where some jobs do not require processing 
on the some machines. The objective is to minimize 
the sum of earliness and tardiness costs. Just in time 
concept for the scheduling environment can be 
provided by considering minimization of the sum of 
earliness and tardiness costs as the objective function. 

 
2. Problem Description 

In the flow shop scheduling problem (FSSP) there 
are m machines in series. Every single job has to be 
processed on each machine.  
All jobs have to follow the same route i.e., they have to 
be processed first on machine 1, then on machine 2, 
and so on. The flow shop scheduling problem with 
bypass consideration can be interpreted as a 
generalization of the classical flow shop model which 
is more realistic and assumes at least one job does not 
visit one machine. 
The FSSP with bypass can be described as follows: 
Each of n jobs from set J={1,2,..., n} will be sequenced 
through m machines (i=1, 2,...,m). Job  has a 
sequence of lj operations through a subset m machines 
(jobs may have zero processing time on some 
machines) and a given due date dj. Operation Oij 
corresponds to the processing of job j on machine i 
during an uninterrupted processing time tij (processing 
time tij can be zero). At any time, each machine can 
process at most one job and each job can be processed 
on at most one machine. 

Jj∈

 
3. Mathematical Formulation 

3-1. General Assumption 
  All n jobs to schedule are independent and are not 

available for processing at time zero. 
  A job has some operations that each of them is to be 

performed on a specified machine. Some jobs may 
not process on some machines so the processing time 
of them on that machines are zero (missing 
operations). (bypass). 

  Job descriptions are known in advance. 
  Jobs have no associated priority values. 
  One machine can process at most one job at a time.  
  Each job is processed on at most one machine at a 

time. 
  Setup times for the operations are sequence-

independent and are included in processing times. 
  Machine is available at all times. 
  There is no travel time between stages; jobs are 

available for processing at a stage immediately after 
completing processing at the previous stage.  

  There is only one of each type of machine.  
  There is no precedence constraint among the jobs.  
  Preemption and splitting of any particular job is not 

allowed: a job, once started on a machine, continues 
in processing until it is completed. 

  Jobs are allowed to wait between two stages, and the 
storage is unlimited. 

  All programming parameters are deterministic and 
there is no randomness. 

  Any breakdowns and scheduled maintenance are not 
allowed. 

  No more than one operation of the same job can be 
executed at a time. 

The processing times are independent of the sequence 
and are given. 

 
3-2. Parameters 

  n: Number of  jobs 
  m: Number of  machines 
  i: Machine index 
  j,h: Job index 
  tij: Processing time of job j on machine i 
  Rj: Release date of job j 
  dj: Due date of job j 
  Hj: Holding (earliness) of job j per time unit  
  βj: Shortage (tardiness) cost of job j per time unit 
  δij: A binary parameter that is equal to 1 if job j is 

not processed on machine i, 0 otherwise. 
  M:  A large constant (M→∞) 

 
3.3. Decision Variables 
Sij : Starting time of job j on machine i  
Cij : Completion time of job j on machine i 
Ej: Earliness of job j Ej= max {dj - Cij , 0} 
Tj: Tardiness of job j  Tj= max { Cij – dj , 0} 
Yihj: A binary variable that is equal to 1 if job j is 
processed immediately after job h when processing on 
machine i, 0 otherwise. 
The mathematical model for minimizing of the 
earliness cost, Hj(Ej), and the tardiness cost, βj(Tj) is as 
follow. The earliness cost could represent the 
inventory cost for early finished stocks, and the 
tardiness cost could represent the penalty cost for the 
late delivery.  
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j;dTEC jjjmj

