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ABSTRACT 
This study introduces a new variant of the customer order scheduling (COS) problem in which each 
customer orders several products processed in a two-machine flow shop. Customers’ orders are 
satisfied by the job-based processing approach in which the same products ordered by different 
customers form a product lot (job). Each customer’s order for a product is processed as a sublot 
(batch) of identical products processed together by the same machine without intermingling the sublots 
of other products. A sequence-independent attached setup on each machine is required before starting 
the process of a product lot. Each customer order is delivered in a single shipment when processing all 
products in that customer order is finished. The aim is to construct an optimal schedule of product lots 
and the sublots’ sequence in every job lot by minimizing the sum of completion times of the customer 
orders. In our study, a mixed-integer linear programming (MILP) model and a multi-phase heuristic 
algorithm are developed for solving the problem. The computational experiments reveal that the 
proposed model solves the small-scale problem instances with and without setups optimally within 
three hours of a run-time limit. However, our proposed algorithm finds optimal or near-optimal 
solutions for the medium and large-scale problem instances in less than five seconds. 
 
KEYWORDS: Customer order scheduling; Job-based processing; Lot streaming; Two-machine flow 
shop; Total completion time; Mixed-integer linear programming; Heuristic algorithm. 
 

1. Introduction1 
In today’s manufacturing world, customer 
satisfaction is essential for companies due to the 
growing competition to survive in the 
marketplace. Manufacturing the products with a 
make-to-order or make-to-stock strategy requires 
effective scheduling of the resources such as 
machines, workers, and tools, to do a set of tasks 
over time. In make-to-order manufacturing 
environments, scheduling is usually referred to 
as customer order scheduling (COS), in which 
several customer demands for various products 
are satisfied [1].  
In manufacturing environments, as mentioned in 
[1], two extreme processing approaches exist for 
producing the products: (1) order-based 
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processing (OBP) and (2) job-based 
processing (JBP). In the order-based processing 
approach, all different products in a customer 
order are processed consecutively without 
intermingling with other customer orders [2]. 
That is, all products ordered by a customer 
should be processed on a machine before 
processing the products of another customer 
order on that machine. In order-based processing, 
the sequence of the customer orders and the 
products’ sequence in each customer order are 
determined simultaneously. However, in the job-
based processing approach, a production lot is 
formed for each product ordered by different 
customers and processed before processing 
another product lot. The sequence of product lots 
(jobs) and the customer orders’ sequence in each 
product lot are determined simultaneously [1]. 
When the product lots in multi-stage shops are 
scheduled with the job-based processing 
approach, a production lot of a product can be 
thought of as a lot (batch) of sublots, where each 
sublot corresponds to different customer orders. 
Without waiting to complete the whole product 
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lot at a stage, processing different sublots of a 
product lot simultaneously over different 
machines in multi-stage shops, is called lot 
streaming (LS). 
A numerical example illustrates two extreme 
processing approaches. Consider a problem 
instance with two customer orders and two 
products. Customer 1 orders five units of Product 
1 and 10 units of Product 2. Ten units of Product 
1 and 5 units of Product 2 are ordered by 
Customer 2. Setup and unit processing times for 
operations 1 and 2 of Product 1 are (5; 1) and 
(10; 2), respectively. Setup and unit processing 
times for operations 1 and 2 of Product 2 are (10; 
2) and (10; 1), respectively. The optimal 
schedules obtained by the order-based and job-

based processing approaches are illustrated in 
Figures 1(a) and 1(b), respectively. Note that 
there is no need for a setup before processing 
Product 2 ordered by Customer 2 in the order-
based processing case since the last job (Product 
2) of the previous customer order is Product 2. In 
the order-based processing, the total completion 
time ܶܶܥ of the customer orders is achieved as 
150 (=60+90) time units since the completion 
times of the orders given by Customers 1 and 2 
are 60 and 90-time units, respectively. However, 
the ܶܶܥ value becomes 140 (=65+75) time units 
in the job-based processing since completion 
times of the orders given by Customers 1 and 2 
are 65 and 75-time units, respectively. 

 

 
Fig. 1. (a) order-based processing with lot streaming and setup saving; and (b) job-based 

processing with lot streaming 
 
The problem in this study is the scheduling of a 
set of customer orders in which each customer 
gives an order having different quantities for 
several types of products. The first and second 
operations of the products are performed on 
Machine 1 and Machine 2, respectively, in a two-
machine flow shop environment in which job-
based processing and lot streaming are used for 
producing the products. A customer order can 
only be delivered when processing all products 
belonging to that order is finished on Machine 2. 
Thus, the completion time of a customer order is 

the completion time of the sublot processed as the 
final product in that order. The aim is to construct 
a schedule that provides the sequence of product 
lots (jobs) and the customer orders’ sequence in 
each product lot to minimize the sum of customer 
orders’ completion times.  
The rest of this paper is organized as follows. The 
following section presents a brief literature 
review on the most related works to our study. 
Section 3 describes the problem under study, 
provides the problem complexity, and presents 
some properties of the optimal schedule. Section 
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4 and 5 provide a MILP model and a heuristic 
algorithm, respectively. In Section 6, the 
computational experiments are presented to 
assess the effectiveness and efficiency of our 
proposed solution approaches. A summary and 
highlights of future research suggestions 
conclude the paper. 
 

2. Literature Review 
In the literature of manufacturing scheduling, the 
problem studied in this paper falls at the 
intersection of the COS and LS problems. We 
only limit our overview of the related COS and 
LS studies in the literature, focusing on the two-
machine flow shop problems. 
Customer order scheduling was first studied by 
Jullien and Magazine [3]. This study was 
followed by several studies considering various 
manufacturing environments such as the single-
machine, parallel machines, and job shop. 
However, the studies on COS problems for flow 
shop environment are very few in the literature. 
One study for the two-machine flow shop 
environment, namely by Yang [2], has similar 
characteristics but not precisely as the one 
introduced in our study. He considered the order-
based processing approach and developed a 
polynomial-time algorithm giving the optimal 
schedule for the makespan objective. He also 
provided the problem complexity to minimize the 
total completion time and developed a simple 
heuristic algorithm. The main difference between 
the problem studied by Yang [2] and the one 
investigated in our study is the processing 
approaches, which are the order-based and job-
based processing in his and our study, 
respectively. Furthermore, no setup times are 
assumed between different products (jobs) in [2], 
whereas sequence-independent attached setups 
exist between products (jobs) in our study. A 
thorough review of COS problems is provided by 
Xu et al. [4].  
On the other hand, the idea of lot streaming was 
first used by Reither [5] and rediscovered in the 
late 1980s. In the past three decades, the use of 
the LS idea in scheduling problems of multi-stage 
manufacturing environments has received much 
attention from researchers. Different aspects of 
the LS problem have been studied since LS has 
several advantages in make-to-order 
manufacturing environments to improve delivery 
times, especially when significantly large setup 
times are needed before starting the process of 
the products. Based on the number of job lots, the 
literature on LS problems for various job and 
shop characteristics can easily be divided into 

