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KKEEYYWWOORRDDSS                                  ABSTRACT 
 

Tradeoff between time and cost is an important issue in planning a 

project. This paper deals with a stochastic Time-Cost Tradeoff 

Problem (TCTP) in PERT network of project management. All 

activities are subject to linear cost function and assumed to be 

exponentially distributed. The aim of this problem is to maximize the 

project completion probability with a pre-known deadline to a 

predefined probability such that the required additional cost is 

minimized. A single path TCTP is constructed as an optimization 

problem with decision variables of activity mean durations. We then 

reformulate the single path TCTP as a cone quadratic program in 

order to apply polynomial time interior point methods to solve the 

reformulation. Finally, we develop an iterative algorithm based on 

Monte Carlo simulation technique and conic optimization to solve 

general TCTP. The proposed approach has been tested on some 

randomly generated test problems. The results illustrate the 

appropriate performance of our new approach. 
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11..  IInnttrroodduuccttiioonn


  

The Time-Cost Tradeoff Problem (TCTP) concerns 

a project scheduling problem where project total cost 

and project completion time are considered together. In 

scheduling a project, it is often important to expedite 

the duration of some activities through expending extra 

resources and therefore reduce the project duration 

with additional costs. This procedure can be conducted 

under either a fixed, available budget or a desirable 

threshold of project completion time. This problem is 

known as time/cost tradeoff problem, project 

crashing/compression problem and project expediting 

problem, in the project management literature. The 

main objective of the TCTP is to determine the optimal 
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duration and cost that should be assigned to the 

activities such that the overall cost is minimized. This 

leads to a balance between the project completion time 

and the project total cost. For example, using additional 

resources, more productive equipments, highly skilled 

human resources or hiring more labor can save the 

time, but project direct cost could be increased. On the 

other hand, completing a project at a date after a 

desired due date may save some of budget or resources, 

but a penalty cost may be included. Equivalently, 

crashing an activity saves time but increases the 

activity’s cost.  

Many researchers have investigated the deterministic 

TCTP, under various behaviors of the cost function 

such as discrete cost function [1,12,13,25,33], linear 

continuous cost function [10,17,29], nonlinear convex 

cost function [6,21], nonlinear concave cost function 

[15] and linear piecewise cost function [20,35]. 

Each pattern of the TCTP uses its own objective 
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function for model formulation. Some studies, under 

deterministic assumptions, have tried to determine the 

economical duration of project completion time via 

minimizing project total cost, including direct, indirect, 

and penalty cost functions [9,11]. On the other hand, 

the importance of on-time project delivery has lead to 

the proposed model of TCTP which minimizes the 

project completion time [8,18,30]. The objective of 

these models is to determine the optimal allocation of 

limited budget and resources to the activities. 

Moreover, some other authors discussed on the TCTP 

with multi criteria measures [35].  

There are also some other studies related to the 

application of optimal control theory in the stochastic 

multi objective resource allocation problem for PERT 

networks [2,3]. Using the time discretization process, 

Azaron et al. [4] developed a new analytical procedure 

based on the multi objective TCTP in order to achieve 

the minimum total direct costs, the minimum mean of 

project completion time and the minimum variance of 

project completion time. Eshtehardian et al. [14] 

applied a hybrid approach based on the Fuzzy logic 

and GA to solve a new pattern of Time Cost 

Optimization (TCO) in a non-deterministic 

environment by means of the Pareto front. Recently, Li 

and Wang [22] have proposed the application of Radial 

Basis Function (RBF) neural network to solve the 

multi-objective time-cost tradeoff problem considering 

the risk element, in dynamic PERT networks. There are 

some recent studies presented in the context of time-

cost tradeoff in project management. For example Kim 

et al. [37] considered a potential quality loss cost in 

tradeoff between time and cost. In another study, 

Mokhtari et al. [38] suggested a three dimensional 

tradeoff problem among time, cost and quality. Choi 

and Kwak [39] developed a decision support model for 

incentives/disincentives time-cost tradeoff. Besides, 

Yang [40] presented a distribution-free approach for 

stochastic time-cost tradeoff with focus on correlation 

and stochastic dominance. Zhang and Xing [41] 

discussed a fuzzy-multi-objective particle swarm 

optimization for time-cost-quality tradeoff in 

construction. Recently, Hue et al. [42] suggested a 

model for stochastic project time-cost trade-offs with 

time dependent activity duration.  