 The constraint set (4) forces to start the processing of 
each job only when it has been completed on the 
precedent machine. The constraint set (5) forces to start 
the processing of each job only when its precedent job 
has been completed on the same machine. The 
constraint sets (6-11) determine sequence of jobs for 
any machine. The constraint set (12) bounds the job 
starting times to be after job release times in the 
system. The constraint set (13) insures that the job 
finishing times on the first machine to be after job 
release times (if job j does not require processing on 
the first machine, C1j=Rj. (14) is logical constraint. 
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The objective function (1) considers the minimization 
of the earliness cost and the tardiness cost and the 
considered objective function provides just in time 
production in manufacturing systems. The constraint 
set (2) determines earliness and tardiness of each job. 
The constraint set (3) corresponds to the computation 
of the completion time of job (if job j is not processed 
on machine i, its completion time is the same as 
completion time on previous machine).  

It must be noticed that when there is the bypass 
condition, the completion time of jobs do not 
necessarily determine on the last machine, but in our 
model the completion time of each job –that may occur 
on any machine – transferred on the last machine by 
considering a δij.  
Consider a flow shop scheduling problem with bypass 
consideration with three jobs and three machines. 
Processing time of each job on each machine and other 
data is given in table 1. Job 2 and 3 do not require 
processing on the machine 2 and they can process on 
machine 3 right after their process completed on 
machine 1.  
 

Tab. 1 Processing times and other data 
  Machine     

  1 2 3 R d H β 

1 5 7 1 2 14 3 2 
2 3 0 1 4 8 2 3 Job 
3 1 0 3 3 6 4 3 

 
The optimum sequence of jobs on machines for 
minimizing the sum of earliness and tardiness costs is 
shown in Fig. 1. 
 

Fig. 1 Gant chart of sequence vector on machines 
(objective function = 15) 

Although job 2 and 3 do not require processing on the 
machine 2 (δ22=1, δ23=0) but our model considers a 
virtual completion time for them on this machine (see 
the constraint set 3). 
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4. The Genetic Algorithm 
Genetic algorithms have been proven to be 

powerful techniques for constrained optimization and 
combinatorial optimization problems. 
The GA was proposed by Holland (1975) [15] to 
encode the factors of a problem by chromosomes, 
where each gene represents a feature of the problem. 
The GA’s structure and parameter setting affect its 
performance. 
The overall structure of our GA can be described as 
follows: 
 

1. Coding: The genes of the chromosomes 
describe the jobs, and the order in which they appear in 
the chromosome describes the sequence of Jobs. Each 
chromosome represents a solution for the problem. 

 
2. Initial population: The initial chromosomes are 

obtained by a Random dispatching rule for sequencing. 
 
3. Fitness evaluation: The sum of earliness and 

tardiness cost is computed for each chromosome in the 
current generation. 

 
4. Selection: In any iteration, chromosomes are 

chosen randomly for crossover and mutation. 
 
5. Offspring generation: The new generation is 

obtained by changing the sequencing of operations 
(reproduction, enhanced order crossover and mutation). 
These rules preserve feasibility of new individuals. 
New individuals are generated until a fixed maximum 
number of individuals is reached.  

 
6. Stop criterion: Fixed number of generations is 

reached. If the stop criterion is satisfied, the algorithm 
ends and the best chromosome, together with the 
corresponding schedule, are given as output. 
Otherwise, the algorithm iterates again steps 3–5. 
Based on bypass consideration GA is adapted to 
consider operation with zero processing time on some 
machines. Following is the presented our proposed 
genetic algorithm. 

 
4.1. Design of Genes 

In this paper, each gene is job and the 
chromosome is job sequence vector on machines. At 
first it is supposed that all jobs have a priority on each 
machine. It means that if a job does not be processed 
on a machine, a virtual priority is assigned that its 
processing time on the machine is zero. The priorities 
on machines are generated randomly. 
Consider a flow shop scheduling with missing 
operation problem with 5 jobs and 3 machines (see 
table 2). 