two categories: one deals with a single-job 
(single-lot), and the other addresses the multi-job 
(multi-lot) case. While the number of sublots and 
their sizes are determined in single-job problems, 
the number of sublots, sublot sizes, and sublots’ 
sequence are determined in multi-job problems. 
Here, we limit our literature review on the LS 
studies to the multi-job case with a two-machine 
flow shop to ease the understanding of the proper 
place of the study under consideration.  
Vickson and Alfredsson [6] considered the multi-
job case with unit-sized sublots (i.e., sublots with 
a single item of a product). They investigated the 
benefits of sublots in two and three-machine flow 
shop environments. To solve the makespan 
minimization problem in the two-machine flow 
shop and the special case of the three-machine 
flow shop problem, they proposed a modification 
in Johnson’s algorithm [7]. Çetinkaya and 
Kayalıgil [8] obtained a combined procedure, 
modifying Johnson’s algorithm, handling both 
sequence-independent attached and detached 
setup cases. Çetinkaya [9] studied the two-
machine flow shop problem with sequence-
independent detached setups and removal times. 
He showed that the sublot-sizing and job-
sequencing problems are solved independently 
and provided an optimal schedule to minimize 
the makespan by modifying Johnson’s algorithm. 
Vickson [10] considered the same problem 
studied in [9] and provided an optimal solution 
procedure with sequence-independent attached or 
detached setups on the machines and 
transportation times between the machines. Glass 
and Possani [11] considered the same problem 
studied in [10], showed that sublot-sizing and 
job-sequencing problems are solved 
independently as in [9], and developed an optimal 
solution procedure with attached setup times and 
transportation times. Sriskandarajah and 
Wagneur [12] studied the problem with no-wait 
restriction between machines. Pranzo [13] 
extended the work in [9] to the case in which a 
limited buffer exists between machines. The 
makespan minimization problem for a two-
machine flow shop with a single transport agent 
and sequence-independent attached/detached 
setups on the machines was considered solved in 
[14]. Comprehensive reviews of scheduling 
problems with the LS concept for single-job lot 
and multi-job cases can be found in [15-18]. 
A brief overview of the literature indicates that 
the study by Liu [19] is the only one to apply the 
LS concept with order-based processing to the 
COS problem in job shops. Thus, the study under 
consideration will be the second one in the 
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literature that combines the LS concept and the 
COS problem. The contributions of our study to 
literature are as follows: 

 To the best of our knowledge, a study 
that considers the COS problem with lot 
streaming for a flow shop to minimize 
the sum of the customers’ completion 
times does not exist. Hence, we intend to 
contribute to the literature on COS and 
LS in this direction. 

 A MILP model has been presented to 
solve the problem under study optimally. 

 A multi-phase heuristic algorithm has 
been proposed to solve medium and 
large-scale problems. 

 Our proposed heuristic algorithm can be 
easily implemented, and its solutions are 
optimal for small-scale problems. It also 
provides satisfactory solutions (optimal 
or near-optimal) for problem instances 
where the MILP model cannot achieve 
the optimal solution. 
 

3. Problem Definition and Preliminary 
Results 

In this section, the problem under study and its 
assumptions are first described in detail; next, its 
complexity is discussed. Finally, some 
preliminary results regarding the properties of the 

optimal schedule are provided. 
 
3.1. Problem definition and assumptions 
Consider a scheduling problem P of ܭ customer 
orders (݇ = 1,2,… , (ܭ . Customer order ݇  is 
composed of several products from a set of ܰ 
products. Products (݆ = 1,2,… ,ܰ) are processed 
in a two-machine flow shop in which each 
product has one operation on each machine. The 
first and second operations of all products are 
performed by Machines 1 and 2, respectively. 
Unit processing time of the product ݆ on machine 
݉ (݉ = 1,2) is	, , and ݐ,  units of time are 
required to set up the machine	݉ before starting 
to process the first sublot of product ݆. Customer 
݇ orders ܳ,  units of product 	݆, which is called 
the product sublot size. While processing the 
products, all sublots of the same product are 
processed together on each machine. 
Furthermore, a sublot of a product processed on 
Machine 1 is moved to Machine 2, while other 
sublots of the same product are being processed 
on Machine 1. That is, overlapping the two 
operations of the same product through the 
creation of sublots (i.e., lot streaming) is allowed 
without intermingling the sublots of other 
products, as shown in Fig. 2(b) for the numerical 
example discussed in Section 1. 

 

 
Fig. 2. Schedules (a) with and (b) without intermingling the sublots of different products 
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Besides, the following additional assumptions are 
considered: 
 All customer orders are available for 

processing simultaneously. 
 Machines are ready to process the products 

and operate independently.  
 The product processing sequence is the same 

at both machines; i.e., permutation flow 
shop is considered. 

 Both machines can process only one sublot 
at a time, and each sublot can be processed 
by only one machine at any given time; 
i.e., machines are not batch-processing 
machines. 

 Setup times are sequence-independent and 
attached; i.e., the setup on a machine 
cannot be performed before the first sublot 
belonging to a product physically arrives at 
that machine. However, there is no need to 
make a setup between sublots of the same 
product.  

 Sublots of a product are immediately sent to 
Machine 2 without waiting to complete all 
other sublots of the same product; i.e., 
sublot availability is considered. 

 Transportation times from Machine 1 to 
Machine 2 are negligibly short; thus, they 
are ignored. 

 Storage space between machines is 
sufficient to stock the processed sublots on 
Machine 1. 

 Each customer order is delivered when 
processing all products in the customer 
order is completed; i.e., no partial delivery 
is allowed. Thus, the completion time of 
the sublot processed as the final product in 
a customer order determines the 
completion time of that customer order.  

The aim is to find a sequence of the product lots 
and the sublots’ sequence in each product lot so 
that the sum of the customer orders’ completion 
times is minimized. 
 
3.2. Problem complexity 
When there is a single customer order, 
problem P becomes the maximum completion 
time (makespan) minimization problem since the 
completion time of the final sublot processed 
determines the customer order completion. The 
optimal solution to this reduced problem is 
trivial, and the algorithm by Johnson [8] gives the 
optimal sequence of the jobs. Therefore, to 
investigate the complexity of problem P, it is 
assumed that there is more than one customer 
order.  

Theorem 1 provides the complexity of the 
problem P. 
 
Theorem 1. The problem P is NP-hard in the 
strong sense. 
Proof: Consider a particular case of problem P, 
where a single customer orders one unit of each 
product (job), and the setup times are omitted. 
This special case is equivalent to the classical 
two-machine flow shop problem ܥ∑//2ܨ , 
where the total completion time of the products 
(jobs) is minimized and proven to be NP-hard in 
the strong sense by Gonzalez and Sahni 20. 
Hence, problem P is also NP-hard in the strong 
sense.  
 
3.3. Preliminary results 
In this section, some definitions and theorems are 
given to derive the structural properties of the 
optimal solution to problem P. 
 
