Volume 31, Issue 1 (IJIEPR 2020)                   IJIEPR 2020, 31(1): 35-50 | Back to browse issues page

XML Print

1- Science and Research Branch, Islamic Azad University
2- Shahed University , bashiri@shahed.ac.ir
3- University of Tehran
Abstract:   (1097 Views)
One of the major risks that can affect supply chain design and management is the risk of facility disruption due to natural hazards, economic crises, terrorist attacks, etc. Static resiliency of the network is one of the features that is considered when designing networks to manage disruptions, which increases the network reliability. This feature refers to the ability of the network to maintain its operation and connection in the lack of some members of the chain. Facility hardening is one of the strategies used for this purpose. In this paper, different reliable capacitated fixed-charge location allocation models are developed for hedging network from failure. In these proposed models, hardening, resilience, and hardening and resilience abilities are considered respectively. These problems are formulated as a nonlinear programming models and their equivalent linear form are presented. The sensitivity analysis confirms that the proposed models construct more effective and reliable network comparing to the previous networks. A Lagrangian decomposition algorithm (LDA) is developed to solve the linear models. Computational results show that the LDA is efficient in computational time and quality of generated solutions for instances with different sizes. Moreover, the superiority of the proposed model is confirmed comparing to the classical model.
Full-Text [PDF 471 kb]   (265 Downloads)    
Type of Study: Research | Subject: Facilities Planning and Management
Received: 2018/08/5 | Accepted: 2019/10/8 | Published: 2020/03/15