 

Tab. 2 Processing time data 
  Machine 
  1 2 3 

1 2 0 1 
2 0 1 2 
3 4 2 1 
4 0 0 5 

Job 

5 1 2 0 

 
The job sequence for this example represented in fig. 2 
can be translated into a list of ordered jobs below: 
 

43512: jjjjjIMachine ffff  
 35214: jjjjjIIMachine ffff

15423: jjjjjIIIMachine ffff  
Priority (k) 1 2 3 4 5 

job Sequence on machine 1: V1(k) 2 1 5 3 4 
job Sequence on machine 2: V2(k) 4 1 2 5 3 
job Sequence on machine 3: V3(k) 3 2 4 5 1 

*Highlight jobs on a machine have zero processing time 

Fig. 2 Illustration of the job sequence vector on 
machines 

 
4.2. The Genetic Operators 
4.2.1. Reproduction 

The best chromosomes which have a lower fitness 
function are chosen. This mechanism just copies the 
chosen chromosomes to the next generation. 

 
4.2.2. Crossover 

Crossover operator recombines two chromosomes 
to generate a number of children. Offspring of 
crossover should represent solutions that combine 
substructures of their parental solutions. The enhanced 
order crossover expanded from the classical order 
crossover [16] works as follows: 
Step1. Randomly choose two chromosomes, named 
parent 1 and parent 2. 
Step 2. Do the following steps for the same machine in 
selected chromosomes (parent 1 and parent 2):  
Step 1.2. Randomly select a subsection of job sequence 
for ith machine from parent 1. 
Step 2.2. Produce a proto-child by copying the 
substring of job sequence into the corresponding 
positions. 
Step 3.2. Starting with the first position from ith 
machine of parent 2, delete the jobs which are in the 
substring from ith machine of the second parent. The 
resulted sequence of jobs contains the jobs that the 
proto-child needs. 
Step 4.2. Place the remaining jobs into the empty 
positions of the proto-child from left to right according 
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to the order of the sequence in the ith machine of 
second parent.  

 
4.2.3. Mutation 

Our mutation mechanism works as follows: 
Step 1. Randomly choose one chromosome. 
Step 2. Do the Following steps for the same machine in 
selected chromosome:  
Step 2.1. Randomly choose two priorities from ith 
machine of selected chromosome in step 1.  
Step 2.2. Replace selected jobs with each other [17,18]. 
 
4.3. Fitness Function 

The fitness function is the same as the objective 
function which defined in section 3. In the proposed 
genetic algorithm the lower fitness function is desired. 

 
Ej: Earliness of job j Ej= max {dj - Cij , 0} 
 
Tj: Tardiness of job j Tj= max { Cij – dj , 0} 
Hj: Holding cost of job j per time unit  
 
βj:  Shortage cost of job j per time unit 

∑ =
+n

j jjjj TEHFunctionFitness
1

)(: β  
Note that the earliness cost could represent the 
inventory cost for early finished stocks, and the 
tardiness cost could represent the penalty specified in 
the contract for the late delivery. 

 
5. Computational Results 

In the scheduling literature, there is not a 
benchmark for the FSSP with bypass. To test the 
efficiency of the modified genetic algorithm for 
considering bypass assumption, a number of random 
instances were generated with the following 
characteristics: 
1. Dimensions of the problem are between (m×n) = 
(3×3) and (m×n) = (30×30)  
2. Holding (earliness) and shortage (tardiness) costs for 
each job at each stage are chosen randomly from U(1-
5). 
3. Release date for each job is chosen randomly from 
U(0-10). 
4. Due date for each job is chosen randomly from 
U(15-30). 
5. Processing time for each job on each machine is 
chosen randomly from U(0-5). 
The proposed mathematical model for FSSP with 
bypass is solved by genetic algorithm as well as 
LINGO 8.0. The genetic algorithm was coded with 
MATLAB R2007(b) and all tests were conducted on a 
Pentium_IV PC at 3 GHz with 1.0GB of RAM. 
The flow shop scheduling problem, when considered in 
the general case, gives (n!)m possible schedules. Even 
for problems as small as n = m = 5, the number of 

possible schedules is so large that a direct enumeration 
is economically impossible. 
When the size of problem is small both genetic 
algorithm and LINGO can solve it in a short time. 
However, as the size of problem increases the 
computation time of LINGO increased exponentially. 
The comparison for small size problems between 
LINGO and genetic algorithm is shown in table 3. 
 