Definition 1 (Smith et al. 21): The ܯ-machine 
ܰ-job flowshop is called an ordered flow shop if 
the following two properties are satisfied: 
   (i)  If a particular job has a smaller 
processing time on any machine than does a 
second job on the same machine, this implies that 
the processing time of this first job is less than or 
equal to the processing time of the second job on 
all corresponding machines. 
   (ii)  If a job has its ݎth smallest processing 
time on some machine	݉ where ݉ = 1,2,…  ,ܯ,
this implies that every other job will have its ݎth 
smallest processing time on the same machine ݉ 
where ݎ = 1,2,…  .ܯ,
Using the results in 21, Panwalker and Khan 
22 provided the following result for the ordered 
flow shops. 
 
Lemma 1. In the optimal schedule for the total 
completion time minimization problem in the 
ordered flow shop, jobs are sequenced in non-
decreasing order of their processing times.  
Çetinkaya and Gupta 23 presented the 
following result for the single job-lot streaming 
problem in the ܯ-machine flow shop. 
 
Lemma 2. The single job-lot streaming problem 
with the total completion time minimization 
objective satisfies the characteristics of the 
ordered flow shops. 
When all customers order a single product (job), 
Theorem 2 describes the optimal schedule for this 
special case of problem P.  
Theorem 2. In an optimal schedule of the 
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problem P, the customer orders (sublots) are 
processed in non-decreasing order of their sublot 
sizes if all customers order a single product. 
Proof: When all customers order a single 
product, this special case of problem P is 
equivalent to the single job-lot streaming 
problem with the total completion time 
minimization objective. From Lemmas 1 and 2, it 
is clear that the customer orders (sublots) are 
processed in non-decreasing order of their sublot 
sizes.  
Theorem 3 describes the optimal schedule for all 
sublots of the product processed as the last in the 
product (job) sequence and will be used to 
increase the efficiency of our proposed heuristic 
algorithm in Section 5. 
  
Theorem 3. In an optimal schedule of problem P, 
sublots of the final product (job) in the job 
sequence are processed in non-decreasing order 
of sublot sizes. 
Proof: The sum of the completion times for the 
customer orders (sublots) having no demand for 

the final product (job) in the job sequence does 
not depend on the sublots of the last job in the job 
sequence. The problem of finding the optimal 
sequence for the sublots of the last job in the job 
sequence can be considered the single product 
case as given in Theorem 2. Thus, sublots of the 
last job in the job sequence are processed in non-
decreasing order of the sublot sizes.  
 

4. Mathematical Programming Model 
In this section, a MILP model is presented for 
solving problem P. This model is an extension of 
the model developed for the classical two-
machine multi-job lot streaming problem in [17]. 
The MILP model provides the optimal schedule 
with the job sequence (i.e., sequence of the 
products) and the sublot sequence (i.e., customer 
orders' sequence) in each job.  
The following parameters, indices, sets, and 
decision variables are used to develop the MILP 
model.

 
4.1. Parameters, indices and sets 
 .Number of orders given by different customers ܭ
݇ Index for customer orders (݇ = 1,…  .(ܭ,
ܰ Number of products (jobs). 
݆ Index for jobs	(݆ = 1,… ,ܰ). 
ܱ  Set of jobs ordered by customer ݇. 
ܬ  Set of customers ordering for job ݆.  
݊ Number of customers ordering job ݆. 
ܳ,  Quantity (number of identical items) of product (job) ݆ ordered by customer ݇. 
ܮ  Lot size (total order quantity) for job ݆, where ܮ = ∑ ,∈ೕܦ . 
݅ Sublot index (݅ = 1,… , ݊). 
݉ Machine index (݉ = 1,2). 
 .݉ , Unit processing time of job ݆ on machine
 .݉ , Time for the attached setup performed before processing job ݆ on machineݐ
ܸ A sufficiently large number. 
 
4.2. Decision variables 
ܺ,,  1 if ݅th sublot of job ݆ is processed for customer order ݇; otherwise, 0. 
ܻ,  1 if job ℎ precedes ݆; otherwise, 0. 
ܵ,  Size of the ݅th sublot of job ݆. 
 .݉ ,, Completion time of the ݅th sublot of job ݆ on machineܥ
ܥ ܶ Completion time of the customer order ݇. 
 
4.3. The MILP model 
The MILP model for the problem P is as follows: 
 
Minimize ܶܶܥ = ∑ ܥ ܶ


ୀଵ            

(1) 
Subject to ∑ ܵ, =

ೕ
ୀଵ ܮ    for  ݆ = 1,2, … ,ܰ (2) 
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∑ ܺ,, =
ೕ
ୀଵ 1   for  ݇ = 1,2,… , ݆ ;ܭ ∈ ܱ  (3) 

∑ ܺ,,∈ೕ = 1   for  ݆ = 1,2, … ,ܰ; ݅ = 1,2,… , ݊ (4) 

,ݏ = ∑ ܳ,ܺ,,∈ೕ    for  ݆ = 1,2, … ,ܰ; ݅ = 1,2, , … , ݊ (5) 

ଵ,,ଵܥ − ଵ,ݏ	,ଵ ≥ ݆  ,ଵ  forݐ = 1,2, … ,ܰ (6) 

ାଵ,,ଵܥ − ାଵ,ݏ	,ଵ ≥ ݆  ,,ଵ  forܥ = 1,2, … ,ܰ; ݅ = 1,2,… , ݊ − 1 (7) 

ଵ,,ଶܥ − ଵ,ݏ	,ଶ ≥ ଵ,,ଵܥ + ݆  ,ଶ   forݐ = 1,2, … ,ܰ (8) 

ାଵ,,ଶܥ − ାଵ,ݏ	,ଶ ≥ ݆  ାଵ,,ଵ forܥ = 1,2, … ,ܰ; ݅ = 1,2,… , ݊ − 1 (9) 

ାଵ,,ଶܥ − ାଵ,ݏ	,ଶ ≥ ݆  ,,ଶ  forܥ = 1,2, … ,ܰ; ݅ = 1,2,… , ݊ − 1  (10) 

൫ܥ,, − , ,൯ݏ	 − ൫ܥ,, − , ,൯ݏ	 +
ܸ൫1 − ܻ,൯ ≥ ൫ܮ − ∑ ,ିଵݏ

ୀଵ ൯, + ,ݐ +
, ∑ ,ିଵݏ

ୀଵ    

for  ℎ ≠ ݆; ݁ = 1,2,… , ݊; ℎ =
1,2,… ,ܰ;  
       ݅ = 1,2,… , ݊; ݆ = 1,2,… ,ܰ; 
݉ = 1,2 
 

(11) 

൫ܥ,, − , ,൯ݏ	 − ൫ܥ,, − ,൯ݏ	, + ܸ ∙ ܻ, ≥
൫ܮ −∑ ,ିଵݏ

ୀଵ ൯, + ,ݐ + , ∑ ,ିଵݏ
ୀଵ   

for  ℎ ≠ ݆; ݁ = 1,2,… , ݊; ℎ =
1,2,… ,ܰ; ݅ = 1,2, … , ݊; ݆ =
1,2,… ,ܰ; ݉ = 1,2  

(12) 