A number of research efforts have focused on TCTP 

modeling, under various assumptions, and applied an 

array of classic and computational methods to solve 

this important content of project management. But, in 

all of them, the conic formulation counterpart, which 

could be solved by polynomial time interior point 

methods, has not been investigated. The conic 

quadratic programming or Second-Order Cone 

Programming (SOCP) problem is to minimize or 

maximize a linear function over the intersection of an 

affine space with the Cartesian product of a finite 

number of second-order (Lorentz) cones. Linear 

programs, convex quadratic programs and 

quadratically constrained convex quadratic programs 

can all be formulated as SOCP problems, as can many 

other problems that do not fall into these three 

categories. Recently, this problem has received 

considerable attention for its wide range of applications 

(see e.g. [5,19,23,36]) and for being “easily” solvable 

in polynomial time via interior-point algorithms 

[26,27,28].  

In this paper, we develop a new approach for solving a 

new stochastic model of TCTP based on SOCP 

formulation and Monte Carlo (MC) simulation 

technique. In our new model, all of the activities are 

subjected to linear cost functions and assumed to be 

exponentially distributed and the objective is to 

improve the project completion probability in a 

predefined due date based on a predefined probability. 

Our proposed model helps the project planner to 

manage the project completion time more accurately 

and prevent the project tardiness.  

A new structure of the general MC simulation 

technique has been employed to solve our new model. 

In every iteration of the MC technique, by considering 

the mean durations of activities as decision variables, a 

nonlinear optimization formulation of the problem 

would be constructed. This optimization problem has 

been reformulated as SOCP model in order to solve it 

in polynomial time interior point methods. Therefore, 

the following hybrid procedure based on MC 

simulation and SOCP problem has been applied to 

allocate the optimal cost to the activities: 

 Choosing the Most Critical Path (MCP) by using 

MC simulation technique. 

 Using SOCP formulation to maximize the path 

completion probability for the selected MCP in 

previous step. 

The paper is organized as follows: The mathematical 

model is presented in Section 2. Section 3 introduces 

the SOCP reformulation of the proposed single path 

TCTP. A general algorithm based on the SOCP 

problem and Monte Carlo simulation technique is 

proposed in Section 4 in order to apply the proposed 

approach for all paths. In Section 5, the characteristics 

of an illustrative example and result of experiments are 

presented. Some randomly generated examples have 

also been considered in Section 5. Finally, concluding 

remarks are presented in Section 6. 

 

2. Mathematical Model 
We use an Activity on Arrow (AOA) representation 

of project scheduling networks. Let ),( AVG   be an 

acyclic AOA graph with arrow set A  and node set ,V  

where the source and sink node are denoted by s  and 

t , respectively. In a project PERT network with m  

nodes and n  activities,  mvvvV ,,, 21   represents 

the set of events and  naaaA ,,, 21   represents the 

set of activities. The following notations are used 

throughout the paper:  

 ji, : Activity with head node i  and tail node j  
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ijt     : Random variable of activity  ji,  duration 

ijx   : The parameter of exponential distribution of 

activity  ji,  duration (decision variable) 

ij   : Mean duration of activity  ji,   

ij   : Standard deviation of activity  ji,  

ijs     : Cost slope of activity  ji,   

dT    : Project completion due date 

   : Desired amount of project completion probability 

iju
   

: Upper limit of mean duration of activity  ji,   

ijl
    

: Lower limit of mean duration of activity  ji,  

L   : Total number of paths. 