Tab. 3. Comparison results of GA and LINGO  
GA (Iteration=100, 
Population size=50) LINGO 

Prob. m n 
FF * Time (min) FF Time (min) 

1 2 5 6 0.022 6 0.417 

2 3 3 2 0.017 2 0.017 

3 3 4 3 0.023 3 0.083 

4 3 5 7 0.027 2 0.800 

5 4 3 8 0.022 8 0.067 

6 4 4 18 0.032 18 1.510 

7 5 2 12 0.022 12 0.017 

8 5 3 43 0.028 43 0.083 

9 5 5 40 0.046 69 12 (hours)** 
* FF: Fitness function (Sum of the earliness and tardiness 
costs) 

* * This problem is interrupted 

 
As demonstrated in table 3, the adapted genetic 
algorithm has the ability to reach the optimal solution 
for small-sized problems. The implemented genetic 
algorithm can efficiently solve the problem in a 
considerably short time.  
For large scale problems, the results by using the 
genetic algorithm is presented in table (4-6). According 
to fig. 3 and fig. 4, the adapted GA has the ability to 
reach stable solutions.  
It is obvious while the problem size is increasing, the 
efficiency of the genetic algorithm decreases as 
demonstrated in table 4 and table 5. 

 
Tab. 4. Numerical example for 5 machines and 5 

jobs 
m=5, n=5, Iteration=100, Pop. size =50  

(Time: Second) 

Prob. FF Time Prob. FF Time Prob. FF Time 

1 46 2.67 34 41 2.36 67 45 2.50 

2 41 2.67 35 49 2.44 68 45 2.53 

3 41 2.49 36 50 2.54 69 46 2.51 

4 46 2.46 37 41 2.59 70 49 2.62 
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m=5, n=5, Iteration=100, Pop. size =50  
(Time: Second) 

Prob. FF Time Prob. FF Time Prob. FF Time 

5 45 2.43 38 46 2.47 71 41 2.58 

6 45 2.60 39 41 2.51 72 45 2.46 

7 45 2.28 40 46 2.60 73 45 2.40 

8 50 2.43 41 45 2.50 74 50 2.52 

9 41 2.36 42 41 2.64 75 41 2.42 

10 45 2.55 43 45 2.59 76 41 2.43 

11 41 2.35 44 41 2.47 77 49 2.63 

12 41 2.48 45 41 2.55 78 46 2.56 

13 49 2.52 46 49 2.53 79 45 2.68 

14 41 2.60 47 46 2.58 80 49 2.23 

15 46 2.44 48 49 2.43 81 45 2.43 

16 46 2.49 49 41 2.61 82 49 2.53 

17 45 2.47 50 50 2.59 83 45 2.50 

18 41 2.56 51 49 2.36 84 45 2.50 

19 41 2.58 52 45 2.30 85 41 2.59 

20 50 2.38 53 49 2.43 86 41 2.49 

21 49 2.55 54 45 2.32 87 41 2.29 

22 45 2.53 55 41 2.61 88 41 2.55 

23 41 2.47 56 50 2.39 89 41 2.62 

24 41 2.59 57 50 2.40 90 49 2.50 

25 49 2.46 58 45 2.32 91 41 2.48 

26 50 2.38 59 49 2.36 92 41 2.47 

27 46 2.35 60 41 2.40 93 46 2.35 

28 41 2.52 61 41 2.49 94 49 2.49 

29 41 2.69 62 49 2.56 95 49 2.61 

30 41 2.67 63 41 2.44 96 50 2.45 

31 45 2.40 64 46 2.53 97 50 2.62 

32 45 2.44 65 46 2.25 98 50 2.53 
33 45 2.40 66 49 2.56 99 49 2.47 

 