ܥ ܶ ≥ ,,ଶܥ −ܸ(1 − ܺ,,)  for  ݇ = 1,2,… , ݆ ;ܭ ∈ ܱ; ݅ =
1,2,… , ݊ 

(13) 

ܺ,, , ܻ, ∈ {0,1}  for  ∀ℎ, ݅, ݆, ݇ (14) 

,ݏ , ,,ܥ , ܥ ܶ ≥ 0  for  ∀݅, ݆, ݇,݉ (15) 

 
The objective in (1) of the MILP model is the 
sum of customer orders’ completion times. 
Constraint set (2) guarantees that the sum of the 
items in the sublots of a job must be equal to the 
total number of items in that job. i.e., the sum of 
the sublot sizes of a job must be equal to the lot 
size (total demand) for that job. Constraint set (3) 
ensures that each job of a customer order is 
assigned to only one sublot of that job. Constraint 
set (4) guarantees that each sublot of a job can be 
assigned to only one customer order. Constraint 
set (5) satisfies that the sum of the items in a 
sublot of a job must be equal to the demand for 
that job in the customer order assigned to the 
sublot. Constraint set (6) ensures that the 
processing of the first sublot of any job on 
Machine 1 begins after the setup on the same 
machine has been finished. Constraint set (7) 
guarantees that a sublot (except the first sublot) 
of a job begins processing on Machine 1 after the 
previous sublot is completed on the same 
machine. Constraint set (8) ensures that the first 
sublot of a job begins processing on Machine 2 
after its processing on Machine 1 and the setup 
on Machine 2 have been finished. Constraint set 
(9) ensures that all the sublots (except the first 
sublot) of a job begin processing on Machine 2 
after they are completed on Machine 1. 
Constraint set (10) guarantees that a sublot 

(except the first sublot) of a job begins processing 
on Machine 2 after the previous sublot is finished 
on the same machine. The terms on the right-
hand side of the constraint set (11) ensure that the 
difference between the start times of sublots ݁ 
and ݅ is at least equal to the sum of the processing 
times of the sublots ݁  to ݊  of job ℎ  and 1 to 
݅ − 1 of job ݆ and the setup time for job ݆. Note 
that either constraint set (11) or (12) is valid for 
an optimal solution. Constraint set (13) ensures 
that the completion time of a customer order is 
the maximum of completion times for the jobs 
belonging to that customer order. Constraint sets 
(14) and (15) are binary and non-negativity 
restrictions. 
 
4.4. Parameter ࢂ 
Selecting a suitable value of the parameter ܸ in 
Constraint sets (11), (12), and (13) affects the 
computational effort of the model since the 
parameter ܸ  defines the feasible region. One 
should restrict the value of parameter ܸ  with a 
sufficiently smallest positive number to reduce 
the feasible region of the MILP model. A 
sufficiently smallest positive number for 
parameter ܸ  is ܸ = ∑ ∑ ,ݐ) + )ଶܮ,

ୀଵ
ே
ୀଵ , 

which is equivalent to the sum of all jobs’ setup 
and processing times on both machines, and a 
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reasonable value in Constraint sets (11), (12), and 
(13). In solving the MILP model, the rounded-up 
value of ܸ  to the nearest number, which is the 
multiple of a hundred, will be used. 
 

5. Heuristic Algorithm 
The experiments in Section 6 show that the 
optimal solution of the MILP model cannot be 
obtained by the solver GAMS in a reasonable 
time limit for medium and large-scale problems. 
Furthermore, developing a polynomial-time 
algorithm that provides the optimal solution for 
all problem instances is not possible as 
problem P is NP-hard. Thus, a fast heuristic 
algorithm to provide optimal or near-optimal 
solutions within relatively short times has been 
developed. The proposed heuristic is a multi-
phase algorithm having four phases. An initial 
schedule is generated in the first phase. The 
insertion algorithm then improves this schedule 
in the second phase. The third phase improves the 
schedule obtained in the second phase by 
pairwise exchanging the positions of the 
customer orders. In the last phase, a tabu search 
algorithm improves the schedule obtained in the 
third phase. Now, the following sections give 
detailed descriptions of the phases. 
 
5.1. Phase 1 (An initial schedule 
generation) 
Before providing the steps of Phase 1, it is better 

to give the following definition of the run-in time 
of a job since an initial schedule is found by 
considering the run-in times of the jobs. 
 
Definition 2 (Run-in Time). Run-in time ܴܫ  of 
the job j in the problem P is the time that elapses 
between the starting times of the setups on 
machines 1 and 2. ܴܫ  is calculated as ܴܫ =
,ଵݐ + ,[ଵ]ݏ,ଵ , where 
 ,ଵ = sequence-independent attached setup timeݐ

on Machine 1,  
  ,ଵ  = unit processing time on Machine 1, and
  = size of the first sublot (customer order),[ଵ]ݏ

among the sublots processed in non-
decreasing order of their sublot sizes in 
job j. 

To illustrate the run-in times, consider the 
numerical example discussed in Section 1. When 
the customer orders of Product (Job) 1 are sorted 
in non-decreasing order of their demands, the 
order belonging to Customer 1 is the first sublot 
to be processed. The run-in time for Product 1 
becomes 10 (=5+5) time units, as illustrated by 
Fig. 3(a). Similarly, when the customer orders of 
Product 2 are sorted in non-decreasing order of 
their demands, the order belonging to Customer 2 
is processed as the first sublot. The run-in time 
for Product 2 becomes 20 (=10+10) time units, as 
illustrated by Fig. 3(b). 

 

 
Fig. 3. Run-in times for the products (jobs) 

 
The steps of Phase 1 are presented below.  
Step 1.  Construct the customer order list and the 

job list, where the customer orders 
(sublots) in each job are sorted in non-
decreasing order of sublot sizes. 

Step 2.   
(a) Consider the list of customer orders and 

sort them in non-decreasing order of their 
number of jobs. 

(b) If at least two customer orders have the 
same number of jobs, then calculate their 
completion times independently and sort 
the customer orders in non-decreasing 

order of their completion times. 
Step 3.  If the customer order has more than one 

job, then  
(a) Calculate the run-in times of these jobs as 

ܫܴ = ,ଵݐ + ,[ଵ]ݏ,ଵ , where the run-in 
time of a job is the sum of the setup time 
on Machine 1 and the total processing time 
of the first sublot of this job. 

(b) Sort the jobs in non-decreasing order of 
their run-in times.  

(c) Select the first job in the sorted job list as 
the first job of the initial job sequence ܵܬܫ 
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and remove this selected job from the order 
list. 

Step 4. If all jobs are placed in ܵܬܫ, calculate the 
ܶܥܶ  value for ܵܬܫ , and go to Phase 2; 
otherwise, go to Step 2(a). 

 
5.2. Phase 2 (Improving the initial 
schedule by the insertion algorithm) 
Insertion algorithm, also known as NEH 
algorithm, is a kind of neighbourhood algorithm 
proposed by Nawaz et al. [24] to solve the 
classical m-machine flow shop scheduling 
problem to minimize the makespan. In this phase, 
we have adapted the insertion algorithm to our 
heuristic algorithm to improve the initial schedule 
obtained in Phase 1. Although Phase 2 is the 
same as the modified NEH procedure in Phase 1 
of the heuristic algorithm in [1], a stepwise 
description of the NEH procedure is also given 
below for completeness. 
Step 1.  
(a) Let ܵܬܫ be the initial job sequence obtained 

in Phase 1 and select the first two jobs ܽଵ 
and ܽଶ from this sequence.  