rn   : Number of activities on path r  

rT   : Random variable of path r  duration 

r  : The mean duration of path r  

r  : The standard deviation of path r  

Assuming sufficiently large number of activities on 

paths, using Central Limit Theorem, the probability of 

falling the completion time of a certain path r  in 

interval  dT,0 , is  








 


r

rd
drr

T
ZTTZ




 Pr)(Pr)(
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



rij

ijr   





rij

ijr
2  

 

According to the assumed distribution on activity 

durations, we have: 

ijijij x  

 

Thus, 





rij

ijr x  





rij

ijr x2  

 

It is assumed that the distributions of activity durations 

are exponential with mean and standard deviation of 

ijx , for
 

Aij  . Adding extra cost to the activity  ji,  

decreases the mean and variance of activities ijx
 
with 

a linear cost function and cost slopes of ijs . 

After allocating the additional cost to the activities 

which lie on path r , new expected value of activities 

will be ijx  and new probability of meeting the 

predefined   is: 





 







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
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

rij
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r
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Z
T
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PrPr)(
       (1) 

 
We have to note that the equation (1) is key constraint 

of proposed model. It warrants prevention of tardiness 

by increasing the probability of meeting the predefined 

deadline. The following lemma provides an 

optimization model for increasing project completion 

probability on a certain path with minimum cost.  

 

Lemma 1. For a given path r , the project completion 

probability on path r  in a predefined due date dT   

based on a predefined probability   with minimum 

cost can be improved by solving the following 

optimization problem: 

 

 



rij

ijijij xuszmin  

 

s.t. 

  


 
rij

ijdrijij xTxZ 1         

rijuxl ijijij     

 

where 
1Z  denotes a point of normal standard 

distribution which covers a probability with amount of 

  in its left side, and .  denotes the 2-norm 

(Euclidean vector norm).   

 

Proof. Using the probability principles, we can rewrite 

the probability of meeting the predefined   through 

the path r , which is described as a probabilistic 

inequality in (1), as a non probabilistic inequality in the 

following form: 

 














1
2

Z
x

xT

rij
ij

rij
ijd

                                                  (2) 

 
where 

1Z  denotes a point of normal standard 

distribution which covers a probability with amount of 

  in its left side. Thus, in order to minimize the 

additional costs allocated to the activities on path r , 

the cost function  



rij

ijijij xusz  should be 

minimized in presence of the inequality (2) and the 

upper and lower bound limitation on activities. 

Therefore, the proposed model for the path r  can be 

formulated as: 
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 



rij

ijijij xuszmin                                     

 

s.t. 

     
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                                        (3) 
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By rewriting the inequality (3) as  

 








rij

ij
rij

ijd xZxT 2
1)(   

 

the main model for the path r  can be reformulated as:

            

 



rij

ijijij xuszmin                                       (4) 

 

s.t. 

   

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rij

ijd
rij

ij xTxZ 2
1                     (5) 

rijuxl ijijij        

 

This completes the lemma using the definition of the 

Euclidean vector norm.         

 

Remark 1. It can be easily seen that the problem (4)-

(5) is infeasible when the parameter dT  satisfies the 

following inequality: 

 

 rrd nnZlT  1min  

 

where  rijll ij  |minmin
. Thus, in order to have 

feasible problem on path r , we assume that at least 

lx   satisfies the inequality (5), i.e., 

 

d

rij

ij

rij

ij TllZ 




2

1                                      (6) 

 

Of course this assumption is not restrictive from an 

engineering view, since we want to minimize the cost 

function (4) where its worst case happens in lx  , 

when it is feasible.  

 

3. SOCP Reformulation of Model for a Single 

Path TCTP 
The proposed model of TCTP in (4)-(5) is a 

quadratically constrained program which attempts to 

maximize the path completion probability for path r  

using the minimum amount of resources. In this section 

we propose a SOCP reformulation of this problem in 

order to apply polynomial time interior point methods 

to solve it. 