Min 
(FF) 

Max 
(FF) 

Mean 
(FF) 

StDev 
(FF) 

C.V. 
(FF) 

Range 
(FF) 

Mean 
(Time) 

41 50 45.04 3.411 0.076 9 2.49 
 

 
 

 

Fig. 3. Line chart of table 4  
(Sum of earliness and tardiness costs) 

Tab. 5. Numerical example for 10 machines and 10 
jobs 

m=10, n=10, Iteration=100, Population size =100 
(Time: Second) 

Prob. FF Time Prob. FF Time Prob. FF Time 

1 1338 24.44 11 1443 24.77 21 1187 24.66 

2 1452 24.53 12 1666 24.44 22 1262 24.60 

3 1332 24.93 13 1256 24.77 23 1517 24.56 

4 1625 22.32 14 1501 24.50 24 1417 24.62 

5 1341 25.09 15 1212 22.46 25 1400 22.16 

6 1287 25.02 16 1210 24.90 26 1307 22.33 

7 1241 22.72 17 1232 24.83 27 1357 24.92 

8 1592 25.25 18 1403 24.72 28 1507 24.95 

9 1587 24.98 19 1645 25.20 29 1584 24.74 

10 1231 24.81 20 1380 24.87 30 1374 24.70 
 

Min (FF) Max 
(FF) 

Mean 
(FF) 

StDev 
(FF) 

C.V. 
(FF) 

Range 
(FF) 

Mean 
(Time) 

1187 1666 1396.2 144.1 0.103 479 24.393 
 

 

 
 

 

Fig. 4. Line chart of table 4 (sum of earliness and 
tardiness costs) 

 

Elapsed time to solve several large-sized problems by 
proposed GA is given in table 5. 

 

Tab. 5. Numerical examples of large-sized problem 
GA  

(Iteration=100, Population size=100) 
Prob. m n Time (min) 

1 4 10 0.327 

2 4 15 0.480 

3 4 20 0.658 

4 5 10 0.411 

5 5 15 0.634 

6 5 20 0.765 

7 6 10 0.513 

8 6 15 0.757 

9 8 10 0.681 

10 8 15 1.033 

11 10 10 0.762 

12 10 15 1.082 
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GA 

(Iteration=100, Population size=100) 
Prob. m n Time (min) 

13 10 20 1.242 

14 10 30 1.409 

15 20 10 0.799 

16 20 20 1.801 

17 20 30 2.877 

18 30 30 3.489 

 
If we increase the number of jobs whilst the number of 
machine is fixed, solving time according to proposed 
GA increases piecewise linearly (see fig. 5). 
 

 
Fig. 5. Line chart of elapsed time (Table 5) 

 
If we increase the number of machines whilst the 
number of jobs is fixed, solving time according to 
proposed GA increases piecewise linearly (see fig. 6). 
 

 
Fig. 6. Line chart of elapsed time for fix 10 jobs 

(Table 5) 
 

6. Conclusions 
In this paper, we presented a mathematical 

formulation model for minimizing sum of the earliness 
and tardiness costs in flow shop scheduling problem 
with bypass consideration (some jobs may not process 
on some machines) which is often occurring in shop 
environment of real world. We proposed genetic 
algorithm to solve this problem with medium and large 
size. Computational experiments have been performed 
to demonstrate that the proposed GA is efficient and 
flexible. 

Further research can be done to use other meta-
heuristics algorithms such as simulated annealing (SA), 
tabu search (TS), ant colony optimization (ACO). 
Hybrid algorithms should be developed by using a 
local search algorithm within a GA. This means that, 
after generating an offspring, the solution should be 
improved by applying for instance TS or SA before 
applying the selection criterion of GA. 
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