(b) Form two partial sequences ܽଵ − ܽଶ  and 
ܽଶ − ܽଵ.   

(c) Calculate the ܶܶܥ  value for each partial 
sequence and select the partial sequence 
with minimum ܶܶܥ  value as the best 
partial sequence ܵܲܤ. 

Step 2.  
(a) Consider the job in the following position 

of the sequence ܵܬܫ , and generate partial 
sequences by placing this new job in all 
possible beginning, between, and ending 
positions of the sequence ܵܲܤ.  

(b) Calculate the ܶܶܥ  value for each partial 
sequence and select the partial sequence 
with minimum ܶܶܥ  value as the best 
partial sequence ܵܲܤ.  

Step 3. If all jobs of the sequence ܵܬܫ  are 
considered, then go to Phase 3; otherwise, 
go to Step 2(a).  

 
5.3. Phase 3 (Improving the schedule 
obtained in the second phase by pairwise 
exchanging the positions of the customer 
orders) 
When we generate the initial schedule in Phase 1, 
we assume that the customer orders (sublots) in 
each job are sequenced in non-decreasing order 
of their sizes. However, ܶܶܥ value may be 
improved by pairwise exchanging the positions of 
the customer orders in each job. Below is the 
stepwise description of the third phase of our 

heuristic algorithm. 
Step 1.  Let the first job of the job sequence 
obtained in Phase 2 be the current job. 
Step 2.  
(a)  Check whether there is a customer order in 

the current job such that this customer 
order does not have the jobs processed 
after the current job in the job sequence 
obtained in Phase 2. 

(b) If there is such a customer order, then go to 
Step 3a; otherwise, consider the next job in 
the job sequence as the current job. If the 
current job is in the last position of the job 
sequence, go to Phase 4; otherwise, go to 
Step 2(a).  

Step 3.  
(a)  Let the first customer order, which does 

not have the jobs processed after the 
current job of the job sequence, be the 
current customer order. 

(b)  Temporarily pairwise exchange the 
positions of the current customer order and 
the customer order immediately 
succeeding the current customer order. 

(c) Check whether the pairwise exchange in 
Step 3b improves the total completion 
time.  

(d) If the pairwise interchange does not 
improve the total completion time, then do 
not make this exchange and go to Step 
3(e); otherwise, 

(i) Make this pairwise exchange. 
(ii) If the new position of the current customer 

order is the first position in the current job, 
then go to Step 3(e); otherwise, go to Step 
3(b). 

(e) Check for the next customer order, which 
does not have the jobs processed after the 
current job of the job sequence, and go to 
Step 2(b). 

 
5.4. Phase 4 (Improving the schedule 
obtained in the third phase by a Tabu 
Search algorithm) 
Tabu Search (TS) is a widely used metaheuristic 
algorithm searching a global optimum for many 
industrial engineering related problems [1, 27-
28]. TS algorithm, which was first developed by 
Glover [25-26], takes an initial solution 
(schedule) generated randomly or obtained by a 
simple rule or a constructive heuristic algorithm. 
The solution achieved by Phase 3 of our heuristic 
algorithm will be the initial solution of our TS 
algorithm described below. In the classical 
application of the TS algorithm, all possible 
mutations, which are all solutions produced from 



10 Customer Order Scheduling with Job-Based Processing and Lot Streaming in A Two-Machine 
Flow Shop 

 

International Journal of Industrial Engineering & Production Research, June 2022, Vol. 33, No. 2 

the current solution by a solution generation 
mechanism, are determined. The objective 
function value ܶܶܥ  is calculated for each 
mutation. The mutation having the ܶܶܥ value is 
selected as the candidate solution. The candidate 
solution becomes the best solution if the 
candidate solution’s ܶܶܥ value is better than the 
current best solution’s ܶܶܥ value. The next tabu 
search iteration continues with the job sequence 
of the new solution. However, to reduce the ܶܶܥ 
value, we modify the application of the TS 
algorithm by inserting a new step before selecting 
the candidate solution at any iteration. Phase 3 of 
our heuristic algorithm is inserted as this new 
step and implemented before selecting the 
candidate solution in the neighbourhood of a 
current solution. The process continues with the 
previous solution if the ܶܶܥ  value is not 
improved after applying Phase 3. 
Tabu search iterations in Phase 4 of our heuristic 
algorithm are run until one of the two stopping 
conditions is reached. We let the TS algorithm 
run for five iterations as the first stopping 
condition. The second stopping condition is that 
the TS algorithm ends when all possible 
mutations are worse than the parent.  
The size of the tabu list, which is the list for 
keeping the history of moves and avoiding the 
return to a solution visited before, is also an 
important parameter. Our preliminary 
experiments set the tabu list size to different 
values ranging from 2 to 10, and some pilot runs 
were made. It has been observed that better 
solutions are obtained when the tabu list size is 
set to 5; thus, it was used for the rest of the 
experiments. 
The following stepwise description of Phase 4 is 
the same as the TS algorithm in Phase 2 of the 
heuristic algorithm in [1]. However, Phase 3 
above is applied in Step 2(b) of the TS algorithm 
instead of the SCO algorithm in [1]. 
 
Step 1.  Set the iteration counter ݅ܿ to 1, i.e., set 

݅ܿ = 1. Set the initial schedule ߪଵ to the 
schedule obtained in Phase 3 above. Set 
the best schedule ߪ  to ߪଵ , i.e., set 
ߪ =  .ଵߪ

 
Step 2.  
(a)  Generate the neighbourhood of the 

schedule ߪ  by adjacent pairwise 
interchanges of the jobs in the schedule 
 .ߪ

(b) For each of the mutation in the 
neighbourhood of the schedule ߪ , apply 
Phase 3 above.   

(c) If the total completion time value of each 
mutation is bigger than the total 
completion time of the parent schedule ߪ, 
then stop; otherwise, from the 
neighbourhood of the schedule ߪ , select 
the schedule with the lowest total 
completion time value as the candidate 
schedule ߪ . 

 
Step 3.  
(a)  If the move  ߪ	 →   is prohibited by a	ߪ

mutation on the tabu list, set ߪାଵ = ߪ  
and go to Step 4; otherwise,  

(i) Delete the entry at the bottom of the tabu 
list. 

(ii) Push all other entries in the tabu list one 
position down. 

(iii) Enter reverse mutation at the top of the 
tabu list. 

(iv) Set ߪାଵ =  .ߪ
(v) Set the best schedule to the candidate 

schedule (i.e., set ߪ = ߪ ), if the total 
completion time value of the candidate 
schedule is smaller  than the total 
completion time vale of the best schedule, 
i.e., ܶܥ(ߪ) <  .(ߪ)ܥܶ

(vi) Go to Step 4. 
 