Let us briefly describe the SOCP problem and its dual 

(see more details in [5]). A second-order cone 

programming problem is defined as follows:  

 

(CP)     

0..

min

K

T

bAxts

xc


 

 

Where the cone K  is a direct product of several ice-

cream (second order or Lorentz) cones, i.e., 

 

kmmm
LLLK  21  

 

where the ice cream cone 
mL   is defined as follows: 
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and the notation 0Kx  stands for Kx . The ice-

cream cone 
mL  is self-dual, i.e.,   mm LL 

*
 (see [5]), 

where the dual cone 
*K  is defined as follows: 

 

 KxxyRyK Tm  ,0|*
. 

 

Therefore, the problem dual to (CP) is: 

 

(DCP)   
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The SOCP problem is a direct extension of the linear 

programming problem. The weak duality theorem for 

the SOCP problem and its dual still holds as the linear 

programming case, but for the strong duality theorem, 

the SOCP problem and its dual should satisfy Slater 

regularity conditions (see [5]). 

Now, let  Tnr
xxx ,,1  denotes the parameter of 

exponential distribution of all activity durations on 

path r . We also denote the vectors of upper and lower 

limit mean duration of all activities on path r  by 

 Tnr
uuu ,,1   and  Tnr

lll ,,1  , respectively, and 

the vector of cost slope of activities on this path by 
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 Tnr
sss ,,1  . Assume that rn

Re  is the all one 

vector. Then, the constraint (5) can be written as 

follows: 

 

xeTxZ T
d 1  

 

or equivalently 
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Therefore, we can rewrite the inequality (7) as follows: 
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or equivalently 
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Using these notations and removing the constant usT
 

from the objective function (4), the optimization 

problem (4) can be rewritten as the following second 

order conic programming form: 
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Thus, the problem (8) and its dual are as follows: 
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Now, we have the following theorem for solvability of 

the problem (9). 

 

Theorem 1. Suppose that the parameter dT  is given so 

that it satisfies (6). Then, the dual problem (10) is 

bounded above and strictly feasible, and therefore the 

primal problem (9) is solvable and the optimal values 

of both problems are equal. 

Proof. Using (6), one can easily see that lx   is a 

feasible solution for the problem (9). Thus, using weak 

duality theorem, the dual problem (10) is bounded 

above. Now, we construct a strict feasible solution for 

the dual problem (10). Let   be a positive constant 

and 

 

rrr nnn
ReZyRsyRy 
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
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It can be easily verified that the vector  TTTT yyy 210 ,,  

is a feasible solution for the dual problem (9). 

Moreover,  

 

0,0,0 210 1  yyy
rn

L
  

 

i.e., the vector  TTTT yyy 210 ,,  is a strictly feasible 

solution of the dual problem (10). Therefore, using 

Conic Duality Theorem, the primal problem (9) is 

solvable (i.e., it attains to its minimum value) and the 

optimal values of the both problems are equal. Due to 

the solvability of the problem (8), it can be easily 

solved by using available SOCP computer packages 

such as CVX, SeDuMi, CPLEX, etc in the polynomial 

time iteration complexity.  

 
4. Determining Priority of Paths 

In Section 3, the SOCP formulation of single path 

TCTP has been developed. Using this model, we can 

improve the completion probability of paths 

individually, while improving the project completion 

probability, all paths should be improved. Therefore, it 

is necessary to develop a procedure to rank the paths 

with respect to their criticality. By using this 

procedure, the SOCP formulation would be applied to 

the MCPs before other paths via a general iterative 

algorithm.  
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For this purpose, a measure based on criticality concept 

has been applied. The Path Criticality Index (PCI) is 

the probability that the duration of path is greater than 

or equal to the duration of other critical paths [24]. In 

other words, PCI gives the probability that the path is 

the Most Critical Path (MCP). The maximum amount 

of the PCI corresponds to the MCP. 

We have to note that in PERT networks, numerous 

paths have the potential of becoming critical. In other 

words, there is not a unique critical path in stochastic 

networks, but we have “most critical path” at a given 

setting of network. 

The classical approach ignores this fact and uses a 

critical path that results in an extremely optimistic 

estimate for the probability of completion time. In 

general, this path is not the most critical path in the 

sense that it does not provide the smallest estimate for 

the probability of completing the project on time. 

Hence, in this paper, we shorten the paths in order of 

their criticalities until the required project completion 

probability is satisfied for that path. In each iteration of 

the algorithm, the most critical path is selected and the 

optimal activities are chosen on it to be assigned 

additional resources. 

This procedure continued until all the paths meet the 

predefined completion probability. During crashing 

one path, some of the activities of other paths may be 

crashed (because of joint activities), which may 

decrease the criticality of those paths. 

Recently, some researchers attempted to present some 

methods for calculating the PCI. Martin [24] defined 

concept of the path criticality in PERT networks. But 

he did not present any method to compute its value. 

Van Slyke [34] calculated the criticality indices of the 

PERT networks by using the Monte Carlo simulation 

technique. Some researchers proposed application of 

conditional Monte Carlo simulation to compute the 

PCI [7,31]. Soroush [32] described an exact solution 

approach for determining the MCP based on concept of 

stochastic domination.  

Fatemi Ghomi and Teimouri [16] proposed a new 

analytical method for computing the PCI and activity 

criticality index for PERT networks with discrete 

random variables of activity durations.  

Here, we employ the Monte Carlo simulation technique 

for computing the MCP. Therefore, we need a large 

number of simulation runs to distinguish the MCP in 

each iteration.  

In order to compute the PCI, in each run, we first 

assign a sample value to every activity from its related 

distribution and then estimate the PCI using statistical 

analysis of obtained information (e.g. see this 

procedure in Table 3 related to the illustrative example 

in Section 5).  

Assume that we have N  simulation runs and 
r  

represents a random variable corresponding to path r . 

It represents the number of simulation runs in which 

path r  is the longest path. Therefore,
h  follows a 

binomial distribution with parameters of  rPN, , where 

rP  represents the probability of the criticality for path 

r . According to the above mentioned assumptions, the 

MCP can be computed by estimating the rP  using rP̂  

which is defined as follows:  

 

N
PPCI r

rr


 ˆ

 
 

Therefore, the maximum value of PCIs defines the 

MCP, i.e., 

 

MCP =  hLhrr PCImaxPCI| ,,2,1   

 

Now, we can outline the flowchart of our proposed 

SOCP approach for solving the stochastic TCTP as it is 

shown in Figure 1. 

 
5.  Illustrative Example 

This section is organized in two parts. First, a 

numerical example is described step by step to 

illustrate the process of proposed SOCP approach. 

Detailed information is presented in the form of tables 

and figures to clear the method. Then, 20 randomly 

generated test problems of different size are presented 

to investigate the performance of the presented SOCP 

approach for stochastic TCTP. All computational 

results were obtained using MATLAB 7.6.0. We also 

use SeDuMi for solving the SOCP problem in each 

step.   

We consider a PERT network with 10 nodes, 14 

independent activities and 10 interrelated paths to 

demonstrate how the presented approach optimally 

improves the project completion probability. Figure 2 

shows the AOA format of example network and 

characteristics of its activities and paths are presented 

in Tables 1 and 2. 

 

Tab. 1. Characteristics of example 

Activity No Activity ijs  ijl  iju  

1 0-1 225 8 20 

2 0-3 202 12 20 

3 0-2 214.5 12 20 

4 1-4 189 0.5 28 
5 2-3 253.25 10 20 

6 2-5 198.25 28.5 65 

7 3-6 285.20 42 60 

8 4-7 291 13 30 
9 4-6 280 11.5 30 

10 5-8 232.20 24 30 

11 6-9 232 9.5 20 

12 6-8 161.50 17 30 

13 7-9 209.20 13.5 40 

14 8-9 321.20 8.5 20 
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Tab. 2. Paths definition of example 