Step 4.  
(a) Increment the iteration counter ݅ܿ by 1. i.e., 

set ݅ܿ = ݅ܿ + 1. 
(b) If the iteration counter ݅ܿ  is equal to the 

pre-specified value ܰܫ  for the number of 
iterations (i.e., ݅ܿ = ܫܰ ), then stop; 
otherwise, go to Step 2. 

 
5.5. Numerical example 
Consider a problem instance with five customer 
orders and five products to illustrate the proposed 
heuristic algorithm. In Table 1, order quantities 
of the products, setup times, and the unit 
processing times are given. 

 
Tab. 1. Data for the numerical example 

 
ܳ, ,ݐ    ,  

ଵܱ ܱଶ ܱଷ ସܱ ܱହ  ݉ଵ ݉ଶ  ݉ଵ ݉ଶ 

ଵ - 6 1ܬ - -  89 8  1 6 
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0 7 

ଶ 3 4 1ܬ
0 2 8  73 5

5  5 9 

ଷ - - - 9 5  2 6ܬ
0  1

0 8 

ସ 9 8 8 4 7  38 8ܬ
0  4 9 

ହ 4 - - - -  68 3ܬ
1  3 7 

 
Phase 1. The lists of customer orders and jobs are 
constructed as follows: 

List of Customer Orders: ଵܱ =
ଶܬ} , ସܬ , ହ},ܱଶܬ = ଵܬ} , ଶܬ , ,{ସܬ ܱଷ =
ଵܬ} , ଶܬ , ,{ସܬ ସܱ = ଶܬ} , ଷܬ , ,{ସܬ ܱହ =
ଶܬ} , ଷܬ ,  {ସܬ
List of Jobs (Products): ܬଵ =
{ܱଶ[6],ܱଷ[10]} , 
ଶܬ =
{ ସܱ[2], ଵܱ[3],ܱଶ[4], ܱହ[8],ܱଷ[10]} , 
ଷܬ = {ܱହ[5], ସܱ[9]} , 
ସܬ = { ସܱ[4],ܱହ[7], ܱଶ[8], ܱଷ[8], ଵܱ[9]} , 
ହܬ = {ܱଵ[4]} 

Note that the number in a bracket denotes the 
demand for a job in a customer order and all 
customer orders have the same number of jobs, 
which is three. The completion times for the 
customer orders are independently determined as 
(1)ܶܥ = 390 (ଶܱ)ܶܥ , = 461 (ଷܱ)ܶܥ , = 543 , 
)ܶܥ ସܱ) = 423 , and ܶܥ(ܱହ) = 483 . When the 
customer orders are sorted in non-decreasing 
order of their completion times, the list of 
customer orders is obtained as ܱଵ − ସܱ − ܱଶ −
ܱହ − ܱଷ. The first customer order in the sorted 
list of customer orders obtained in Step 2 is the 
order ଵܱ, which has three jobs ܬଶ, ܬସ, and ܬହ. The 
run-in times for the jobs ܬଶ ସܬ , , and ܬହ  equal to 
83, 54, and 80 time units, respectively. When 
these jobs are sorted in non-decreasing order of 
their run-in times, the sorted job list becomes 
ସܬ − ହܬ −  ସ will be the first job ofܬ ଶ. Thus, jobܬ
the initial job sequence since it has the minimum 
run-in time. When job ܬସ  is removed from all 
customer orders having this job, the updated list 
of customer orders becomes ଵܱ = ,ଶܬ} ,{ହܬ 	ܱଶ =
ଵܬ} , ,{ଶܬ 	ܱଷ = ,ଵܬ} ,{ଶܬ 	 ସܱ = ଶܬ} , ,{ଷܬ 	ܱହ = ,ଶܬ}  .{ଷܬ
When the remaining steps in Phase 1 are applied, 
the initial job sequence is obtained as ܬସ − ହܬ −
ଶܬ − ଷܬ −  ଵ, and the customer orders’ sequencesܬ
in each job becomes 
ସܬ = { ସܱ[4],ܱହ[7], ܱଶ[8], ܱଷ[8], ଵܱ[9]} ,  
ହܬ = {ܱଵ[4]} ,  
ଶܬ = { ସܱ[2], ଵܱ[3], ܱଶ[4],ܱହ[8],ܱଷ[10]} ,  
ଷܬ = {ܱହ[5], ସܱ[9]} , and ܬଵ = {ܱଶ[6],ܱଷ[10]} . 
The associated ܶܶܥ value for the initial job  

 
schedule is 4,799 time units. 
Phase 2. From the initial job sequence ܵܬܫ = ସܬ −
ହܬ − ଶܬ − ଷܬ − ଵܬ  obtained in Phase 1, the first 
two jobs ܬସ  and ܬହ  are selected. Two partial 
sequences ܬସ − ହܬ  and ܬହ − ସܬ , where the 
customer order sequences in each job are as given 
in the last Step 4 of Phase 1 above, are formed. 
ܶܥܶ   values in these partial sequences are 
ସܬ)ܶܥܶ − (ହܬ = 1,602  and ܶܬ)ܶܥହ − (ସܬ =
1,968. The partial sequence ܬସ − ହܬ  is selected 
since its ܶܶܥ value is smaller than	ܶܶܥ value of 
the partial sequence ܬହ −  ଶ is selected asܬ ସ. Jobܬ
the next job from the sequence ܵܬܫ , and three 
partial sequences ܬଶ − ସܬ − ହܬ ସܬ , − ଶܬ − ହܬ , and 
ସܬ − ହܬ − ଶܬ  are formed. ܶܥܶ	   values in these 
partial sequences are ܶܬ)ܶܥଶ − ସܬ − (ହܬ = 3,237, 
ସܬ)ܶܥܶ − ଶܬ − (ହܬ = 3,362  and ܶܬ)ܶܥସ − ହܬ −
(ଶܬ = 3,400. The partial sequence ܬଶ − ସܬ −  ହ isܬ
selected since it has the minimum total 
completion time among the three partial 
sequences. When Step 2 is repeated by 
considering the next two jobs (ܬଷ and ܬଵ) from the 
initial job sequence obtained in Phase 1, an 
improved job sequence ܬଷ − ଶܬ − ସܬ − ହܬ − ଵܬ , 
which has a ܶܶܥ  value of 4,605 time units, is 
obtained.  
Phase 3. The first job of the job sequence 
ଷܬ − ଶܬ − ସܬ − ହܬ − ଵܬ  obtained in Phase 2 is 
ଷܬ = {ܱହ[5], ସܱ[9]} , which is considered the 
current job. The sublots of job 
ଷܬ = {ܱହ[5], ସܱ[9]}  are customer orders ܱହ  and 
ସܱ , and these customer orders have jobs ܬଶ  ସܬ ,

and ܬହ, which are processed after job ܬଷ in the job 
sequence ܬଷ − ଶܬ − ସܬ − ହܬ − ଵܬ . Thus, the next 
job in the job sequence is job  
ଶܬ = { ସܱ[2], ଵܱ[3], ܱଶ[4],ܱହ[8],ܱଷ[10]}  ordered 
by all customers, and these customer orders have 
jobs ܬସ and ܬହ, which are processed after job ܬଶ in 
the job sequence ܬଷ − ଶܬ − ସܬ − ହܬ − ଵܬ . Thus, 
pairwise interchanging of the customer orders is 
not possible. Therefore, the next job in the 
sequence ܬଷ − ଶܬ − ସܬ − ହܬ − ଵܬ , which is job 
ସܬ = { ସܱ[4],ܱହ[7], ܱଶ[8], ܱଷ[8],ܱଵ[9]} , should 
be considered. The sublots ସܱ and ܱହ of job ܬସ do 
not have the jobs processed after job ܬସ in the job 
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sequence to pass to the next step.  Customer order 
ܱହ  follows the customer order ସܱ  in job ܬସ . 
Pairwise interchange of customer orders ସܱ  and 
ܱହ increases the total order completion time ܶܶܥ  
to 4,632 so that this interchange is not made. Step 
2 is repeated again since the remaining sublots 
ܱଵ, ܱଶ and ܱଷ of job ܬସ  exist in jobs ܬହ  and ܬଵ of 
the sequence ܬଷ − ଶܬ − ସܬ − ହܬ − ଵܬ .The next job 
in the sequence ܬଷ − ଶܬ − ସܬ − ହܬ − ଵܬ  is job ܬହ 
having only one customer order, so there is no 

need to make any pairwise interchange. Now, the 
new current job becomes job ܬଵ . Phase 2 is 
terminated since this job is the last job of the 
sequence ܬଷ − ଶܬ − ସܬ − ହܬ −   .ଵܬ
Phase 4. The initial schedule ܬଷ − ଶܬ − ସܬ − ହܬ −
 ଵ for the tabu-search algorithm is taken from theܬ
solution obtained in Phase 3 of the heuristic 
algorithm and its ܶܶܥ   value is 4,605. TS 
algorithm terminates with an improved schedule 
ଷܬ − ଶܬ − ହܬ − ସܬ −   .ଵ in two iterationsܬ

 

 
Fig. 4. Gantt chart of the schedule obtained by the heuristic algorithm 

 
Fig. 4 illustrates the Gantt chart of the schedule 
obtained by Phase 4. Note that ܶܶܥ  value of this 
schedule is 4579 (=842+1109+1169+698+761) 
and equivalent to the ܶܶܥ  value of the optimal 
schedule achieved by solving the MILP model. 
 

6. Computational Experiments 
This section presents the computational tests to 
examine the effectiveness and efficiency of our 
solution approaches MILP model and the 
heuristic algorithm. Our mathematical model is 
solved using the CPLEX solver of the software 
package GAMS with version 24.1. The proposed 
heuristic algorithm is coded in Java programming 
language. A computer with 128 GB RAM and a 
processor running at 2.00 GHz under the 
operating system Windows 10 is used for all 
experiments. 
 
6.1. Parameter settings and problem 
instances generation 
The values of the parameters used in the 
experiments are generated as in 29. The number 
of customer orders (ܭ) is taken as 5 and 10; the 
number of jobs (ܰ) is taken as 5, 10, 15, and 20. 

The number of customers ordering job ݆ ( ݊) and 
the quantity of product (job) ݆  ordered by 
customer ݇ (ܳ, ) are randomly generated from 
the discrete uniform distributions DU1, ܭ and 
DU1, 10, respectively. The processing times 
,ݐ) and the setup times (,) ) are randomly 
generated from the discrete uniform distributions 
DU1, 10 and DU0, 100݂, respectively, where 
݂ is taken as 0.5, 1.0, 1.5, and 2.0. Thus, for each 
of 8 possible combinations of the parameters ܭ 
and ܰ , 25 problem instances (replicates) are 
randomly generated. A total of 400 problem 
instances, 200 for setup and 200 for no-setup 
cases, are tested.  
 
6.2. Performance measures 
In the computational experiments, the run time 
for GAMS to solve the MILP model of each 
problem instance is limited by 3 hours. When the 
run time of the solver GAMS for obtaining the 
optimal solution is limited, GAMS gives one of 
three types of solutions for the MILP models:  

(1) Best Integer Solution (BIS), which might 
be non-optimal  
(2) Optimal Solution (OS) which is the desired 

Job 3 

0   2        52      142     215   225    230     250      290        340        408      

 

 

 

  

Job 2 Job 5 

      

   
  

   

               52   112   152   224  225                   280   298   325     361             433                  523    
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one and equals the best integer solution  
(3) No-Solution 

To assess the effectiveness of the heuristic 
algorithm for the problem instances having the 
optimal solution, ܶܥܶ	   value obtained by the 
proposed heuristic algorithm is compared with 
 value of the optimal solution of the MILP ܶܥܶ
model obtained by GAMS. However, for the 
problem instances in which the best integer 
solution exists but is not necessarily optimal, the 
ܶܥܶ  value obtained by the proposed heuristic 
algorithm is compared with the ܶܶܥ value of the 
best integer solution. 
For the problem instances having the optimal 
solutions obtained by solving the MILP model, 
the percent deviation of the ܶܶܥ value provided 
by our heuristic algorithm from the ܶܶܥ value of 
the optimal solution is calculated. The percent 
deviation from the optimal solution is ܦܲ	 =
100	 × ுܶܥܶ) − ைܶܥܶ/(ைܶܥܶ , where ܶܶܥு  is 
the ܶܶܥ  value of the solution obtained by the 
heuristic algorithm and ܶܥை is the ܶܶܥ value of 
the optimal solution obtained by solving the 
MILP model. We replace ܶܶܥைwith ܶܶܥ in ܲܦ 
calculation, where ܶܶܥ is the ܶܶܥ value of the 
best integer solution obtained by solving the 
MILP model when the best integer solution exists 
but an optimal solution is not achieved. 
We measure the efficiency of our proposed 
heuristic algorithm using the computational time 
required to solve the problem instances. The 
computational time for the proposed heuristic 
algorithm is relatively minimal, less than 5 
seconds, for all problem instances. Also, note that 
the computational time increases as the number 
of products or customer orders increases. 
Nevertheless, the computational time is minimal 
again, less than 5 seconds. Thus, the 
computational times are not reported here. 
 