Path No. Activity sequences 

1 1-4-8-13 

2 1-4-9-11 

3 1-4-9-12-14 

4 2-7-11 

5 2-7-12-14 

6 3-5-7-11 

7 3-5-7-12-14 

8 3-6-11 

9 2-6-12-14 

10 3-6-10-14 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
Fig. 1. Flowchart of the proposed approach for 

solving the developed TCTP 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. AOA network of example 

 
The objective is to obtain the optimal allocated budget 

to activities for improving project completion 

probability from a risky value to a predefined confident 

level. It is assumed that the time unit is in weeks and 

the cost is in thousands. According to the presented 

characteristics of the example, the initial value of 

project completion probability at 165dT  is equal to 

0.578, which can be approximately computed using the 

Central Limit Theorem. This value is concerned with 

the situation that all activities are planned in the upper 

bound of their distribution parameters ( iju ). It is also 

assumed that the desired amount of project completion 

probability ( ) is equal to 0.90. The proposed method 

attempts to improve the initial probability (0.578) to a 

desired value of probability (0.90). The results of 

proposed model for presented example are organized in 

Tables 3 and 4. 

The MCPs have been marked by symbol * in Table 3. 

As it seems, the MCP has been selected in each 

replication of algorithm, using 10,000 Monte Carlo 

simulation runs. Then, the SOCP model (developed in 

Section 3) has been applied to the selected paths to 

improve the amount of hP  (path h  completion 

probability) from its primary value to  . According to 

Table 3, the paths 7, 1, 10 and 3 are selected as MCP, 

respectively, in 4 iterations of algorithm. After 

improving the selected MCP (applying the developed 

SOCP model for the MCP), it is eliminated from 

unimproved paths list (the C  set) in each step. This 

procedure is repeated until all of the paths satisfy the 

desired predefined probability (0.90). The optimum 

objective function (additional direct cost) and obtained 

project completion probability are computed 21.745 

thousands and 0.90, respectively. As we see, Table 3 is 

organized for 4 above mentioned paths, only. This case 

may result from the following potential reasons.  

1) Other paths satisfy the   in their primary state 

(
iju ) and do not need for improvement 

(initial hP ). 

2) Other paths do not satisfy   in their primary 

state, but interrelation between them and above 

mentioned paths (7, 1, 10 or 3) led to their 

appropriate improvement, formerly. 
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Compute the path completion probability 

in 
dT (

hP ) for all paths 

 

Specify values of ijs , ijl , iju , 

  and dT 

C set = {Path h  |  hP } 

Run Simulation and calculate PCIs for 

C  members 

 

Determine MCP =  { Path r  | PCI r = max 

{PCI’s}} 

 

Apply the SOCP formulation   

 (Section 3) for MCP 

 

Stop and report results 

Is C  set 

null? 

C
 =

 C
-{

M
C

P
}
 

All of hP s 

are greater 
than ? 

 

No 

No 

Yes 

Yes 
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Tab. 3. Results of applying proposed SOCP approach to considered example (10,000 simulation runs) 

Path No. 

Iteration 1 Iteration 2 Iteration 3 Iteration 4 

PCI hP PCI hP PCI hP PCI hP 

1 0.1624 0.780 0.1688 * 0.900 - 0.900 - 0.917 

2 0.0319 0.910 0.0316 0.934 0.0296 0.934 0.0334 0.949 

3 0.1410 0.847 0.1417 0.879 0.1311 0.879 0.1338 * 0.900 

4 0.0177 0.949 0.0175 0.949 0.0165 0.949 0.0167 0.949 

5 0.0705 0.905 0.0681 0.905 0.0744 0.905 0.0761 0.905 

6 0.0519 0.946 0.0552 0.946 0.0499 0.946 0.0558 0.946 

7 0.2175 * 0.900 - 0.900 - 0.900 - 0.900 

8 0.0314 0.837 0.0302 0.837 0.0299 0.982 0.0268 0.982 

9 0.1112 0.778 0.1136 0.778 0.1111 0.958 0.1082 0.958 

10 0.1645 0.708 0.1582 0.708 0.1713 * 0.900 - 0.900 

MCP 7 1 10 3 

*  13090 12976 14144 11365 

 

Table 4 shows the optimum decision variables in each step.  