6.3. Discussion on the performance of the 
MILP model 
This section investigates the performance of the 
MILP model for the setup and no-setup cases. As 
shown in Table 2, the MILP gives the optimal 
solution for every problem instance for setup and 
no-setup cases when the number of customer 
orders and the number of jobs are 5 (i.e., ܭ = 5 

and ܰ = 5). However, when ܭ = 5 and ܰ = 10, 
the MILP finds the optimal solution for one and 
two problem instances for the setup and no-setup 
cases, respectively. No optimal solution is 
obtained, but the best integer solutions are 
achieved for setup and no-setup cases when there 
are five customer orders and 15 or 20 jobs. On 
the other hand, the MILP brings the optimal 
solution for four problem instances when ܭ = 10 
and ܰ = 10 for both setup and no-setup cases. 
However, no optimal solution is obtained for all 
problems instances with 10, 15, or 20 jobs.  
The quality of the best integer solutions, which is 
not necessarily optimal, are also investigated by 
examining the gap value (percent difference) 
between the best-integer and optimal solutions. 
As the number of iterations increases, integer 
solutions are expected to become closer to the 
optimal solution. However, GAMS’s solver 
CPLEX may terminate before reaching the 
optimal solution because of the 3-hour time limit. 
Nevertheless, this case is the best since the gap 
values are close to zero. On the other hand, for 
some non-optimally solved problem instances, 
branching becomes very difficult and time-
consuming. When branching is slow, the number 
of iterations is moderate, leading to higher gap 
values than the best case and lower gap values 
than the worst case. The gap values are as in 
Table 2. When ܭ = 5 and ܰ = 5  for setup and 
no-setup cases, all gap values equal zero, which 
means that MILP can achieve the optimal 
solution for all problem instances; furthermore, 
the average gap values for the no-setup case are 
slightly bigger than average gap values for the 
setup case. However, when the number of 
customer orders is increased from 5 to 10 for the 
setup case, it is observed that the average gap 
value of the non-optimally solved problem 
instances increases from 52.5 percent to 77 
percent. Similarly, the average gap value of the 
non-optimally solved problem instances increases 
from 53.2 percent to 80 percent when the number 
of customer orders is increased from 5 to 10 for 
the no-setup case. These results conclude that 
problem complexity increases directly as 
customer orders or jobs increase. 

 
Tab. 2. Performance of the MILP model 

K N NPI 
Setup case  No-setup case 

NO
S NBIS AG  NO

S NBIS AG 

5 5 25 25 0 0  25 0 0 
10 25 1 24 45  2 23 42 
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15 25 0 25 78  0 25 80 
20 25 0 25 87  0 25 89 

Total  100 26 74   27 73  
Average    52.

5    53.
2 

10 5 25 4 21 38  4 21 38 
10 25 0 25 85  0 25 90 
15 25 0 25 91  0 25 94 
20 25 0 25 93  0 25 96 

Total  100 4 96   4 96  
Average    77.

0    80.
0 

Total 200 30 170   31 169  
Grand 
Average    64.

7    66.
4 

Notes: K: number of customer orders; N: number of jobs; NPI: number of problem instances; NOS: number of optimally solved 
instances; NBIS: number of best integer solutions obtained only; AG: average gap value in percentage. 

 
6.4. Discussion on the performance of the 
heuristic algorithm 
This section investigates the performance of the 
proposed heuristic algorithm for the setup and 
no-setup cases. The average and maximum 
percent deviations from the optimal or best 
integer solution obtained by solving the MILP 
model are reported in Table 3. One can observe 
that average percent deviations decrease as the 
number of products increases from 5 to 10, 15, or 
20. This situation indicates that the heuristic 
algorithm is powerful to provide optimal or near-
optimal solutions, especially for large-scale 
problems. A second observation is that the grand 
average percent deviations for all 200 problem 
instances with and without setups are 0.57 and 
1.24, respectively, which are low to some degree. 
This result indicates that the performance of the 
heuristic algorithm is better for the setup case.  
In summary, the results above conclude that the 
performance of the proposed heuristic algorithm 
is better for large-scale problems and is more 
successful for the setup case than the no-setup 
case. Furthermore, practitioners are suggested to 
solve the problems with up to 10 customer 
orders, using the MILP model for setup and no-
setup cases. For the problems with more than ten 
customer orders, the heuristic algorithm could be 

preferred when the time to obtain a solution by 
the MILP model is limited. 
 

7. Conclusions 
This study introduces a new customer order 
scheduling problem with job-based processing 
and lot streaming in a two-machine flow shop. 
The aim is to construct a sequence of the product 
lots and the sublots’ sequence in each product lot 
to minimize the sum of the customer orders’ 
completion times. We have proved that the 
problem under study is NP-hard in the strong 
sense. Thus, a MILP model has been presented to 
solve the problem optimally.  
The results of our experiments indicate that the 
GAMS achieves optimal solutions to the MILP 
model for problem instances with 5 or 10 
customer orders and five products in less than 3 
hours of the time limit. However, no problem 
instance was solved optimally as the number of 
customer orders or products is increased. From 
these observations, it has been concluded that 
solving the MILP model cannot handle the large-
scale problem instances in reasonable 
computational times. Thus, a multi-phase 
heuristic algorithm with tabu search has been 
developed.

  
Tab. 3. Performance of the heuristic algorithm 

K N NPI Setup case  
No-setup 

case 
AV
E MAX  AVE MAX 

5 5 25 0.36 2.59  2.26 12.64 
10 25 1.09 9.34  3.00 14.73 
15 25 0.52 3.52  1.55 8.26 
20 25 0.08 1.62  0.18 1.76 
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Total  100      
Average  0.51 4.27  1.75 9.35 
10 5 25 1.27 7.66  0.96 7.93 

10 25 0.82 4.54  1.00 3.98 
15 25 0.44 7.11  0.50 3.71 
20 25 0.00 0.00  0.46 6.57 

Total  100      
Average  0.63 4.83  0.73 5.55 
Total 200      
Grand 
Average 

 0.57 4.55  1.24 7.45 

Notes: K: number of customer orders; N: number of jobs; NPI: number of problem instances; AVE: average percent deviation, i.e., 
 .MAX: maximum percent deviation ;ܦܲ

 
In our computational experiments, 200 problem 
instances have been generated and solved 
separately with and without setups. The 
computational experiments revealed that the 
proposed heuristic algorithm could optimally 
solve small and medium-scale problems among a 
total of 400 problem instances and provide near-
optimal solutions in less than five seconds to 
large-scale instances.  
On the other hand, the average percentage 
deviations of the total completion time of the 
solution obtained by the heuristic algorithm from 
that of the optimal or best integer solution 
obtained by the MILP model are 0.57 and 1.24 
for all problem instances with and without setups, 
respectively. The associated average percentages 
of maximum deviations are 4.55 and 7.45 for all 
problem instances with and without setups, 
respectively. Those results altogether reveal the 
excellent performance of the proposed heuristic 
algorithm over 400 problem instances solved. 
The study in this paper opens up the opportunities 
to do new research in the future on several 
extensions:  

 The MILP model in Section 4 could be 
easily adapted to the flow shop 
environment having more than two 
machines so that more complex and 
realistic problems could also be studied. 

 In the problem under study, 
intermingling the sublots of different 
products (jobs) is not allowed. Relaxing 
this no-intermingling assumption and 
comparing the problems with and 
without intermingling could be a future 
research issue. 

 Moreover, sequence-independent setups 
are considered in this study. However, 
setups could be sequence-dependent, as 
in [30]. 

 Studying the problem under investigation 
in this paper for a due-date-based 

performance measure could be the 
subject of another future study. 

 In addition to the above extensions, 
considering the job-based processing and 
lot streaming on different manufacturing 
environments, including flow shops 
having more than two machines (stages) 
and hybrid flow shops with several 
machines at one or more stages, could be 
other promising research topics. 
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