 

Tab. 4. The optimum decision variables obtained by the proposed SOCP 

Activity 

MCP 
*
ijx  

7 1 10 3 

0-1 20 20 20 20 20 

0-3 20 20 20 20 20 

0-2 12 12 12 12 12 

1-4 28 21.73 21.73 18.66 18.66 

2-3 10 10 10 10 10 

2-5 65 65 37.30 37.30 37.30 

3-6 42 42 42 42 42 

4-7 30 30 30 30 30 

4-6 30 30 30 30 30 

5-8 30 30 30 30 30 

6-9 20 20 20 20 20 

6-8 17 17 17 17 17 

7-9 40 28.28 28.28 28.28 28.28 

8-9 18.27 18.27 18.27 18.27 18.27 

CPU time (SeDuMi) 0.4524 0.4992 0.4516 0.4212 ------- 

CPU time (LINGO) 0.8726 2.6381 1.3892 0.9175 ------- 

 
There are not any standard test problems for the 

developed model of stochastic TCTP in the published 

literature to compare our results. Nonetheless, 20 

randomly generated problems have been considered 

and the results of the proposed SOCP's objective 

function are presented in Table 5. The problems 17-20 

in the Table 5 are single path problems with random 

data, and therefore, there is no need to run Monte Carlo 

simulation to detect MCP in these problems. These 

problems are given to show the effect of conic 

reformulation (8). We solve the problems 17-20 by 

LINGO and SeDuMi software, simultaneously. The 

CPU time for these problems by LINGO are 3240, 951, 

3325 and 2525 seconds, respectively, while the 

SeDuMi solves all of those in less than 4 seconds. 
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Tab. 5. The SOCP's objective function for 20 randomly generated problems 

Problem No. 
Number of 

Activities 

Number of 

Nodes 

Number 

of Paths 
  

dT  
Optimum 

Objective 

1 5 4 3 0.70 50 2562.34 

2 5 4 3 0.78 80 1985.48 

3 5 4 3 0.88 100 2358.01 

4 5 4 3 0.95 120 2405.53 

       

5 8 5 5 0.45 50 3872.02 

6 8 5 5 0.70 80 4004.22 

7 8 5 5 0.85 100 3959.04 

8 8 5 5 0.90 120 4016.95 

       

9 14 10 10 0.63 100 6123.62 

10 14 10 10 0.78 120 5984.00 

11 14 10 10 0.88 140 6008.35 

12 14 10 10 0.95 180 5893.16 

       

13 40 25 64 0.36 80 12364.45 

14 40 25 64 0.58 100 13131.49 

15 40 25 64 0.75 120 13002.98 

16 40 25 64 0.95 150 12165.57 

       

17 80 81 1 0.9 3500 4975.10 

18 85 86 1 0.9 4200 3325.00 

19 100 101 1 0.9 5500 5368.30 

20 120 121 1 0.9 7200 9790.90 

 

6. Conclusion 
This paper proposes the application of Second 

Order Cone Programming (SOCP) and Monte Carlo 

simulation for solving the stochastic Time-Cost 

Tradeoff Problem (TCTP), where activities are 

subjected to linear cost function and assumed to be 

exponentially distributed.  

The main objective of the proposed model is to 

improve the project completion probability to a 

predefined desired value. First, the developed model 

reformulates the primary nonlinear formulation of 

single path TCTP to the compatible-form of SOCP 

problem; in addition a general algorithm based on path 

criticality index has been developed using Monte Carlo 

simulation to apply the SOCP approach for all paths, in 

order of their criticality indices.  

A numerical example has been discussed to illustrate 

the details of proposed SOCP process. Also a study has 

been conducted using several test problems to 

investigate the performance of SOCP approach. Our 

computations indicate that the proposed SOCP 

approach is applicable, reliable and also time benefit 

for the developed TCTP. 
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